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1 Introduction
1.1 Goals
Goals

• Learn a little about Bayesian analysis

• Learn the core of how Bayesian analysis are implemented in Stata 14

1.2 Brief Glimpse into Bayesian Analysis
Uncertainty as Probability

• In the frequentist world, probabilities are long-run proportions of repeated identical experiments

� In some ways, this means we never know any probabilities of any events

• In the Bayesian world, probabilities are an expression of uncertainty

� The advantage of the Bayesian viewpoint is that it allows talking about probabilities for events which
cannot be repeated
? What is the chance of a major earthquake in Alaska this year?
? What is the chance that Australia takes the 2015 Rugby World Cup?

� The disadvantage is that these probabilities become subjective



Bayesian Analysis

• Uncertainty about parameters is expressed via a prior distribution p(θ)

� The prior distribution is necessarily subjective
� If there is little knowledge about possible values, vague or non-informative priors get used

• The dataset y is used to update these priors into posterior distributions via Bayes rule

p(θ|y) = p(y|θ)p(θ)
p(y)

� p(y|θ) is the likelihood
� p(y) is the marginal density of the data

p(y) =
∫

θ

p(y|θ)p(θ)

? This last integral has been the bugaboo

Advantages and Disadvantages of Bayesian Analysis

• Advantages

� Theoretically should allow updating knowledge with past experience
� Can speak directly about probabilities instead of applying long-run proportions to a single event

? Think of confidence intervals: have long-run chance of catching the parameter value, but know nothing
about the current estimate

� Can choose among multiple competing hypotheses

• Disadvantages

� Could be worried about subjectivity

Why Has Bayesian Analysis Become More Popular

• Computational speed allows rapid but good approximations of the marginal density of the data

� Before computational horsepower could be used, only a small set of models could be estimated

• All the magic comes from Markov Chain Monte Carlo (MCMC) methods

� These sample points from the not-fully-specified density in such a way that if left running forever, the
density of simulation points would equal the target density

Implementation in Stata 14

• In Stata 14, the estimation portion of Baysian analysis is implented by the bayesmh command

� mh for Metropolis-Hastings

• We will see how this works, both via point-and-click and syntactically

• We will look at some diagnostics and other post-estimation tools
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2 Bayesian Analysis in Stata 14
2.1 Starting Simple
A Simple Story

• We’ll work with a very simple dataset measuring counts

• Here is our simulated story:

� We’ve collected data from 70 people in Canberra about the number of parking tickets they’ve gotten in
the last year
� We would like to get some concept of the rate the people get the tickets
� We will do this based on the rumor that Canberra is particularly finicky about parking

• We’ll simulate a dataset as though the true number of parking fines per year per person is 1.3
. do makepois

. set more off

. clear

. * pick a seed for reproducibility

. set seed 1800

. * set the number of observations

. set obs 70
number of observations (_N) was 0, now 70

. * create the observations

. gen y = rpoisson(1.3)

. label var y "Parking tickets in Canberra"

. label data "The IKEA of datasets: one variable of counts"

.

. save pois
file pois.dta saved

.
end of do-file

• Let’s see the mean count for this simulation
. sum y

Variable | Obs Mean Std. Dev. Min Max
-------------+---------------------------------------------------------

y | 70 1.257143 1.099219 0 3

Starting a Bayesian Analysis: the Prior

• We would now like to do a Bayesian investigation of the rate λ of getting fined

� Suppose we are truly interested whether the rate of fines is over one per year per person

• To start out, we need to specify a prior distribution

• How would this possibly be done?

� We could try to use a vague prior which has very little information in it
� We could try to elicit the opinions of experts

• We’ll start with a vague prior
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Choosing a Vague Prior

• Vague priors are only vaguely defined: they ought to cover all remotely plausible values without favoring any
values

• We will choose a flat prior, meaning that all possible ticketing rates have the same probability

� Because this means that we need a probability density proportional to 1 over the interval 0 to ∞, this is
an improper prior
� Improper priors should typically be avoided, but this will help the exposition here

• So, for us, p(λ) ∝ 1 for 0 < λ <∞

� Clearly, like continuous-time white noise, this is impossible but helpful

Specifying our Model: the Interface

• We will start by using the point-and-click interface

• There are two ways to access this

� Either select Statistics > Bayesian analysis > Estimation
� Or type db bayesmh in the command window

• We will choose what we would like to do now, and then come back to the full range of possible models

