Bayesian Analysis using Stata

Bill Rising StataCorp LP

2015 Oceania Stata Users Group Meeting Canberra, ACT 25 September 2015

Contents

1	Introduction	1
	1.1 Goals	1
	1.2 Brief Glimpse into Bayesian Analysis	1
	Bayesian Analysis in Stata 14	3
	2.1 Starting Simple	
	2.2 Looking More Carefully	
	2.3 Changing the Problem	12
	2.4 Something A Little More Complex	21
3	Conclusion	27
	3.1 Conclusion	27

1 Introduction

1.1 Goals

Goals

- Learn a little about Bayesian analysis
- Learn the core of how Bayesian analysis are implemented in Stata 14

1.2 Brief Glimpse into Bayesian Analysis

Uncertainty as Probability

- In the frequentist world, probabilities are long-run proportions of repeated identical experiments
 - In some ways, this means we never know any probabilities of any events
- In the Bayesian world, probabilities are an expression of uncertainty
 - The advantage of the Bayesian viewpoint is that it allows talking about probabilities for events which cannot be repeated
 - \star What is the chance of a major earthquake in Alaska this year?
 - $\star\,$ What is the chance that Australia takes the 2015 Rugby World Cup?
 - The disadvantage is that these probabilities become subjective

Bayesian Analysis

- Uncertainty about parameters is expressed via a prior distribution $p(\theta)$
 - ◊ The prior distribution is necessarily subjective
 - \diamond If there is little knowledge about possible values, vague or non-informative priors get used
- The dataset y is used to update these priors into posterior distributions via Bayes rule

$$p(\boldsymbol{\theta}|\mathbf{y}) = \frac{p(\mathbf{y}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathbf{y})}$$

- $\diamond \ p(\mathbf{y}|\boldsymbol{\theta})$ is the likelihood
- $\diamond~p(\mathbf{y})$ is the marginal density of the data

$$p(\mathbf{y}) = \int_{\boldsymbol{\theta}} p(\mathbf{y}|\boldsymbol{\theta}) p(\boldsymbol{\theta})$$

 $\star\,$ This last integral has been the bugaboo

Advantages and Disadvantages of Bayesian Analysis

- Advantages
 - $\diamond\,$ Theoretically should allow updating knowledge with past experience
 - $\diamond\,$ Can speak directly about probabilities instead of applying long-run proportions to a single event
 - \star Think of confidence intervals: have long-run chance of catching the parameter value, but know nothing about the current estimate
 - ◊ Can choose among multiple competing hypotheses
- Disadvantages
 - ◊ Could be worried about subjectivity

Why Has Bayesian Analysis Become More Popular

- Computational speed allows rapid but good approximations of the marginal density of the data
 - ♦ Before computational horsepower could be used, only a small set of models could be estimated
- All the magic comes from Markov Chain Monte Carlo (MCMC) methods
 - ◊ These sample points from the not-fully-specified density in such a way that if left running forever, the density of simulation points would equal the target density

Implementation in Stata 14

- In Stata 14, the estimation portion of Baysian analysis is implented by the bayesmh command
 - \diamond mh for Metropolis-Hastings
- We will see how this works, both via point-and-click and syntactically
- We will look at some diagnostics and other post-estimation tools

2 Bayesian Analysis in Stata 14

2.1 Starting Simple

A Simple Story

- We'll work with a very simple dataset measuring counts
- Here is our simulated story:
 - $\diamond\,$ We've collected data from 70 people in Canberra about the number of parking tickets they've gotten in the last year
 - $\diamond\,$ We would like to get some concept of the rate the people get the tickets
 - $\diamond\,$ We will do this based on the rumor that Canberra is particularly finicky about parking
- We'll simulate a dataset as though the true number of parking fines per year per person is 1.3

```
. do makepois
. set more off
. clear
. * pick a seed for reproducibility
. set seed 1800
. * set the number of observations
. set obs 70
number of observations (_N) was 0, now 70
. * create the observations
. gen y = rpoisson(1.3)
. label var y "Parking tickets in Canberra"
. label data "The IKEA of datasets: one variable of counts"
.
. save pois
file pois.dta saved
.
end of do-file
```

Let's see the mean count for this simulation

Starting a Bayesian Analysis: the Prior

- We would now like to do a Bayesian investigation of the rate λ of getting fined
 - $\diamond\,$ Suppose we are truly interested whether the rate of fines is over one per year per person
- To start out, we need to specify a prior distribution

- How would this possibly be done?
 - $\diamond\,$ We could try to use a vague prior which has very little information in it
 - $\diamond\,$ We could try to elicit the opinions of experts
- We'll start with a vague prior

Choosing a Vague Prior

- Vague priors are only vaguely defined: they ought to cover all remotely plausible values without favoring any values
- We will choose a flat prior, meaning that all possible ticketing rates have the same probability
 - $\diamond\,$ Because this means that we need a probability density proportional to 1 over the interval 0 to $\infty,$ this is an improper prior
 - $\diamond\,$ Improper priors should typically be avoided, but this will help the exposition here
- So, for us, $p(\lambda) \propto 1$ for $0 < \lambda < \infty$
 - ◊ Clearly, like continuous-time white noise, this is impossible but helpful

