Bayesian Analysis using Stata

Bill Rising

StataCorp LP

2015 Oceania Stata Users Group Meeting Canberra, ACT 25 September 2015

stata

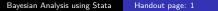
- 4 目 ト 4 目 ト 4 目

Goals Brief Glimpse into Bayesian Analysis

stata

э

- Learn a little about Bayesian analysis
- Learn the core of how Bayesian analysis are implemented in Stata 14



Goals Brief Glimpse into Bayesian Analysis

stata

Uncertainty as Probability

- In the frequentist world, probabilities are long-run proportions of repeated identical experiments
 - In some ways, this means we never know any probabilities of any events
- In the Bayesian world, probabilities are an expression of uncertainty
 - The advantage of the Bayesian viewpoint is that it allows talking about probabilities for events which cannot be repeated
 - What is the chance of a major earthquake in Alaska this year?
 - What is the chance that Australia takes the 2015 Rugby World Cup?
 - The disadvantage is that these probabilities become subjective

Bayesian Analysis

- Uncertainty about parameters is expressed via a prior distribution $p(\pmb{\theta})$
 - The prior distribution is necessarily subjective
 - If there is little knowledge about possible values, vague or non-informative priors get used
- The dataset **y** is used to update these priors into posterior distributions via Bayes rule

$$p(\boldsymbol{\theta}|\mathbf{y}) = rac{p(\mathbf{y}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathbf{y})}$$

- $p(\mathbf{y}|\boldsymbol{\theta})$ is the likelihood
- $p(\mathbf{y})$ is the marginal density of the data

$$p(\mathbf{y}) = \int_{\boldsymbol{\theta}} p(\mathbf{y}|\boldsymbol{\theta}) p(\boldsymbol{\theta})$$

● This last integral has been the bugaboo < □ > < @ > < ≥ > < ≥ > ≥ ∽ <

STata

STata

伺 ト イヨト イヨト

Advantages and Disadvantages of Bayesian Analysis

Advantages

- Theoretically should allow updating knowledge with past experience
- Can speak directly about probabilities instead of applying long-run proportions to a single event
 - Think of confidence intervals: have long-run chance of catching the parameter value, but know nothing about the current estimate
- Can choose among multiple competing hypotheses
- Disadvantages
 - Could be worried about subjectivity

stata

< ロ > < 同 > < 三 > < 三 >

Why Has Bayesian Analysis Become More Popular

- Computational speed allows rapid but good approximations of the marginal density of the data
 - Before computational horsepower could be used, only a small set of models could be estimated
- All the magic comes from Markov Chain Monte Carlo (MCMC) methods
 - These sample points from the not-fully-specified density in such a way that if left running forever, the density of simulation points would equal the target density

Goals Brief Glimpse into Bayesian Analysis

stata

Implementation in Stata 14

- In Stata 14, the estimation portion of Baysian analysis is implented by the bayesmh command
 - mh for Metropolis-Hastings
- We will see how this works, both via point-and-click and syntactically
- We will look at some diagnostics and other post-estimation tools

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

sta

• • = • • = •

A Simple Story

- We'll work with a very simple dataset measuring counts
- Here is our simulated story:
 - We've collected data from 70 people in Canberra about the number of parking tickets they've gotten in the last year
 - We would like to get some concept of the rate the people get the tickets
 - We will do this based on the rumor that Canberra is particularly finicky about parking
- We'll simulate a dataset as though the true number of parking fines per year per person is 1.3
 - . do makepois
- Let's see the mean count for this simulation
 - . sum y

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

stata

< ロ > < 同 > < 三 > < 三 >

Starting a Bayesian Analysis: the Prior

- $\bullet\,$ We would now like to do a Bayesian investigation of the rate λ of getting fined
 - Suppose we are truly interested whether the rate of fines is over one per year per person
- To start out, we need to specify a prior distribution
- How would this possibly be done?
 - We could try to use a vague prior which has very little information in it
 - We could try to elicit the opinions of experts
- We'll start with a vague prior

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

sta

< ロ > < 同 > < 三 > < 三 >

Choosing a Vague Prior

- Vague priors are only vaguely defined: they ought to cover all remotely plausible values without favoring any values
- We will choose a flat prior, meaning that all possible ticketing rates have the same probability
 - Because this means that we need a probability density proportional to 1 over the interval 0 to ∞ , this is an improper prior
 - Improper priors should typically be avoided, but this will help the exposition here
- So, for us, $p(\lambda) \propto 1$ for $0 < \lambda < \infty$
 - Clearly, like continuous-time white noise, this is impossible but helpful