Choosing the Likelihood Model

• We would like a univariate linear model

• Clicking the drop-down menu for the Dependent variable and choose y

• We have no independent variables

• Choose Poisson regression as the Likelihood model

• We can leave the Exposure variable blank

• Tick the Do not exponentiate linear predictor

� This will cause our out output to report rates instead of the natural log of rates

Specifying the Prior

• Click on the Create... button for the Priors of model parameters

• From the Parameters specification dropdown, choose {y:_cons}

� This is because we are modeling only the constant term without any covariates

• We will choose the Flat prior item

• Click OK to dismiss the subdialog
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Making Our Computations Reproducible

• We should set a random seed for this MCMC

� This will make sure that we can show our result in the future

• Click on the Simulation tab

• We’ll put 7434 as the random seed

� This is an arbitrary non-negative integer

Computing the Posterior

• We are already done specifying this simple model, so click the Submit button

• The command gets issued
. bayesmh y, likelihood(poisson, noglmtransform) ///

prior({y:_cons}, flat) rseed(7434)

Burn-in ...
Simulation ...

Model summary
------------------------------------------------------------------------------
Likelihood:

y ~ poisson({y:_cons})

Prior:
{y:_cons} ~ 1 (flat)

------------------------------------------------------------------------------

Bayesian Poisson regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 70
Acceptance rate = .4271

Log marginal likelihood = -102.22367 Efficiency = .2315

------------------------------------------------------------------------------
| Equal-tailed

y | Mean Std. Dev. MCSE Median [95% Cred. Interval]
-------------+----------------------------------------------------------------

_cons | 1.274535 .1358713 .002824 1.274437 1.020925 1.548038
------------------------------------------------------------------------------

• Stata churns through the MCMC computations to find the posterior distribution

• Stata reports the results

General Notes about the Output

• At the top, you see Burn In ... followed by Simulation ... as notifications

� These would be for seeing progress in very computationally intensive models

• We see the two elements we need to specify for any Bayesian analysis: the Likelihood model and the Prior
distribution

• There is information about how the MCMC sampling was done

• There is information about summary statistics of the posterior distribution

� Recall that we are not specifically trying to estimate mean values; we are finding a posterior distrbution
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Output Specifics: MCMC

• By default, Stata uses a burn-in of 2,500 iterations

� This is used to tune the adaptive model and to give time for the simulation to reach the main part of the
posterior distribution

• By default, Stata runs the MCMC chain for 10,000 iterations

• The acceptance rate is the rate that new picks from the distribution are accepted

• The efficiency is relative to independent samples from the posterior distribution

Output Specifics: Regression Table

• The mean of our posterior distribution for the arrival rate is 1.27

• The standard deviation of the posterior distribution is 0.136

• The MCSE of 0.0028 is the standard error of estimation of the mean due to our using MCMC to find the
posterior distribution

� How much the posterior mean would vary from run to run if we used different random seeds

• The median is the median of the posterior distribution

• The probability that the arrival rate is between 1.021 and and 1.548 is 95%

� Note this is not a trapping probability for unknown future samples

Starting with Postestimation

• We can see what postestimation commands are available by typing

. db postest

• Now click on the disclosure control next to Bayesian analysis

• Select the Graphical summaries and convergence diagnostics item

• Click on the Launch button

Investigating the Posterior

• We can draw a picture of the posterior distribution in a couple of ways

• To make a histogram, select the Histograms graph type

• To make life simple select the Graphs for all model parameters radio button

• Click on the Submit button
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Histogram of the Posterior

• Here is the histogram version of the posterior distribution

. bayesgraph histogram _all
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Histogram of y:_cons

Density Plot of the Posterior

• To get a density plot, select the Density plots graph type

• Click on the Submit button

. bayesgraph kdensity _all

0

1

2

3

.8 1 1.2 1.4 1.6 1.8

overall

1st−half

2nd−half

Density of y:_cons
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Finding the Probability the Rate is Larger than 1

• Navigate back to the Postestimation Selector dialog box

• Select the Interval hypothesis testing menu item

• Choose {y:_cons} parameter from the Test model parameter list

• Enter 1 as the Lower bound and leave . as the Upper bound

• Click the Submit button

. bayestest interval ({y:_cons}, lower(1))

Interval tests MCMC sample size = 10,000

prob1 : {y:_cons} > 1

-----------------------------------------------
| Mean Std. Dev. MCSE

-------------+---------------------------------
prob1 | .9837 0.12663 .0024803

-----------------------------------------------

• We can read off the probability as 0.98

� This is a true probability
� It is a subjective probability based on our flat prior

2.2 Looking More Carefully
How MCMC Can Break

• There are multiple ways that MCMC can give bad answers

� It can mix poorly, meaning either that
? New candidate points for the simulation get rejected too often
? The jumps are too small to cover the distribution