Specifying our Model: the Interface

- We will start by using the point-and-click interface
- There are two ways to access this
 - ♦ Either select Statistics > Bayesian analysis > Estimation
 - $\diamond~\mbox{Or}$ type db bayesmh in the command window
- We will choose what we would like to do now, and then come back to the full range of possible models

Choosing the Likelihood Model

- We would like a univariate linear model
- Clicking the drop-down menu for the *Dependent variable* and choose y
- We have no independent variables
- Choose Poisson regression as the Likelihood model
- We can leave the *Exposure variable* blank
- Tick the Do not exponentiate linear predictor
 - ♦ This will cause our out output to report rates instead of the natural log of rates

Specifying the Prior

- Click on the **Create...** button for the **Priors of model parameters**
- From the *Parameters specification* dropdown, choose {y:_cons}
 - $\diamond\,$ This is because we are modeling only the constant term without any covariates
- We will choose the *Flat prior* item
- Click **OK** to dismiss the subdialog

Making Our Computations Reproducible

- We should set a random seed for this MCMC
 - $\diamond\,$ This will make sure that we can show our result in the future
- Click on the *Simulation* tab
- We'll put 7434 as the random seed
 - $\diamond\,$ This is an arbitrary non-negative integer

Computing the Posterior

- We are already done specifying this simple model, so click the Submit button
- The command gets issued

```
. bayesmh y, likelihood(poisson, noglmtransform) ///
   prior({y:_cons}, flat) rseed(7434)
Burn-in ...
Simulation ...
Model summary
_____
Likelihood:
 y ~ poisson({y:_cons})
Prior:
 {y:_cons} ~ 1 (flat)
        _____
 _____
                                          12,500
Bayesian Poisson regression
                             MCMC iterations =
Random-walk Metropolis-Hastings sampling
                             Burn-in =
                                           2,500
                                          10,000
                             MCMC sample size =
                             Number of obs =
                                           70
                             Acceptance rate =
                                           .4271
Log marginal likelihood = -102.22367
                             Efficiency =
                                            .2315
_____
       Equal-tailed
      y | Mean Std. Dev. MCSE Median [95% Cred. Interval]
                _____
_____
    _cons | 1.274535 .1358713 .002824 1.274437 1.020925 1.548038
       _____
```

- Stata churns through the MCMC computations to find the posterior distribution
- Stata reports the results

General Notes about the Output

- At the top, you see Burn In ... followed by Simulation ... as notifications
 - ♦ These would be for seeing progress in very computationally intensive models
- We see the two elements we need to specify for any Bayesian analysis: the Likelihood model and the Prior distribution
- There is information about how the MCMC sampling was done
- There is information about summary statistics of the posterior distribution
 - ♦ Recall that we are not specifically trying to estimate mean values; we are finding a posterior distrbution

Output Specifics: MCMC

- By default, Stata uses a burn-in of 2,500 iterations
 - \diamond This is used to tune the adaptive model and to give time for the simulation to reach the main part of the posterior distribution
- By default, Stata runs the MCMC chain for 10,000 iterations
- The acceptance rate is the rate that new picks from the distribution are accepted
- The efficiency is relative to independent samples from the posterior distribution

Output Specifics: Regression Table

- The mean of our posterior distribution for the arrival rate is 1.27
- The standard deviation of the posterior distribution is 0.136
- The MCSE of 0.0028 is the standard error of estimation of the mean due to our using MCMC to find the posterior distribution
 - ♦ How much the posterior mean would vary from run to run if we used different random seeds
- The median is the median of the posterior distribution
- The probability that the arrival rate is between 1.021 and and 1.548 is 95%
 - ♦ Note this is not a trapping probability for unknown future samples

Starting with Postestimation

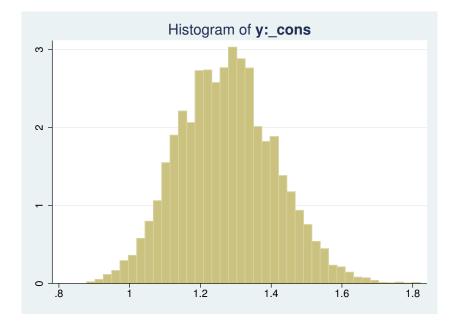
- We can see what postestimation commands are available by typing
 - . db postest
- Now click on the disclosure control next to *Bayesian analysis*
- Select the Graphical summaries and convergence diagnostics item
- Click on the Launch button

Investigating the Posterior

- We can draw a picture of the posterior distribution in a couple of ways
- To make a histogram, select the *Histograms* graph type
- To make life simple select the Graphs for all model parameters radio button
- Click on the **Submit** button

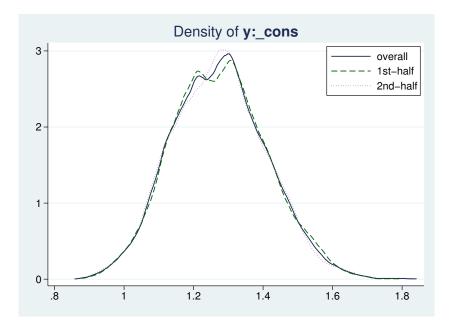
Histogram of the Posterior

- Here is the histogram version of the posterior distribution
 - . bayesgraph histogram _all



Density Plot of the Posterior

- To get a density plot, select the *Density plots* graph type
- Click on the **Submit** button
 - . bayesgraph kdensity _all