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

stata

< ロ > < 同 > < 三 > < 三 >

Specifying our Model: the Interface

- We will start by using the point-and-click interface
- There are two ways to access this
 - $\bullet~$ Either select ${\it Statistics} > {\it Bayesian}~{\it analysis} > {\it Estimation}$
 - Or type db bayesmh in the command window
- We will choose what we would like to do now, and then come back to the full range of possible models

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

sta

Choosing the Likelihood Model

- We would like a univariate linear model
- Clicking the drop-down menu for the *Dependent variable* and choose y
- We have no independent variables
- Choose Poisson regression as the Likelihood model
- We can leave the *Exposure variable* blank
- Tick the Do not exponentiate linear predictor
 - This will cause our out output to report rates instead of the natural log of rates

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

stata

★ ∃ ► < ∃ ►</p>

Specifying the Prior

- Click on the **Create...** button for the **Priors of model** *parameters*
- From the Parameters specification dropdown, choose {y:_cons}
 - This is because we are modeling only the constant term without any covariates
- We will choose the *Flat prior* item
- Click **OK** to dismiss the subdialog

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

Making Our Computations Reproducible

- We should set a random seed for this MCMC
 - This will make sure that we can show our result in the future
- Click on the *Simulation* tab
- We'll put 7434 as the random seed
 - This is an arbitrary non-negative integer

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

stata

< ロ > < 同 > < 三 > < 三 >

Computing the Posterior

- We are already done specifying this simple model, so click the **Submit** button
- The command gets issued
 - . bayesmh y, likelihood(poisson, noglmtransform) ///
 prior({y:_cons}, flat) rseed(7434)
- Stata churns through the MCMC computations to find the posterior distribution
- Stata reports the results

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

stata

< ロ > < 同 > < 三 > < 三 >

General Notes about the Output

- At the top, you see Burn In ... followed by Simulation ... as notifications
 - These would be for seeing progress in very computationally intensive models
- We see the two elements we need to specify for any Bayesian analysis: the Likelihood model and the Prior distribution
- There is information about how the MCMC sampling was done
- There is information about summary statistics of the posterior distribution
 - Recall that we are not specifically trying to estimate mean values; we are finding a posterior distrbution

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

stata

< ロ > < 同 > < 三 > < 三 >

Output Specifics: MCMC

- By default, Stata uses a burn-in of 2,500 iterations
 - This is used to tune the adaptive model and to give time for the simulation to reach the main part of the posterior distribution
- By default, Stata runs the MCMC chain for 10,000 iterations
- The acceptance rate is the rate that new picks from the distribution are accepted
- The efficiency is relative to independent samples from the posterior distribution

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

stata

Output Specifics: Regression Table

- The mean of our posterior distribution for the arrival rate is 1.27
- The standard deviation of the posterior distribution is 0.136
- The MCSE of 0.0028 is the standard error of estimation of the mean due to our using MCMC to find the posterior distribution
 - How much the posterior mean would vary from run to run if we used different random seeds
- The median is the median of the posterior distribution
- The probability that the arrival rate is between 1.021 and and 1.548 is 95%
 - Note this is not a trapping probability for unknown future samples

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

Starting with Postestimation

- We can see what postestimation commands are available by typing
 - . db postest
- Now click on the disclosure control next to Bayesian analysis
- Select the Graphical summaries and convergence diagnostics item
- Click on the Launch button

stata

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

stata

∃ → ∢

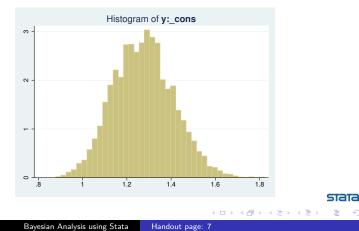
Investigating the Posterior

- We can draw a picture of the posterior distribution in a couple of ways
- To make a histogram, select the *Histograms* graph type
- To make life simple select the *Graphs for all model parameters* radio button
- Click on the Submit button

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

Histogram of the Posterior

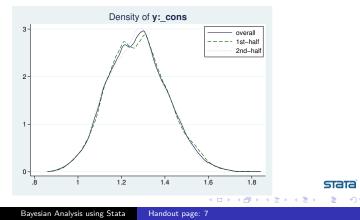
- Here is the histogram version of the posterior distribution
 - . bayesgraph histogram _all



Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

Density Plot of the Posterior

- To get a density plot, select the Density plots graph type
- Click on the Submit button
 - . bayesgraph kdensity _all



sta

< ロ > < 同 > < 三 > < 三 >

Finding the Probability the Rate is Larger than 1

- Navigate back to the Postestimation Selector dialog box
- Select the Interval hypothesis testing menu item
- Choose {y:_cons} parameter from the *Test model parameter* list
- Enter 1 as the Lower bound and leave . as the Upper bound
- Click the **Submit** button
 - . bayestest interval ({y:_cons}, lower(1))
- We can read off the probability as 0.98
 - This is a true probability
 - It is a subjective probability based on our flat prior

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

stata

< ロ > < 同 > < 三 > < 三 >

How MCMC Can Break

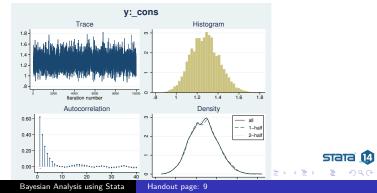
- There are multiple ways that MCMC can give bad answers
 - It can mix poorly, meaning either that
 - New candidate points for the simulation get rejected too often
 - The jumps are too small to cover the distribution
 - It can have bad initial values
 - These should be irrelevant because of the long burn-in sequence
 - But... if there is poor mixing this might not be the case
 - This leads to what is called 'drift'

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

MCMC Diagnostics

- There is a simple tool for looking at the standard diagnostics all at once
- Select *Multiple diagnostics in compact form* in the *bayesgraph* dialog, and press **Submit**

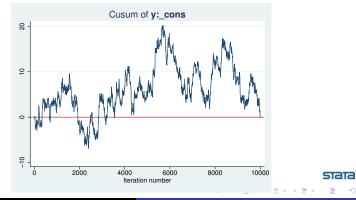
. bayesgraph diagnostics _all



Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

Looking for Drift

- The cusum (short for cumulative sum) plot is used to look for small step size and drift
- Select Cumulative sum plots and press Submit
 - . bayesgraph cusum _all



Bayesian Analysis using Stata Handout page: 9

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

Simple Diagnostic Conclusion

• Everything looks fine because there is no sign of bad mixing or drift

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

STata

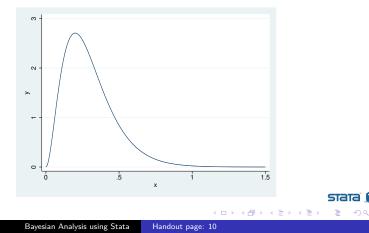
Playing with Different Priors

- Suppose we talk to people in Sydney, Melbourne, Adalaide, and Brisbane
- They all agree that the the rate of fines should be about 1 every 3 years, with little chance of averaging more than 1 fine per year
 - Thus, they are completely incorrect about Canberra
- Based on this, a good prior would be a Gamma(3, 0.1)

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

Aside: Graph of the Prior

- Here is a graph of the Gamma(3, 0.1) distribution
 - . twoway function y = gammaden(3,0.1,0,x), range(0 1.5)



Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

stata

(日)

Specifying a New Prior

- Type db bayesmh to get our dialog box back
- Select the Prior 1 prior
- Click on the Edit button
- Choose Gamma distribution
- Enter 3 as the Shape and 0.1 as the Scale
- Click on the OK button to dismiss the subdialog

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

Changing the Seed

- Go to the *Simulation* tab
- Change the random seed to some other number, say 9983
- Click on the Submit button to run the analysis
 - . bayesmh y, likelihood(poisson, noglmtransform) ///
 prior({y:_cons}, gamma(3,0.1)) rseed(9983)

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

What Happened?

- We can see that the mean of the posterior distribution is smaller
 - We should, however, be encouraged that the mean is only somewhat smaller despite the very-different prior
- If we now compute our probability that the rate is larger than 1, though: 0.88
 - . bayestest interval ({y:_cons}, lower(1))

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

Specifying Our Own Likelihood

- What if we wanted a likelihood which is not one of the 10 built-in likelihoods?
- We can specify this by using the likelihood() option with the llf() suboption
- We just need an example to show this...

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

stata

< ロ > < 同 > < 三 > < 三 >

Changing the Problem

- Suppose now that our sample came just from those who had had a ticket in the last year
 - . drop if y == 0
 - We've lost quite a bit of our sample
- We cannot use the same likelihood model as we had before
- Instead, we have a truncated Poisson, where the probability of 0 fines has become 0
- Truncated Poisson distributions are not a part of Stata's suite, so we need to do some math

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

Writing Our New Likelihood Model

 \bullet Here is the Poisson distribution with parameter λ is

$$p(y) = \frac{\lambda^{y} \mathrm{e}^{-\lambda}}{y!}; \qquad y = 0, 1, 2 \dots$$