� It can have bad initial values
? These should be irrelevant because of the long burn-in sequence
? But... if there is poor mixing this might not be the case
? This leads to what is called ’drift’

MCMC Diagnostics

• There is a simple tool for looking at the standard diagnostics all at once

• Select Multiple diagnostics in compact form in the bayesgraph dialog, and press Submit

. bayesgraph diagnostics _all

Bayesian Analysis using Stata © StataCorp LP Page 8 of 25



.8

1

1.2

1.4

1.6

1.8

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
1

2
3

.8 1 1.2 1.4 1.6 1.8

Histogram

0.00

0.20

0.40

0.60

0 10 20 30 40
Lag

Autocorrelation

0
1

2
3

.8 1 1.2 1.4 1.6 1.8

all

1−half

2−half

Density

y:_cons

Looking for Drift

• The cusum (short for cumulative sum) plot is used to look for small step size and drift

• Select Cumulative sum plots and press Submit

. bayesgraph cusum _all
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Simple Diagnostic Conclusion

• Everything looks fine because there is no sign of bad mixing or drift
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Playing with Different Priors

• Suppose we talk to people in Sydney, Melbourne, Adalaide, and Brisbane

• They all agree that the the rate of fines should be about 1 every 3 years, with little chance of averaging more
than 1 fine per year

� Thus, they are completely incorrect about Canberra

• Based on this, a good prior would be a Gamma(3, 0.1)

Aside: Graph of the Prior

• Here is a graph of the Gamma(3, 0.1) distribution

. twoway function y = gammaden(3,0.1,0,x), range(0 1.5)

0
1

2
3

y

0 .5 1 1.5
x

Specifying a New Prior

• Type db bayesmh to get our dialog box back

• Select the Prior 1 prior

• Click on the Edit button

• Choose Gamma distribution

• Enter 3 as the Shape and 0.1 as the Scale

• Click on the OK button to dismiss the subdialog
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Changing the Seed
• Go to the Simulation tab
• Change the random seed to some other number, say 9983
• Click on the Submit button to run the analysis

. bayesmh y, likelihood(poisson, noglmtransform) ///
prior({y:_cons}, gamma(3,0.1)) rseed(9983)

Burn-in ...
Simulation ...

Model summary
------------------------------------------------------------------------------
Likelihood:

y ~ poisson({y:_cons})

Prior:
{y:_cons} ~ gamma(3,0.1)

------------------------------------------------------------------------------

Bayesian Poisson regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 70
Acceptance rate = .4313

Log marginal likelihood = -107.68681 Efficiency = .2345

------------------------------------------------------------------------------
| Equal-tailed

y | Mean Std. Dev. MCSE Median [95% Cred. Interval]
-------------+----------------------------------------------------------------

_cons | 1.136429 .1181007 .002439 1.130957 .9216155 1.380885
------------------------------------------------------------------------------

What Happened?
• We can see that the mean of the posterior distribution is smaller

� We should, however, be encouraged that the mean is only somewhat smaller despite the very-different prior

• If we now compute our probability that the rate is larger than 1, though: 0.88
. bayestest interval ({y:_cons}, lower(1))

Interval tests MCMC sample size = 10,000

prob1 : {y:_cons} > 1

-----------------------------------------------
| Mean Std. Dev. MCSE

-------------+---------------------------------
prob1 | .8814 0.32333 .0062655

-----------------------------------------------

2.3 Changing the Problem
Specifying Our Own Likelihood

• What if we wanted a likelihood which is not one of the 10 built-in likelihoods?
• We can specify this by using the likelihood() option with the llf() suboption
• We just need an example to show this...
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Changing the Problem

• Suppose now that our sample came just from those who had had a ticket in the last year

. drop if y == 0

(23 observations deleted)

� We’ve lost quite a bit of our sample

• We cannot use the same likelihood model as we had before

• Instead, we have a truncated Poisson, where the probability of 0 fines has become 0

• Truncated Poisson distributions are not a part of Stata’s suite, so we need to do some math

Writing Our New Likelihood Model

• Here is the Poisson distribution with parameter λ is

p(y) = λye−λ

y! ; y = 0, 1, 2 . . .

• If y cannot be zero, we just need to rescale to get the total probability to be 1:

p(y) = λye−λ

y!(1− e−λ) ; y = 1, 2 . . .