Finding the Probability the Rate is Larger than 1

- Navigate back to the *Postestimation Selector* dialog box
- Select the Interval hypothesis testing menu item
- Choose {y:_cons} parameter from the *Test model parameter* list
- Enter 1 as the *Lower* bound and leave . as the *Upper* bound
- Click the **Submit** button

. bayestest interval ({y:_cons}, lower(1))

Interval tests MCMC sample size = 10,000

prob1 : {y:_cons} > 1

 +	 Std. Dev.	
•	0.12663	

- We can read off the probability as 0.98
 - $\diamond~$ This is a true probability
 - It is a subjective probability based on our flat prior

2.2 Looking More Carefully

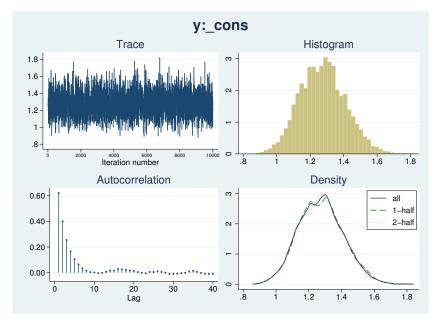
How MCMC Can Break

- There are multiple ways that MCMC can give bad answers
 - $\diamond\,$ It can mix poorly, meaning either that

- $\star\,$ New candidate points for the simulation get rejected too often
- $\star\,$ The jumps are too small to cover the distribution
- It can have bad initial values
 - $\star\,$ These should be irrelevant because of the long burn-in sequence
 - \star But... if there is poor mixing this might not be the case
 - $\star\,$ This leads to what is called 'drift'

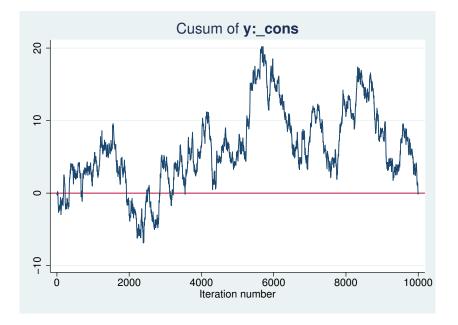
MCMC Diagnostics

- There is a simple tool for looking at the standard diagnostics all at once
- Select Multiple diagnostics in compact form in the bayesgraph dialog, and press Submit
 - . bayesgraph diagnostics _all



Looking for Drift

- The cusum (short for cumulative sum) plot is used to look for small step size and drift
- Select Cumulative sum plots and press Submit
 - . bayesgraph cusum _all



Simple Diagnostic Conclusion

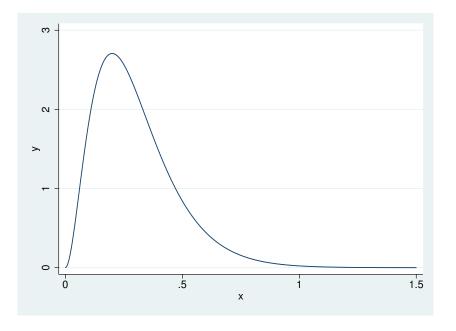
• Everything looks fine because there is no sign of bad mixing or drift

Playing with Different Priors

- Suppose we talk to people in Sydney, Melbourne, Adalaide, and Brisbane
- They all agree that the the rate of fines should be about 1 every 3 years, with little chance of averaging more than 1 fine per year
 - ♦ Thus, they are completely incorrect about Canberra
- Based on this, a good prior would be a Gamma(3, 0.1)

Aside: Graph of the Prior

- Here is a graph of the Gamma(3, 0.1) distribution
 - . twoway function y = gammaden(3,0.1,0,x), range(0 1.5)



Specifying a New Prior

- Type db bayesmh to get our dialog box back
- Select the *Prior 1* prior
- Click on the **Edit** button
- Choose Gamma distribution
- Enter 3 as the *Shape* and 0.1 as the *Scale*
- Click on the OK button to dismiss the subdialog

Changing the Seed

- Go to the *Simulation* tab
- Change the random seed to some other number, say 9983
- Click on the Submit button to run the analysis

Bayesian Poisson regression MCMC iteration							12,500
Random-walk Me	Burn-in		=	2,500			
	MCMC sam	ple size	=	10,000			
				Number of	f obs	=	70
				Acceptan	ce rate	=	.4313
Log marginal 3	likelihood =	-107.68681		Efficien	су	=	. 2345
	 I				Equa		tailed
у	 Mean		MCSE	Median	1		tailed Interval]
5	+		MCSE .002439		1	ed.	

What Happened?

- We can see that the mean of the posterior distribution is smaller
 - ◇ We should, however, be encouraged that the mean is only somewhat smaller despite the very-different prior
- If we now compute our probability that the rate is larger than 1, though: 0.88

```
. bayestest interval ({y:_cons}, lower(1))
```

Interval tests MCMC sample size = 10,000

prob1 : {y:_cons} > 1

2.3 Changing the Problem

Specifying Our Own Likelihood

- What if we wanted a likelihood which is not one of the 10 built-in likelihoods?
- We can specify this by using the likelihood() option with the llf() suboption
- We just need an example to show this...