• If y cannot be zero, we just need to rescale to get the total probability to be 1:

$$p(y) = \frac{\lambda^y e^{-\lambda}}{y!(1 - e^{-\lambda})}; \qquad y = 1, 2 \dots$$

• From this, our log likelihood becomes

$$y\ln(\lambda) - \lambda - \ln(y!) - \ln(1 - e^{-\lambda})$$
 state 4

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

Substitutable Expressions

- The way we tell Stata to use the log-likelihood function is by using a *substitutable expression*
- We just need to replace
 - Symbols with the variables that represent them
 - Coefficient names to replace parameters

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

Specifying Our New Likelihood Model

- In our case
 - y (the variable) replaces y the count symbol
 - {y:_cons} replaces λ
- This gives the straightforward but unwieldy expression y*ln({y:_cons})-{y:_cons}-lngamma(y+1)-ln(1-exp(-{y:_cons}))

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

Working from Do-files

- Now the commands are becoming complicated enough that typing as we go will be unhelpful
- Let's open up a project file for this talk
 - . projman bayes

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

stata

(日)

Finally: Analyzing the Truncated Gamma

- We can run our analysis with this do-file
 - . do trunc_pois
 - The saving() option has been added because we will need it if we would like to compare this model to another later
 - We stored the model for later comparisons
- The mean from our posterior distribution now overshoots the true mean
 - This could happen because there were too many 0-valued observations in the original dataset

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

stata

< ロ > < 同 > < 三 > < 三 >

Truncated Gamma Notes

- Notice the note: invalid initial state warning under Burn in ...:
 - $\bullet\,$ This happened here because Stata started λ at 0, which is not a valid rate
 - This should only worry us if the efficiencies are low or if the chain did not converge
- Just as before, we can look at the diagnostics (not shown)
- Here is the probability that the rate of fines is over 1
 - . bayestest interval ({y:_cons}, lower(1))

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

stata

(日)

A Competing Likelihood

- Suppose we suspect that there could be overdispersion or underdispersion for our model
- We could try specifying a likelihood which accommodates this: the generalized Poisson distribution
- Here is one parameterization

$$p(y) = \frac{1}{y!} \left(\frac{\mu}{1+\alpha\mu}\right)^y (1-\alpha y)^{y-1} \exp\left\{-\frac{\mu(1+\alpha y)}{1+\alpha\mu}\right\}; y = 0, 1, 2, \dots$$

- \bullet This distribution has mean μ and variance $\mu(1+\alpha\mu)^2$
 - Thus, if $\alpha>0$ there is overdispersion; if $\alpha<0$ there is underdispersion

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

stata

< ロ > < 同 > < 三 > < 三 >

Estimating This Competing Likelihood

• We can once again specify our own log likelihood:

$$\begin{split} llf(y) &= -\ln(y!) + y \left(\ln(\mu) - \ln(1 + \alpha \mu) \right) \\ &+ (y - 1) \ln(1 + \alpha y) - \frac{\mu(1 + \alpha y)}{1 + \alpha \mu} \\ &- \ln\left(1 - \exp(-\frac{\mu}{1 + \alpha \mu}) \right) \end{split}$$

- The last term comes from rescaling because the distribution is truncated
- Luckily, this mess has been put in a do-file
 - . do trunc_gpois

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

stata

- 4 同 ト 4 ヨ ト 4 ヨ ト

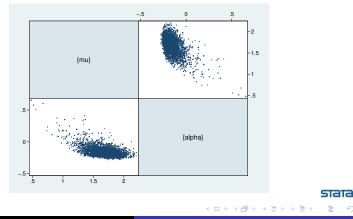
Uh oh! Bad Efficiency

- If we look at the efficiencies, we can see that one of the parameters probably has high autocorrelations
- First, let's see which parameter had which efficiency by looking at effective sample sizes
 - . bayesstats ess _all
- We should investigate this

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

Plotting Simulations

- We can make a scatterplot matrix of the simulation values
 - . bayesgraph matrix {mu} {alpha}



Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

stata

< ロ > < 同 > < 三 > < 三 >

Correlated Simulations

- Correlated MCMC simulation values slow down the MCMC chain, as do possibly illegal values
- One solution we could try here would be to transform the parameters to make their range extend over the whole real line
 - $\bullet\,$ This is hard here, because the range of α depends on $\mu\,$
- We might also try specifying legal initial values
 - . do trunc_gpois2
- This seemed to help
 - Try experimenting with other starting values if you like

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

Extending the Chain

- If we would like to get an effective sample size which is close to what we had for the truncated poisson model, we need to extend the chain
- The mcmcsize(25000) option does this
 - . do trunc_gpois3