• From this, our log likelihood becomes

y ln(λ)− λ− ln(y!)− ln(1− e−λ)

Substitutable Expressions

• The way we tell Stata to use the log-likelihood function is by using a substitutable expression

• We just need to replace

� Symbols with the variables that represent them
� Coefficient names to replace parameters

Specifying Our New Likelihood Model

• In our case

� y (the variable) replaces y the count symbol
� {y:_cons} replaces λ

• This gives the straightforward but unwieldy expression
y*ln({y:_cons})-{y:_cons}-lngamma(y+1)-ln(1-exp(-{y:_cons}))

Working from Do-files

• Now the commands are becoming complicated enough that typing as we go will be unhelpful

• Let’s open up a project file for this talk

. projman bayes
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Finally: Analyzing the Truncated Gamma

• We can run our analysis with this do-file

. do trunc_pois

. ** truncated poisson estimation

. bayesmh y, prior({y:_cons}, flat) ///
> rseed(3772) saving(trunc_pois) ///
> likelihood(llf(y*ln({y:_cons})-{y:_cons}-lngamma(y+1)-ln(1-exp(-{y:_cons})))
> )

Burn-in ...
note: invalid initial state
Simulation ...

Model summary
------------------------------------------------------------------------------
Likelihood:

y ~ logdensity(y*ln({y:_cons})-{y:_cons}-lngamma(y+1)-ln(1-exp(-{y:_cons})))

Prior:
{y:_cons} ~ 1 (flat)

------------------------------------------------------------------------------

Bayesian regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 47
Acceptance rate = .4315

Log marginal likelihood = -56.819423 Efficiency = .2378

------------------------------------------------------------------------------
| Equal-tailed

y | Mean Std. Dev. MCSE Median [95% Cred. Interval]
-------------+----------------------------------------------------------------

_cons | 1.444531 .2067589 .00424 1.435181 1.055125 1.881356
------------------------------------------------------------------------------

file trunc_pois.dta saved

.

. ** storing the model for later

. est store trunc_pois

.
end of do-file

� The saving() option has been added because we will need it if we would like to compare this model to
another later
� We stored the model for later comparisons

• The mean from our posterior distribution now overshoots the true mean

� This could happen because there were too many 0-valued observations in the original dataset

Truncated Gamma Notes

• Notice the note: invalid initial state warning under Burn in ...:

� This happened here because Stata started λ at 0, which is not a valid rate
� This should only worry us if the efficiencies are low or if the chain did not converge
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• Just as before, we can look at the diagnostics (not shown)

• Here is the probability that the rate of fines is over 1

. bayestest interval ({y:_cons}, lower(1))

Interval tests MCMC sample size = 10,000

prob1 : {y:_cons} > 1

-----------------------------------------------
| Mean Std. Dev. MCSE

-------------+---------------------------------
prob1 | .9894 0.10241 .0017583

-----------------------------------------------

A Competing Likelihood

• Suppose we suspect that there could be overdispersion or underdispersion for our model

• We could try specifying a likelihood which accommodates this: the generalized Poisson distribution

• Here is one parameterization

p(y) = 1
y!

(
µ

1 + αµ

)y
(1− αy)y−1 exp

{
−µ(1 + αy)

1 + αµ

}
; y = 0, 1, 2, ...

• This distribution has mean µ and variance µ(1 + αµ)2

� Thus, if α > 0 there is overdispersion; if α < 0 there is underdispersion

Estimating This Competing Likelihood

• We can once again specify our own log likelihood:

llf(y) = − ln(y!) + y (ln(µ)− ln(1 + αµ))

+ (y − 1) ln(1 + αy)− µ(1 + αy)
1 + αµ

− ln
(

1− exp(− µ

1 + αµ
)
)

� The last term comes from rescaling because the distribution is truncated

• Luckily, this mess has been put in a do-file

. do trunc_gpois

. ** truncated gen'l poisson estimation

. ** specified nocons, so that the two parameters {mu} and {alpha}

. ** could both be specified by name

. bayesmh y, nocons prior({mu}, uniform(0,100)) prior({alpha}, flat) ///
> rseed(40213) saving(trunc_gpois) ///
> likelihood(llf(-lngamma(y+1) + y*(ln({mu}) - ln(1 +{alpha}*{mu})) ///
> + (y-1)*ln(1 + {alpha}*y) - ({mu}*(1 + {alpha}*y))/(1 +{alpha}*{mu}) ///
> - ln(1 - exp(-{mu}/(1+{alpha}*{mu})))))

Burn-in ...
note: invalid initial state
Simulation ...