Changing the Problem

- Suppose now that our sample came just from those who had had a ticket in the last year

. drop if y == 0

(23 observations deleted)

- ◊ We've lost quite a bit of our sample
- We cannot use the same likelihood model as we had before
- Instead, we have a truncated Poisson, where the probability of 0 fines has become 0
- Truncated Poisson distributions are not a part of Stata's suite, so we need to do some math

Writing Our New Likelihood Model

- Here is the Poisson distribution with parameter $\boldsymbol{\lambda}$ is

$$p(y) = \frac{\lambda^y \mathrm{e}^{-\lambda}}{y!}; \qquad y = 0, 1, 2 \dots$$

• If y cannot be zero, we just need to rescale to get the total probability to be 1:

$$p(y) = \frac{\lambda^y \mathrm{e}^{-\lambda}}{y!(1 - \mathrm{e}^{-\lambda})}; \qquad y = 1, 2 \dots$$

• From this, our log likelihood becomes

$$y\ln(\lambda) - \lambda - \ln(y!) - \ln(1 - e^{-\lambda})$$

Substitutable Expressions

- The way we tell Stata to use the log-likelihood function is by using a *substitutable expression*
- We just need to replace
 - $\diamond~$ Symbols with the variables that represent them
 - ◊ Coefficient names to replace parameters

Specifying Our New Likelihood Model

- In our case
 - \diamond y (the variable) replaces y the count symbol
 - \diamond {y:_cons} replaces λ
- This gives the straightforward but unwieldy expression

```
y*ln({y:_cons})-{y:_cons}-lngamma(y+1)-ln(1-exp(-{y:_cons}))
```

Working from Do-files

- Now the commands are becoming complicated enough that typing as we go will be unhelpful
- Let's open up a project file for this talk
 - . projman bayes

Finally: Analyzing the Truncated Gamma

• We can run our analysis with this do-file

```
. do trunc_pois
. ** truncated poisson estimation
. bayesmh y, prior({y:_cons}, flat) ///
 rseed(3772) saving(trunc_pois) ///
>
>
 likelihood(llf(y*ln({y:_cons})-{y:_cons}-lngamma(y+1)-ln(1-exp(-{y:_cons})))
> )
Burn-in ...
note: invalid initial state
Simulation ...
Model summary
_____
Likelihood:
 y ~ logdensity(y*ln({y:_cons})-{y:_cons}-lngamma(y+1)-ln(1-exp(-{y:_cons})))
Prior:
 {y:_cons} ~ 1 (flat)
             _____
                              MCMC iterations = 12,500
Bayesian regression
                              Burn-in =
Random-walk Metropolis-Hastings sampling
                                              2,500
                               MCMC sample size = 10,000
                               Number of obs = 47
                               Acceptance rate =
                                              .4315
                                         =
                                               .2378
Log marginal likelihood = -56.819423
                               Efficiency
------
       Equal-tailed
     y | Mean Std. Dev. MCSE Median [95% Cred. Interval]
_cons | 1.444531 .2067589 .00424 1.435181 1.055125 1.881356
_____
file trunc_pois.dta saved
```

. ** storing the model for later . est store trunc_pois

end of do-file

- The saving() option has been added because we will need it if we would like to compare this model to another later
- $\diamond\,$ We stored the model for later comparisons
- The mean from our posterior distribution now overshoots the true mean
 - This could happen because there were too many 0-valued observations in the original dataset

Truncated Gamma Notes

- Notice the note: invalid initial state warning under Burn in ...:
 - $\diamond\,$ This happened here because Stata started λ at 0, which is not a valid rate
 - $\diamond\,$ This should only worry us if the efficiencies are low or if the chain did not converge
- Just as before, we can look at the diagnostics (not shown)
- Here is the probability that the rate of fines is over 1

```
. bayestest interval ({y:_cons}, lower(1))
```

Interval tests MCMC sample size = 10,000

```
prob1 : {y:_cons} > 1
```

 	 Std. Dev.	
+ prob1	0.10241	

A Competing Likelihood

- Suppose we suspect that there could be overdispersion or underdispersion for our model
- We could try specifying a likelihood which accommodates this: the generalized Poisson distribution
- Here is one parameterization

$$p(y) = \frac{1}{y!} \left(\frac{\mu}{1+\alpha\mu}\right)^y (1-\alpha y)^{y-1} \exp\left\{-\frac{\mu(1+\alpha y)}{1+\alpha\mu}\right\}; y = 0, 1, 2, \dots$$

- This distribution has mean μ and variance $\mu(1 + \alpha \mu)^2$
 - $\diamond\,$ Thus, if $\alpha>0$ there is overdispersion; if $\alpha<0$ there is underdispersion

Estimating This Competing Likelihood

• We can once again specify our own log likelihood:

$$llf(y) = -\ln(y!) + y \left(\ln(\mu) - \ln(1 + \alpha\mu)\right)$$
$$+ (y - 1)\ln(1 + \alpha y) - \frac{\mu(1 + \alpha y)}{1 + \alpha\mu}$$
$$- \ln\left(1 - \exp(-\frac{\mu}{1 + \alpha\mu})\right)$$