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

stat

< ロ > < 同 > < 三 > < 三 >

Comparing Competing Models

- We can now see which of the two models we prefer
- This is done using the bayestest model command
- Being Bayesians, we assign prior probabilities to each of the models, and then compute their posterior probabilities given our data
- We have no reason to think one model is better than the other so we'll use the default of equally likely
 - . bayestest model trunc*
- We now think that there is a 96% chance that simple truncated poisson is true

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

STata

Aside: Bayesian Hypothesis Testing

- One wonderful part of the Bayesian world is that more than two models may be compared
- One must take care that hypotheses are plausible
 - No point values for continuous variables, for example, unless they are 0 values for something that might not exist
- Sometimes it makes sense to have prior distributions which are not evenly distributed
 - There can be a decision-theoretic reason for this, for example different costs associated with falsely conclusions
- This is far more flexible than the typical us-versus-them hypothesis testing

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

stata

< ロ > < 同 > < 三 > < 三 >

Information Criteria

- We can also compare models using the deviance information criterion (DIC) and Bayes factors
 - . bayesstats ic trunc*
- The smaller DIC for the trunc_gpois model says that it should do a better job producing a similar dataset
- The log(BF) column gives the log of odds that the trunc_gpois model is true
 - Here: ln(0.0370/0.9630)
- The Bayes factor will always give the same subjective result as assuming equal prior probabilities for models

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

stata

(日)

Linear Regression

- All we've been doing is looking at a dataset of counts
 - . save pois_plus, replace
- Now let's try playing with linear regressions
- Open up the autometric dataset
 - . use autometric
 - Made for all countries except the US, Liberia, and Myanmar

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

Modeling Energy Usage

- We'd like to measure energy usage of these cars
- Perhaps: regressing lp100km on weight, displacement and foreign
- Let's go back to the dialog box for teaching purposes
 - Reset the dialog box by clicking the big ${\bf R}$ button

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

stata

< ロ > < 同 > < 三 > < 三 >

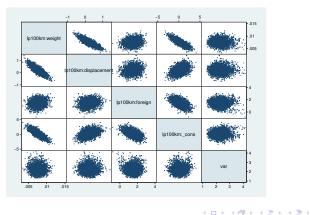
Filling in the Dialog Box

- This will take a little effort, but specify
 - {var} as the variance for the likelihood
 - Normals with large variances for the coefficients
 - Jeffries prior for the prior of {var}
 - A random seed of 142857
- Click on OK to submit and close
 - . do reg
- The model converges, but not at all efficiently

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

Looking at the Problem

- Draw a graph matrix to see the problems
 - . bayesgraph matrix _all



stata

14

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

stata

< ロ > < 同 > < 三 > < 三 >

Partial Fix Number 1

- If we mean center the weight and the displacement, we'll get rid of some of the correlation between their simulated values and those of the intercept
 - . sum weight displacement
- While we're at it, let's make weight no so big
 - . gen wt1300 = (weight-1300)/1000
 - . gen displacement3 = displacement 3
- Now let's see what happened
 - . do regcent

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

stata

- 4 同 1 4 三 1 4 三 1

Partial Fix Number 2

- We've chosen very special prior distributions for our model
 - Normal priors for a normal regression are semi conjugate
 - This means that they produce normal posterior distributions
 - This means we know the posterior distrobution explicity
- So... we can use Gibbs sampling here
 - This is a special case of Metropolis-Hastings which exploits knowledge fo the closed form
- As a side effect, we will estimate each of the predictors separately
 - The default is to estimate them all at once

Starting Simple Looking More Carefully Changing the Problem Something A Little More Complex

Result of Gibbs Sampling

- Here is our Gibbs sampler
 - . do reggibbs
- This has helped a bunch with everything except the correlated predictors
- So: collinearity is a problem here, too!
- Our only solution is to run the chain much longer
 - . do reggibbs2

What We Have Seen

- Use of part of the GUI for Bayesian analysis in Stata
- Specification of a non-standard likelihood
- Specification of priors
- Basic Bayesian estimation
- Basic Baysian model comparison
- Gibbs samplers
- Centering

stata

Conclusion

What We Have Not Seen

- Complex models
 - There are many many examples in the manuals
- Writing our own evaluators
 - If you have a likelihood function which is not the sum of the likelihoods for each of the observations, you can write a specially-formed evaluator program

stata

∃ ► < ∃ ►</p>

• This is similar in kind to the ml command

Conclusion

Conclusion

- We've just touched on what can be done
- I hope this has been somewhat informative