Model summary
------------------------------------------------------------------------------
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Likelihood:
y ~ logdensity(<expr1>)

Priors:
{mu} ~ uniform(0,100)

{alpha} ~ 1 (flat)

Expression:
expr1 : -lngamma(y+1)+y*(ln({mu}) - ln(1 +{alpha}*{mu}))+(y-1)*ln(1 +{alpha}

*y)-({mu}*(1 +{alpha}*y))/(1 +{alpha}*{mu})-ln(1 - exp(-{mu}/(1+{alp
ha}*{mu})))

------------------------------------------------------------------------------

Bayesian regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 47
Acceptance rate = .2366
Efficiency: min = .05308

avg = .08066
Log marginal likelihood = -59.917961 max = .1082

------------------------------------------------------------------------------
| Equal-tailed
| Mean Std. Dev. MCSE Median [95% Cred. Interval]

-------------+----------------------------------------------------------------
mu | 1.683539 .1867278 .005675 1.693644 1.290789 1.999938

alpha | -.1618633 .0711474 .003088 -.17427 -.2490146 -.001503
------------------------------------------------------------------------------

file trunc_gpois.dta saved

.

. ** storing the model for later

. est store trunc_gpois

.
end of do-file

Uh oh! Bad Efficiency

• If we look at the efficiencies, we can see that one of the parameters probably has high autocorrelations

• First, let’s see which parameter had which efficiency by looking at effective sample sizes

. bayesstats ess _all

Efficiency summaries MCMC sample size = 10,000

----------------------------------------------------
| ESS Corr. time Efficiency

-------------+--------------------------------------
mu | 1082.48 9.24 0.1082

alpha | 530.78 18.84 0.0531
----------------------------------------------------

• We should investigate this

Plotting Simulations

• We can make a scatterplot matrix of the simulation values
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. bayesgraph matrix {mu} {alpha}
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Correlated Simulations

• Correlated MCMC simulation values slow down the MCMC chain, as do possibly illegal values

• One solution we could try here would be to transform the parameters to make their range extend over the whole
real line

� This is hard here, because the range of α depends on µ

• We might also try specifying legal initial values

. do trunc_gpois2

. ** truncated gen'l poisson estimation

. ** specified nocons, so that the two parameters {mu} and {alpha}

. ** could both be specified by name

. bayesmh y, nocons prior({mu}, uniform(0,100)) prior({alpha}, flat) ///
> rseed(40213) saving(trunc_gpois2) ///
> likelihood(llf(-lngamma(y+1) + y*(ln({mu}) - ln(1 +{alpha}*{mu})) ///
> + (y-1)*ln(1 + {alpha}*y) - ({mu}*(1 + {alpha}*y))/(1 +{alpha}*{mu}) ///
> - ln(1 - exp(-{mu}/(1+{alpha}*{mu}))))) ///
> initial({mu} 1 {alpha} 0)

Burn-in ...
Simulation ...

Model summary
------------------------------------------------------------------------------
Likelihood:

y ~ logdensity(<expr1>)

Priors:
{mu} ~ uniform(0,100)

{alpha} ~ 1 (flat)

Expression:
expr1 : -lngamma(y+1)+y*(ln({mu}) - ln(1 +{alpha}*{mu}))+(y-1)*ln(1 +{alpha}

*y)-({mu}*(1 +{alpha}*y))/(1 +{alpha}*{mu})-ln(1 - exp(-{mu}/(1+{alp
ha}*{mu})))
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------------------------------------------------------------------------------

Bayesian regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 47
Acceptance rate = .2634
Efficiency: min = .09876

avg = .1121
Log marginal likelihood = -60.126325 max = .1255

------------------------------------------------------------------------------
| Equal-tailed
| Mean Std. Dev. MCSE Median [95% Cred. Interval]

-------------+----------------------------------------------------------------
mu | 1.685297 .1746314 .005557 1.694533 1.324338 2.001587

alpha | -.1648068 .0583825 .001648 -.1739788 -.2474469 -.0151704
------------------------------------------------------------------------------

file trunc_gpois2.dta saved

.

. ** storing the model for later

. est store trunc_gpois

.
end of do-file

• This seemed to help

� Try experimenting with other starting values if you like

Extending the Chain

• If we would like to get an effective sample size which is close to what we had for the truncated poisson model,
we need to extend the chain

• The mcmcsize(25000) option does this

. do trunc_gpois3

. ** truncated gen'l poisson estimation

. ** specified nocons, so that the two parameters {mu} and {alpha}

. ** could both be specified by name

. bayesmh y, nocons prior({mu}, uniform(0,100)) prior({alpha}, flat) ///
> rseed(40213) saving(trunc_gpois3) ///
> likelihood(llf(-lngamma(y+1) + y*(ln({mu}) - ln(1 +{alpha}*{mu})) ///
> + (y-1)*ln(1 + {alpha}*y) - ({mu}*(1 + {alpha}*y))/(1 +{alpha}*{mu}) ///
> - ln(1 - exp(-{mu}/(1+{alpha}*{mu}))))) ///
> initial({mu} 1 {alpha} 0) ///
> mcmcsize(25000)

Burn-in ...
Simulation ...