- ♦ The last term comes from rescaling because the distribution is truncated
- Luckily, this mess has been put in a do-file
 - . do trunc_gpois

```
. ** truncated gen'l poisson estimation
. ** specified nocons, so that the two parameters \{{\tt mu}\} and \{{\tt alpha}\}
. ** could both be specified by name
. bayesmh y, nocons prior({mu}, uniform(0,100)) prior({alpha}, flat) ///
> rseed(40213) saving(trunc_gpois) ///
  likelihood(llf(-lngamma(y+1) + y*(ln({mu}) - ln(1 +{alpha}*{mu})) ///
>
    + (y-1)*ln(1 + {alpha}*y) - ({mu}*(1 + {alpha}*y))/(1 +{alpha}*{mu}) ///
>
>
  - ln(1 - exp(-{mu}/(1+{alpha}*{mu})))))
Burn-in ...
note: invalid initial state
Simulation ...
Model summary
_____
Likelihood:
 y ~ logdensity(<expr1>)
Priors:
   {mu} ~ uniform(0,100)
 {alpha} ~ 1 (flat)
Expression:
 expr1 : -lngamma(y+1)+y*(ln({mu}) - ln(1 +{alpha}*{mu}))+(y-1)*ln(1 +{alpha}
       *y)-({mu}*(1 +{alpha}*y))/(1 +{alpha}*{mu})-ln(1 - exp(-{mu}/(1+{alpha}))
       ha}*{mu})))
_____
                                                      12,500
Bayesian regression
                                      MCMC iterations =
Random-walk Metropolis-Hastings sampling
                                    Burn-in =
                                                       2,500
                                      MCMC sample size = 10,000
                                      Number of obs =
                                                       47
                                      Acceptance rate =
                                                        .2366
                                      Efficiency: min = .05308
avg = .08066
                                                max =
Log marginal likelihood = -59.917961
                                                       .1082
             _____
         Equal-tailed
              Mean Std. Dev. MCSE Median [95% Cred. Interval]
         ______+____+_______
       mu | 1.683539 .1867278 .005675 1.693644 1.290789 1.999938
    alpha | -.1618633 .0711474 .003088 -.17427 -.2490146 -.001503
_____
file trunc_gpois.dta saved
. ** storing the model for later
. est store trunc_gpois
end of do-file
```

Uh oh! Bad Efficiency

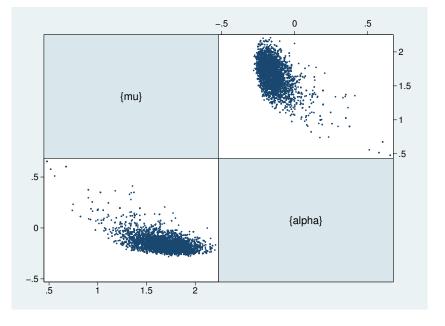
- If we look at the efficiencies, we can see that one of the parameters probably has high autocorrelations
- First, let's see which parameter had which efficiency by looking at effective sample sizes

. bayesstats ess _all								
Efficiency summaries MCMC sample size = 10,000								
ESS Corr.time Efficiency								
mu 1082.48 9.24 0.1082 alpha 530.78 18.84 0.0531								

• We should investigate this

Plotting Simulations

- We can make a scatterplot matrix of the simulation values
 - . bayesgraph matrix {mu} {alpha}



Correlated Simulations

- Correlated MCMC simulation values slow down the MCMC chain, as do possibly illegal values
- One solution we could try here would be to transform the parameters to make their range extend over the whole real line
 - $\diamond\,$ This is hard here, because the range of α depends on $\mu\,$
- We might also try specifying legal initial values
 - . do trunc_gpois2

```
. ** truncated gen'l poisson estimation
   . ** specified nocons, so that the two parameters \{{\tt mu}\} and \{{\tt alpha}\}
   . ** could both be specified by name
   . bayesmh y, nocons prior({mu}, uniform(0,100)) prior({alpha}, flat) ///
   > rseed(40213) saving(trunc_gpois2) ///
     likelihood(llf(-lngamma(y+1) + y*(ln({mu}) - ln(1 +{alpha}*{mu})) ///
   >
   >
      + (y-1)*ln(1 + {alpha}*y) - ({mu}*(1 + {alpha}*y))/(1 +{alpha}*{mu}) ///
   >
    - ln(1 - exp(-{mu}/(1+{alpha}*{mu})))) ///
   >
     initial({mu} 1 {alpha} 0)
   Burn-in ...
   Simulation ...
   Model summary
   _____
   Likelihood:
    y ~ logdensity(<expr1>)
   Priors:
       {mu} ~ uniform(0,100)
    {alpha} ~ 1 (flat)
   Expression:
    expr1 : -lngamma(y+1)+y*(ln({mu}) - ln(1 +{alpha}*{mu}))+(y-1)*ln(1 +{alpha}
          *y)-({mu}*(1 +{alpha}*y))/(1 +{alpha}*{mu})-ln(1 - exp(-{mu}/(1+{alpha}))
          ha}*{mu})))
    _____
                                                         12,500
   Bayesian regression
                                         MCMC iterations =
   Random-walk Metropolis-Hastings sampling
                                         Burn-in =
                                                          2,500
                                         MCMC sample size = 10,000
                                         Number of obs =
                                                          47
                                         Acceptance rate =
                                                           .2634
                                         Efficiency: min = .09876
avg = .1121
                                                          .1121
                                                   max =
   Log marginal likelihood = -60.126325
                                                           .1255
                _____
            Equal-tailed
                 Mean Std. Dev. MCSE Median [95% Cred. Interval]
            ______
          mu | 1.685297 .1746314 .005557 1.694533 1.324338 2.001587
       alpha | -.1648068 .0583825 .001648 -.1739788 -.2474469 -.0151704
   _____
   file trunc_gpois2.dta saved
   . ** storing the model for later
   . est store trunc_gpois
   end of do-file

    This seemed to help
```

