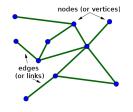
nwcommands 0000 Contribution 0000 Application 000 Conclusion

References

Network Analysis using Stata Nwcommands, extensions and applications.

Charlie Joyez Université Cote d'Azur (UCA), GREDEG, Université de Nice


Sept 2018, KU Leuven, Brussel Stata User Group Meeting

nwcommands 0000 Contribution 0000 Application 000 Conclusio

References

Motivation

Networks are everywhere. flexible mathematical object

- ► Complex systems, interactions, interdependence's.
- ► Two type of use in (Social) Sciences
 - Theoretical modeling with complex micro-foundations
 - Empirical analysis of existing networks.
 - Booming in several fields with data availability and computing capabilities.
 - Increasing interest (See Stata news january 2018 (33-1))

Objective

How to easily proceed to network analysis using Stata?

Node level and network wide analysis

nwcommands

Contribution 0000 Application 000

Conclusion

References

Outline

I- Introduction

II - nwcommands

- III Contribution
- IV Application
- V Conclusion and discussion

Application 000 Conclusion 00 References

nwcommands - Presentation

- ▶ Developed (maintained) by Thomas Grund Univ. College Dublin
 - http://nwcommands.org
 - install nwcommands-ado, from(http://www.nwcommands.org)
- ▶ Entire suite of commands, close to Stata commands (nw prefix)
 - declare, use, save network data
 - Manipulate (keep, drop, permute, etc.) nodes or entire networks
 - Compute network metrics
 - At the node level (centrality, etc)
 - At the entire network level (density, overall clustering coeff).

Contribution 0000 Application 000 Conclusion

References

Declare Data

From a Mata Matrix (Adjacency matrix)

mata A=(0,10,1 \5,0,0 \0,2,0) mata A

ma	ata A 1	2	3
1	0	10	1
2	5	0	0
3	0	2	0

nwset, mat(A) name(netA)

From an edge list

🗃 🖬 🖲	• I D D 🖬	ЭТ.	
	_fromid[1	1	1
	_fromid	_toid	link
1	1	1	0
2	1	2	0
3	1	3	0
4	1		0
5	1	5	0
6	1	6	0
7	1	7	0
8	1	8	0
9	1	9	0
10	1	10	0
2.2	2	11	1

nwfromedge _fromid _toid link, name(Net1) undirected

Contribution 0000 Application 000 Conclusion

References

Node-level metrics

nwdegree

- _degree: Number of direct neighbors
- $d_i = \sum_j m_{i,j}$, M = A : /A Unweighted adjacency matrix
- returns Freeman (1979) index

$$C_x = \frac{\sum_{i=1}^{N} C_x(p_*) - C_x(p_i)}{\max \sum_{i=1}^{N} C_x(p_*) - C_x(p_i)}$$

- nwdegree, valued
 - _strength: Sum of edges weights

•
$$s_i = \sum_j a_{ij}$$

 Other node centrality metrics : Betweeness & closeness, Katz, Eigenvector.

Contribution 0000 Application 000 Conclusion

References

Network-wide information

Network hame: test Network id: 1 Directed: true Nodes: 6 Arcs: 14 Minimum value: 0 Maximum value: 1 Density: .4666666666666666667

nwgeodesic

Longest past, diameter, avg shortest path (unweighted)

 nwclustering Overall clustering coefficient (nb triads / nb possible triads)

nwcommands 0000 Contribution

Application 000 Conclusion

References

Outline

- I- Introduction
- II nwcommands

III - Contribution

- IV Application
- V Conclusion and discussion

oduction		

►

Application 000 Conclusion 00 References

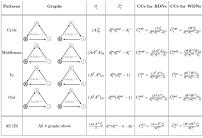
Node-level metrics 1/2

- Average Nearest Neighbors Degree (Strength)
 - nwannd : Average nearest neighbor degree.

```
mata
neighbor = mymat:>0
Z=st_data(.,"_degree")
mata: totdegreemat = neighbor*Z
mata: ANNDmat=totdegreemat:/Z
end mata
```

- nwdisparity (Barthélemy et al., 2005) : distribution of edge's weight (concentration) disparity_i = ∑_i(w_{ij}/s_i)²
- nw_harmonic centrality (suited for disconnected graphs)

•
$$H(x) = \sum_{y \neq x} \frac{1}{d(y,x)}$$


Contribution

Application 000 Conclusion 00 References

Node-level metrics 2/2

Weighted / directed extension of existing commands

- nwcluster : directions and/or weighted generalization (Onnela et al., 2005)
- nw_wcc : Weighted Clustering Coefficients (Fagiolo, 2006)

nw_geodesic (weights as distance)

nwcommands

►

Contribution 0000

Application

References

Network level

nwreciprocity (Barrat et al., 2004)

mata s=sum(W)Z = W :* (W :< W') + W' :* (W' :< W) /*min of symmetrics elements = reciprocated ties*/ E=sum(Z)r=E/s end mata Compares reciprocity with N random draws (same size, density).