Model summary
------------------------------------------------------------------------------
Likelihood:

y ~ logdensity(<expr1>)

Priors:
{mu} ~ uniform(0,100)

{alpha} ~ 1 (flat)
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Expression:
expr1 : -lngamma(y+1)+y*(ln({mu}) - ln(1 +{alpha}*{mu}))+(y-1)*ln(1 +{alpha}

*y)-({mu}*(1 +{alpha}*y))/(1 +{alpha}*{mu})-ln(1 - exp(-{mu}/(1+{alp
ha}*{mu})))

------------------------------------------------------------------------------

Bayesian regression MCMC iterations = 27,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 25,000
Number of obs = 47
Acceptance rate = .2641
Efficiency: min = .1003

avg = .1026
Log marginal likelihood = -60.079039 max = .1049

------------------------------------------------------------------------------
| Equal-tailed
| Mean Std. Dev. MCSE Median [95% Cred. Interval]

-------------+----------------------------------------------------------------
mu | 1.685861 .1765273 .003525 1.695722 1.304009 1.999089

alpha | -.1642611 .0613568 .001198 -.1746719 -.2463381 -.0211519
------------------------------------------------------------------------------

file trunc_gpois3.dta saved

.

. ** storing the model for later

. est store trunc_gpois

.
end of do-file

Comparing Competing Models

• We can now see which of the two models we prefer

• This is done using the bayestest model command

• Being Bayesians, we assign prior probabilities to each of the models, and then compute their posterior probabilities
given our data

• We have no reason to think one model is better than the other so we’ll use the default of equally likely

. bayestest model trunc*

Bayesian model tests

----------------------------------------------
| log(ML) P(M) P(M|y)

-------------+--------------------------------
trunc_pois | -56.8194 0.5000 0.9630

trunc_gpois | -60.0790 0.5000 0.0370
----------------------------------------------
Note: Marginal likelihood (ML) is computed using

Laplace-Metropolis approximation.

• We now think that there is a 96% chance that simple truncated poisson is true
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Aside: Bayesian Hypothesis Testing

• One wonderful part of the Bayesian world is that more than two models may be compared

• One must take care that hypotheses are plausible

� No point values for continuous variables, for example, unless they are 0 values for something that might
not exist

• Sometimes it makes sense to have prior distributions which are not evenly distributed

� There can be a decision-theoretic reason for this, for example different costs associated with falsely con-
clusions

• This is far more flexible than the typical us-versus-them hypothesis testing

Information Criteria

• We can also compare models using the deviance information criterion (DIC) and Bayes factors

. bayesstats ic trunc*

Bayesian information criteria

----------------------------------------------
| DIC log(ML) log(BF)

-------------+--------------------------------
trunc_pois | 114.3289 -56.81942 .

trunc_gpois | 109.3351 -60.07904 -3.259617
----------------------------------------------
Note: Marginal likelihood (ML) is computed

using Laplace-Metropolis approximation.

• The smaller DIC for the trunc_gpois model says that it should do a better job producing a similar dataset

• The log(BF) column gives the log of odds that the trunc_gpois model is true

� Here: ln(0.0370/0.9630)

• The Bayes factor will always give the same subjective result as assuming equal prior probabilities for models

2.4 Something A Little More Complex
Linear Regression

• All we’ve been doing is looking at a dataset of counts

. save pois_plus, replace

• Now let’s try playing with linear regressions

• Open up the autometric dataset

. use autometric

(auto data in metric units)

� Made for all countries except the US, Liberia, and Myanmar

Bayesian Analysis using Stata © StataCorp LP Page 19 of 25



Modeling Energy Usage

• We’d like to measure energy usage of these cars

• Perhaps: regressing lp100km on weight, displacement and foreign

• Let’s go back to the dialog box for teaching purposes

� Reset the dialog box by clicking the big R button

Filling in the Dialog Box

• This will take a little effort, but specify

� {var} as the variance for the likelihood
� Normals with large variances for the coefficients
� Jeffries prior for the prior of {var}

� A random seed of 142857

• Click on OK to submit and close

. do reg

. * using centering

. bayesmh lp100km weight displacement foreign, ///
> likelihood(normal({var})) ///
> prior({weight}, normal(0,1000)) ///
> prior({displacement}, normal(0,1000)) ///
> prior({foreign}, normal(0,1000)) ///
> prior({_cons}, normal(0,1000)) ///
> prior({var}, igamma(0.001,0.001)) ///
> rseed(142857)

Burn-in ...
Simulation ...