 $\diamond\,$ Try experimenting with other starting values if you like

Extending the Chain

- If we would like to get an effective sample size which is close to what we had for the truncated poisson model, we need to extend the chain
- The mcmcsize(25000) option does this

```
. do trunc_gpois3
. ** truncated gen'l poisson estimation
. ** specified nocons, so that the two parameters {mu} and {alpha}
. ** could both be specified by name
. bayesmh y, nocons prior({mu}, uniform(0,100)) prior({alpha}, flat) ///
> rseed(40213) saving(trunc_gpois3) ///
> likelihood(llf(-lngamma(y+1) + y*(ln({mu}) - ln(1 +{alpha}*{mu})) ///
       + (y-1)*ln(1 + {alpha}*y) - ({mu}*(1 + {alpha}*y))/(1 +{alpha}*{mu}) ///
>
> - ln(1 - exp(-{mu}/(1+{alpha}*{mu}))))) ///
> initial({mu} 1 {alpha} 0) ///
> mcmcsize(25000)
Burn-in ...
Simulation ...
Model summary
_____
Likelihood:
   y ~ logdensity(<expr1>)
Priors:
         {mu} ~ uniform(0,100)
   {alpha} ~ 1 (flat)
Expression:
   expr1 : -lngamma(y+1)+y*(ln({mu}) - ln(1 +{alpha}*{mu}))+(y-1)*ln(1 +{alpha}
                  *y)-({mu}*(1 +{alpha}*y))/(1 +{alpha}*{mu})-ln(1 - exp(-{mu}/(1+{alpha})*{mu}))/(1 +{alpha}*{mu}))/(1 +{alpha}*{mu}))/(1 +{alpha}*{mu})/(1 +{alpha}*{mu}))/(1 +{alpha
                 ha}*{mu})))
_____
                                                                                                                                      27,500
Bayesian regression
                                                                                            MCMC iterations =
Random-walk Metropolis-Hastings sampling
                                                                                            Burn-in =
                                                                                                                                         2,500
                                                                                            MCMC sample size = 25,000
                                                                                             Number of obs =
                                                                                                                                       47
                                                                                             Acceptance rate =
                                                                                                                                       .2641
                                                                                                                                        .1003
                                                                                             Efficiency: min =
                                                                                                                   avg =
                                                                                                                                        .1026
Log marginal likelihood = -60.079039
                                                                                                                     max =
                                                                                                                                        .1049
_____
                                                                                                                  Equal-tailed
                      1
                     Mean Std. Dev. MCSE Median [95% Cred. Interval]
______+____+______
            mu | 1.685861 .1765273 .003525 1.695722 1.304009 1.999089
alpha | -.1642611 .0613568 .001198 -.1746719 -.2463381 -.0211519
_____
file trunc_gpois3.dta saved
. ** storing the model for later
. est store trunc_gpois
end of do-file
```

Comparing Competing Models

- We can now see which of the two models we prefer
- This is done using the bayestest model command
- Being Bayesians, we assign prior probabilities to each of the models, and then compute their posterior probabilities given our data
- We have no reason to think one model is better than the other so we'll use the default of equally likely
 - . bayestest model trunc*

Bayesian model tests

 	log(ML)	P(M)	P(M y)
trunc_pois	-56.8194	0.5000	0.9630
trunc_gpois	-60.0790	0.5000	0.0370

Note: Marginal likelihood (ML) is computed using Laplace-Metropolis approximation.

• We now think that there is a 96% chance that simple truncated poisson is true

Aside: Bayesian Hypothesis Testing

- One wonderful part of the Bayesian world is that more than two models may be compared
- One must take care that hypotheses are plausible
 - \diamond No point values for continuous variables, for example, unless they are 0 values for something that might not exist
- Sometimes it makes sense to have prior distributions which are not evenly distributed
 - ◇ There can be a decision-theoretic reason for this, for example different costs associated with falsely conclusions
- This is far more flexible than the typical us-versus-them hypothesis testing

Information Criteria

- We can also compare models using the deviance information criterion (DIC) and Bayes factors
 - . bayesstats ic trunc*

Bayesian information criteria

	DIC	log(ML)	log(BF)
trunc_pois trunc_gpois		-56.81942 -60.07904	-3.259617
Note: Marginal using La	likelihood place-Metro		-

- The smaller DIC for the trunc_gpois model says that it should do a better job producing a similar dataset
- The log(BF) column gives the log of odds that the trunc_gpois model is true
 - ♦ Here: ln(0.0370/0.9630)
- The Bayes factor will always give the same subjective result as assuming equal prior probabilities for models

2.4 Something A Little More Complex

Linear Regression

- All we've been doing is looking at a dataset of counts
 - . save pois_plus, replace
- Now let's try playing with linear regressions
- Open up the autometric dataset
 - . use autometric
 - (auto data in metric units)
 - ♦ Made for all countries except the US, Liberia, and Myanmar

Modeling Energy Usage

- We'd like to measure energy usage of these cars
- Perhaps: regressing lp100km on weight, displacement and foreign
- Let's go back to the dialog box for teaching purposes
 - $\diamond~$ Reset the dialog box by clicking the big ${\bm R}$ button