- **nwstrengthcent** : (Freeman, 1979) index based on Strength.

Contribution

Application 000

Conclusion 00 References

Declaration

- From neigbor lists (only existing ties). A variable may indicate the sequence.
 - nw_fromneighbornw_fromlist test,node(NODE) id(ID)
 direction(year)

Final data

	HODE	_ACT	,819	,732.		_135	_03A
	XIT.	0			0		
2	111	0		4	1	1	
8	784	0			0	0	
۰.	088	0	1		0		
5	133	0	3		0	0	
•	228	0	1	2		1	

nwcommands 0000 Contribution 0000 Application

Conclusion

References

Outline

- I- Introduction
- II nwcommands
- III Contribution

IV - Application

V - Conclusion and discussion

Contribution

Application •00 Conclusion

References

Application to international economics

Declare to be weighted directed network : 192*192 table mkmat flow_*, matrix(M) mata A=st_matrix("M") nwset , mat(A) name(TradeNet'v')

nwcommands 0000 Contribution

Application 000 Conclusion

References

Application - 2

Most central nodes?

Eigenvector centrality

Network n	me: TradeNet_3				
Elgenve	ctor centrality		-		
Variable	000	Mean	Std. Dev.	Min	Max
_ercen	183	.0716463	.0182512	.0114232	.0927111
secone _e	rcent evcent_un				
aw_evcent					
securick n	ne: tradenet_3				
Elgenve	ctor centrality				
Variable	000	Mean	Std. Dev.	Min	Max
_ercen	t 103	.0246924	.0556673	5.230-06	.5755326
recane _e	rcent evcent_w				
228	.039391	.00004	114		
TEA DGA	.039391	.0000	14		
TEA DGA UKR	.039391 .0506185 .0907891	. 00034	14 51 53		
TEA DGA	.039391	.0000	14 51 53		

Degree centralization Strength Centralization 0.364 0.176

Application - 3

Econometrics of networks

- ► Use of network metrics (e.g. centrality indexes of nodes) into traditional analysis. (Hidalgo et al., 2007)
- Regress network structure (dyadic data)
 - Individuals in networks not iid
 - OLS biased unless FE or clustering
 - QAP : unit = dyadic value + random permutations of rows and columns.
 - nwqap MNEnet_2011 GVCnet_2010 , mode(dist) type(reg)
 permutation(500)

Permutation: 500 out of 500

ultiple	Regression	Quadratic	Assignment	Procedus

Estimation Regression Permutations Sumber of vertices Sumber of edges	-	DAP 100 500 54 1430	
MMEnet_forGWC2011		coef.	r-value
GFCnet_forMSE2010	Γ	.001906 37.52447	0

nwcommands 0000 Contribution 0000 Application 000 Conclusion

References

Outline

- I- Introduction
- II nwcommands
- III Contribution
- IV Application
- V Conclusion and discussion

nwcommands 0000 Contribution 0000 Application 000 Conclusion

References

Conclusion

Network analysis made easy through Stata

- easy to learn and contribute
- suited to a wide range of issues

Next steps

- generalize metrics to weighted, directed, unconnected graphs.
 - Fit to complex networks.
- improve network graphs & plots vizualization
- Incorporate nwcommands into Stata 16?
- Promote network analysis to colleague/students already familiar with Stata.

nwcommands 0000 Contribution 0000 Application 000

Conclusion

References

Thank you charlie.joyez@unice.fr

Many thanks to **Thomas Grund** for its **nwcommands: Network Analysis with Stata** Additional Stata commands used for this paper are available on my <u>RePEc Ideas page</u> or directy from SSC (e.g. ssc install nwannd)

Introduction	nwcommands	Contribution	Application	Conclusion
0	0000	0000	000	00

References

References

- Barrat, A., Barthelemy, M., Pastor-Satorras, R., and Vespignani, A. The architecture of complex weighted networks. *Proceedings of the National Academy of Sciences of the United States of America*, 101(11):3747–3752, 2004.
- Barthélemy, M., Barrat, A., Pastor-Satorras, R., and Vespignani, A. Characterization and modeling of weighted networks. *Physica a: Statistical mechanics and its applications*, 346(1): 34–43, 2005.
- Fagiolo, G. Directed or undirected? a new index to check for directionality of relations in socio-economic networks. *Economics Bulletin*, 3(34):1–12, 2006.
- Freeman, L. C. Centrality in social networks conceptual clarification. *Social networks*, 1(3): 215–239, 1979.
- Hidalgo, C. A., Klinger, B., Barabasi, A.-L., and Hausmann, R. The product space conditions the development of nations. Paper 0708.2090, arXiv.org, 2007. 00468.
- Joyez, C. On the topological structure of multinationals network. *Physica A: Statistical Mechanics and its Applications*, 473:578 588, 2017.
- Onnela, J.-P., Saramäki, J., Kertész, J., and Kaski, K. Intensity and coherence of motifs in weighted complex networks. *Physical Review E*, 71(6):065103, 2005.