Model summary
------------------------------------------------------------------------------
Likelihood:

lp100km ~ normal(xb_lp100km,{var})

Priors:
{lp100km:weight displacement foreign _cons} ~ normal(0,1000) (1)

{var} ~ igamma(0.001,0.001)
------------------------------------------------------------------------------
(1) Parameters are elements of the linear form xb_lp100km.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .3087
Efficiency: min = .03667

avg = .04561
Log marginal likelihood = -164.5299 max = .06078

------------------------------------------------------------------------------
| Equal-tailed
| Mean Std. Dev. MCSE Median [95% Cred. Interval]

-------------+----------------------------------------------------------------
lp100km |

weight | .007643 .0010869 .000053 .0076434 .0054059 .0098129
displacement | .2117928 .2616287 .010612 .2086352 -.2788908 .7602025
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foreign | 1.483588 .490692 .022521 1.480786 .4803052 2.441043
_cons | .2130119 .98965 .048576 .2051924 -1.7418 2.230979

-------------+----------------------------------------------------------------
var | 2.214069 .3922478 .020485 2.163138 1.587671 3.160582

------------------------------------------------------------------------------

.
end of do-file

• The model converges, but not at all efficiently

Looking at the Problem

• Draw a graph matrix to see the problems

. bayesgraph matrix _all
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Partial Fix Number 1

• If we mean center the weight and the displacement, we’ll get rid of some of the correlation between their
simulated values and those of the intercept

. sum weight displacement

Variable | Obs Mean Std. Dev. Min Max
-------------+---------------------------------------------------------

weight | 74 1369.527 352.5243 800 2195
displacement | 74 3.233919 1.505725 1.29 6.96

• While we’re at it, let’s make weight no so big

. gen wt1300 = (weight-1300)/1000

. gen displacement3 = displacement - 3

• Now let’s see what happened

. do regcent
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. * using centering

. bayesmh lp100km wt1300 displacement3 foreign, ///
> likelihood(normal({var})) ///
> prior({wt1300}, normal(0,1000)) ///
> prior({displacement3}, normal(0,1000)) ///
> prior({foreign}, normal(0,1000)) ///
> prior({_cons}, normal(0,1000)) ///
> prior({var}, igamma(0.001,0.001)) ///
> rseed(142857)

Burn-in ...
Simulation ...

Model summary
------------------------------------------------------------------------------
Likelihood:

lp100km ~ normal(xb_lp100km,{var})

Priors:
{lp100km:wt1300 displacement3 foreign _cons} ~ normal(0,1000) (1)

{var} ~ igamma(0.001,0.001)
------------------------------------------------------------------------------
(1) Parameters are elements of the linear form xb_lp100km.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2936
Efficiency: min = .0276

avg = .05888
Log marginal likelihood = -157.72151 max = .1017

------------------------------------------------------------------------------
| Equal-tailed
| Mean Std. Dev. MCSE Median [95% Cred. Interval]

-------------+----------------------------------------------------------------
lp100km |

wt1300 | 7.59653 1.104404 .03831 7.618547 5.458599 9.690238
displaceme~3 | .2263987 .2707287 .008489 .2208552 -.2853743 .7609745

foreign | 1.521567 .4884013 .021159 1.525246 .5444562 2.451707
_cons | 10.7747 .2496765 .014735 10.76647 10.31451 11.29672

-------------+----------------------------------------------------------------
var | 2.254268 .4067513 .024484 2.190814 1.600719 3.180133

------------------------------------------------------------------------------

.
end of do-file

Partial Fix Number 2

• We’ve chosen very special prior distributions for our model

� Normal priors for a normal regression are semi conjugate
� This means that they produce normal posterior distributions

? This means we know the posterior distrobution explicity

• So... we can use Gibbs sampling here

� This is a special case of Metropolis-Hastings which exploits knowledge fo the closed form

• As a side effect, we will estimate each of the predictors separately
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� The default is to estimate them all at once

Result of Gibbs Sampling

• Here is our Gibbs sampler

. do reggibbs

. * using centering

. bayesmh lp100km wt1300 displacement3 foreign, ///
> likelihood(normal({var})) ///
> prior({wt1300}, normal(0,1000)) ///
> prior({displacement3}, normal(0,1000)) ///
> prior({foreign}, normal(0,1000)) ///
> prior({_cons}, normal(0,1000)) ///
> prior({var}, igamma(.001,.001)) ///
> block({lp100km:wt1300}, gibbs) ///
> block({lp100km:displacement3}, gibbs) ///
> block({lp100km:foreign}, gibbs) ///
> block({lp100km:_cons} , gibbs) ///
> block({var}, gibbs) ///
> rseed(142857)

Burn-in ...
Simulation ...