Filling in the Dialog Box

- This will take a little effort, but specify
 - \diamond {var} as the variance for the likelihood
 - ♦ Normals with large variances for the coefficients
 - ◊ Jeffries prior for the prior of {var}
 - \diamond A random seed of 142857
- Click on OK to submit and close
 - . do reg

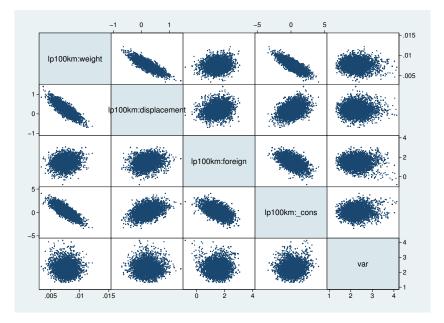
. * using centering . bayesmh lp100km weight displacement foreign, /// > likelihood(normal({var})) /// > prior({weight}, normal(0,1000)) /// > prior({displacement}, normal(0,1000)) /// > prior({foreign}, normal(0,1000)) ///
> prior({_cons}, normal(0,1000)) ///
> prior({var}, igamma(0.001,0.001)) ///
> rseed(142857) > rseed(142857) Burn-in ... Simulation ... Model summary _____ Likelihood: lp100km ~ normal(xb_lp100km,{var}) Priors: {lp100km:weight displacement foreign _cons} ~ normal(0,1000) (1) {var} ~ igamma(0.001,0.001) _____ (1) Parameters are elements of the linear form xb_lp100km. Bayesian normal regression MCMC iterations = 12,500 Random-walk Metropolis-Hastings sampling Burn-in = 2,500 10,000 MCMC sample size = Number of obs = 74 Acceptance rate = .3087 Efficiency: min = .03667 avg = .04561 Log marginal likelihood = -164.5299 .06078 max = _____ Equal-tailed Mean Std. Dev. MCSE Median [95% Cred. Interval] lp100km | weight | .007643 .0010869 .000053 .0076434 .0054059 .0098129 displacement | .2117928 .2616287 .010612 .2086352 -.2788908 .7602025 foreign | 1.483588 .490692 .022521 1.480786 .4803052 2.441043 _cons | .2130119 .98965 .048576 .2051924 -1.7418 2.230979 ______ var | 2.214069 .3922478 .020485 2.163138 1.587671 3.160582 _____

end of do-file

• The model converges, but not at all efficiently

Looking at the Problem

- Draw a graph matrix to see the problems
 - . bayesgraph matrix _all



Partial Fix Number 1

• If we mean center the weight and the displacement, we'll get rid of some of the correlation between their simulated values and those of the intercept

```
. sum weight displacement
```

Variable		Obs	Mean	Std. Dev.	Min	Max
weight		74	1369.527	352.5243	800	2195
displacement	1	74	3.233919	1.505725	1.29	6.96

- While we're at it, let's make weight no so big
 - . gen wt1300 = (weight-1300)/1000
 - . gen displacement3 = displacement 3
- Now let's see what happened

```
. do regcent
```

```
. * using centering
. bayesmh lp100km wt1300 displacement3 foreign, ///
   likelihood(normal({var})) ///
>
>
  prior({wt1300},
                        normal(0,1000)) ///
> prior({displacement3}, normal(0,1000)) ///
>
  prior({foreign}, normal(0,1000)) ///
>
   prior({_cons},
                        normal(0,1000)) ///
>
   prior({var},
                   igamma(0.001,0.001)) ///
>
   rseed(142857)
Burn-in ...
Simulation ...
Model summary
 -----
Likelihood:
 lp100km ~ normal(xb_lp100km,{var})
```

Priors: {lp100km:wt1300 displacement3 foreign _cons} ~ normal(0,1000) ({var} ~ igamma(0.001,0.001)									
(1) Parameters are elements of the linear form xb_lp100km.									
Bayesian normal regression MCMC iterations = 12,50									
Random-walk Me	tropolis-Has	stings sampl	ing	Burn-in	=	2,500			
				MCMC sam	ple size =	10,000			
				Number o	f obs =	74			
				-	ce rate =				
				Efficien	cy: min =	.0276			
					avg =	.05888			
Log marginal l	ikelihood =	-157.72151			max =	.1017			
					Equal-	tailed			
I	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]			
+ lp100km									
1	7.59653	1.104404	.03831	7.618547	5.458599	9.690238			
displaceme~3	.2263987	.2707287	.008489	.2208552	2853743	.7609745			
foreign	1.521567	.4884013	.021159	1.525246	.5444562	2.451707			
_cons	10.7747	.2496765	.014735	10.76647	10.31451	11.29672			
+ var	2.254268	.4067513	.024484	2.190814	1.600719	3.180133			

```
end of do-file
```

Partial Fix Number 2

- We've chosen very special prior distributions for our model
 - ♦ Normal priors for a normal regression are semi conjugate
 - This means that they produce normal posterior distributions
 - \star This means we know the posterior distrobution explicity
- So... we can use Gibbs sampling here
 - $\diamond\,$ This is a special case of Metropolis-Hastings which exploits knowledge fo the closed form
- As a side effect, we will estimate each of the predictors separately
 - $\diamond\,$ The default is to estimate them all at once