Model summary
------------------------------------------------------------------------------
Likelihood:

lp100km ~ normal(xb_lp100km,{var})

Priors:
{lp100km:wt1300 displacement3 foreign _cons} ~ normal(0,1000) (1)

{var} ~ igamma(.001,.001)
------------------------------------------------------------------------------
(1) Parameters are elements of the linear form xb_lp100km.

Bayesian normal regression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = 1
Efficiency: min = .07728

avg = .2942
Log marginal likelihood = -157.63634 max = .7768

------------------------------------------------------------------------------
| Equal-tailed
| Mean Std. Dev. MCSE Median [95% Cred. Interval]

-------------+----------------------------------------------------------------
lp100km |

wt1300 | 7.500904 1.137687 .040773 7.502938 5.242152 9.722559
displaceme~3 | .2416701 .2732162 .009828 .238976 -.2873393 .7886288

foreign | 1.479528 .4995871 .009963 1.473448 .494879 2.487035
_cons | 10.78787 .2489216 .004643 10.78923 10.2879 11.27402

-------------+----------------------------------------------------------------
var | 2.231845 .3881057 .004403 2.189157 1.596965 3.094858

------------------------------------------------------------------------------

.
end of do-file

• This has helped a bunch with everything except the correlated predictors
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• So: collinearity is a problem here, too!

• Our only solution is to run the chain much longer

. do reggibbs2

. * using centering

. bayesmh lp100km wt1300 displacement3 foreign, ///
> likelihood(normal({var})) ///
> prior({wt1300}, normal(0,1000)) ///
> prior({displacement3}, normal(0,1000)) ///
> prior({foreign}, normal(0,1000)) ///
> prior({_cons}, normal(0,1000)) ///
> prior({var}, igamma(.001,.001)) ///
> block({lp100km:wt1300}, gibbs) ///
> block({lp100km:displacement3}, gibbs) ///
> block({lp100km:foreign}, gibbs) ///
> block({lp100km:_cons} , gibbs) ///
> block({var}, gibbs) ///
> mcmcsize(50000) ///
> rseed(142857)

Burn-in ...
Simulation ...

Model summary
------------------------------------------------------------------------------
Likelihood:

lp100km ~ normal(xb_lp100km,{var})

Priors:
{lp100km:wt1300 displacement3 foreign _cons} ~ normal(0,1000) (1)

{var} ~ igamma(.001,.001)
------------------------------------------------------------------------------
(1) Parameters are elements of the linear form xb_lp100km.

Bayesian normal regression MCMC iterations = 52,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 50,000
Number of obs = 74
Acceptance rate = 1
Efficiency: min = .102

avg = .3223
Log marginal likelihood = -157.64735 max = .8371

------------------------------------------------------------------------------
| Equal-tailed
| Mean Std. Dev. MCSE Median [95% Cred. Interval]

-------------+----------------------------------------------------------------
lp100km |

wt1300 | 7.504571 1.111813 .015286 7.500416 5.313615 9.693149
displaceme~3 | .2415545 .2662422 .003729 .2390393 -.2807387 .7687533

foreign | 1.484437 .484902 .004194 1.484105 .5278635 2.43858
_cons | 10.78488 .2444281 .001997 10.78407 10.30452 11.2654

-------------+----------------------------------------------------------------
var | 2.228945 .3880054 .001897 2.185259 1.592776 3.106856

------------------------------------------------------------------------------

.
end of do-file
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3 Conclusion
3.1 Conclusion
What We Have Seen

• Use of part of the GUI for Bayesian analysis in Stata

• Specification of a non-standard likelihood

• Specification of priors

• Basic Bayesian estimation

• Basic Baysian model comparison

• Gibbs samplers

• Centering

What We Have Not Seen

• Complex models

� There are many many examples in the manuals

• Writing our own evaluators

� If you have a likelihood function which is not the sum of the likelihoods for each of the observations, you
can write a specially-formed evaluator program
? This is similar in kind to the ml command

Conclusion

• We’ve just touched on what can be done

• I hope this has been somewhat informative
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