Result of Gibbs Sampling

- Here is our Gibbs sampler
 - . do reggibbs

```
. * using centering
. bayesmh lp100km wt1300 displacement3 foreign, ///
> likelihood(normal({var})) ///
> prior({wt1300}, normal(0,1000)) ///
> prior({displacement3}, normal(0,1000)) ///
> prior({foreign}, normal(0,1000)) ///
> prior({_cons}, normal(0,1000)) ///
> prior({var}, igamma(.001,.001)) ///
  block({lp100km:wt1300}, gibbs) ///
block({lp100km:displacement3}, gibbs) ///
>
>
  block({lp100km:foreign},gibbs) ///block({lp100km:_cons},gibbs) ///block({var},gibbs) ///
>
>
>
>
 rseed(142857)
Burn-in ...
Simulation ...
Model summarv
_____
Likelihood:
 lp100km ~ normal(xb_lp100km,{var})
Priors:
 {lp100km:wt1300 displacement3 foreign _cons} ~ normal(0,1000)
                                                        (1)
                            {var} ~ igamma(.001,.001)
_____
(1) Parameters are elements of the linear form xb_lp100km.
                                     MCMC iterations = 12,500
Bayesian normal regression
                                     Burn-in = 2,500
MCMC sample size = 10,000
Gibbs sampling
                                     Number of obs =
                                                       74
                                                         1
                                     Acceptance rate =
                                     Efficiency: min = .07728
                                               avg =
                                                      .2942
                                               max =
Log marginal likelihood = -157.63634
                                                       .7768
_____
                                      Equal-tailed
         1
             Mean Std. Dev. MCSE Median [95% Cred. Interval]
        1
lp100km |
   wt1300 | 7.500904 1.137687 .040773 7.502938 5.242152 9.722559
displaceme~3 | .2416701 .2732162 .009828 .238976 -.2873393 .7886288
  foreign | 1.479528 .4995871 .009963 1.473448 .494879 2.487035
    _cons | 10.78787 .2489216 .004643 10.78923 10.2879 11.27402
______+____+_______
      var | 2.231845 .3881057 .004403 2.189157 1.596965 3.094858
_____
```

end of do-file

- This has helped a bunch with everything except the correlated predictors
- So: collinearity is a problem here, too!
- Our only solution is to run the chain much longer
 - . do reggibbs2

```
. * using centering
. bayesmh lp100km wt1300 displacement3 foreign, ///
> likelihood(normal({var})) ///
> prior({wt1300}, normal(0,1000)) ///
> prior({displacement3}, normal(0,1000)) ///
> prior({foreign}, normal(0,1000)) ///
> prior({_cons}, normal(0,1000)) ///
> prior({var}, igamma(.001,.001)) ///
  block({lp100km:wt1300}, gibbs) ///
block({lp100km:displacement3}, gibbs) ///
>
>
  block({lp100km:foreign}, gibbs) ///
block({lp100km:_cons}, gibbs) ///
block({var}, gibbs) ///
>
>
>
  mcmcsize(50000)
                             | | |
>
>
  rseed(142857)
Burn-in ...
Simulation ...
Model summary
_____
Likelihood:
 lp100km ~ normal(xb_lp100km,{var})
Priors:
 {lp100km:wt1300 displacement3 foreign _cons} ~ normal(0,1000)
                                                          (1)
                     {var} ~ igamma(.001,.001)
_____
(1) Parameters are elements of the linear form xb_lp100km.
Bayesian normal regression
                                      MCMC iterations = 52,500
Gibbs sampling
                                      Burn-in =
                                                       2,500
                                      MCMC sample size = 50,000
                                      Number of obs =
                                                       74
                                                          1
                                      Acceptance rate =
                                      Efficiency: min = .102
avg = .3223
max = .8371
Log marginal likelihood = -157.64735
   Equal-tailed
         1
              Mean Std. Dev. MCSE Median [95% Cred. Interval]
         ______
lp100km
    wt1300 | 7.504571 1.111813 .015286 7.500416 5.313615 9.693149
displaceme~3 | .2415545 .2662422 .003729 .2390393 -.2807387 .7687533
  foreign | 1.484437 .484902 .004194 1.484105 .5278635 2.43858
    _cons | 10.78488 .2444281 .001997 10.78407 10.30452 11.2654
______+____+_______
      var | 2.228945 .3880054 .001897 2.185259 1.592776 3.106856
  _____
```

end of do-file

3 Conclusion

3.1 Conclusion

What We Have Seen

- Use of part of the GUI for Bayesian analysis in Stata
- Specification of a non-standard likelihood
- Specification of priors
- Basic Bayesian estimation
- Basic Baysian model comparison
- Gibbs samplers
- Centering

What We Have Not Seen

- Complex models
 - $\diamond\,$ There are many many examples in the manuals
- Writing our own evaluators
 - ◊ If you have a likelihood function which is not the sum of the likelihoods for each of the observations, you can write a specially-formed evaluator program
 - $\star\,$ This is similar in kind to the ml command

Conclusion

- We've just touched on what can be done
- I hope this has been somewhat informative

Index

В

Bayesian analysis, 1–26 diagnostics, 8–12, 16–20 estimation, *see* bayesmh postestimation, 6–8 bayesmh, 4–6, 11–14, 21–26 specifying a custom likelihood, 12–14

С

comparing models, 20, 21

G

Gibbs sampling, 24–26

Ρ

prior distributions, 3, 4

S

simulation, 3