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Introduction What do we want to estimate?

A research question

I Do post-release support programs decrease recidivism?
I Does not identify an intervention or the effect we are interested in

I What is the effect of participation in a supported work program after
release from prison on the time until a subsequent arrest?

I Identified a treatment
I Question is about the time to an event
I Implies that we want our effect estimate in easy-to-understand units of

time

I We could choose a randomized design or an observational design
I Not always feasible
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Introduction What do we want to estimate?

Random-assignment case

I When the treatment is randomly assigned, the outcome we observe is
independent of the treatment assignment process

I This simplifies our calculation of the treatment effect
I The average time until rearrest for ex-prisoners who were assigned to

the supported-work program would be a good estimator of what we
would expect to happen for all the participating ex-prisoners in the
population

I The average time until rearrest for ex-prisoners who were not assigned
to the supported-work program would be a good estimator of what we
would expect to happen for all nonparticipating ex-prisoners in the
population

I The average treatment effect is just the difference between two
observed averages

ATE = E[ti (treatment)]− E[ti (notreatment)]
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Introduction What do we want to estimate?

Observational case

I Many questions require using observational data, because
experimental data would be unethical

I We could not ask a random selection of women to smoke after having
a heart attack to see if smoking decreased the time to a second heart
attack

I Other questions may use observational data because while assignment
could be random, participation will not be

I We could study time to rearrest between prisoners who chose to
participate and those who did not

I We may wish to understand the relationship between variables that
select individuals into treatment if we could affect those variables

I A randomized study may be cost- or time-prohibitive

3 / 45



Introduction Time-to-event data

Survival-time data
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Introduction Time-to-event data

Right-censored survival-time data
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Introduction Time-to-event data

Time as we see it
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Introduction Time-to-event data

stset the data

. stset rtime, failure(rearrest) noshow

failure event: rearrest != 0 & rearrest < .
obs. time interval: (0, rtime]
exit on or before: failure

4260 total observations
0 exclusions

4260 observations remaining, representing
3766 failures in single-record/single-failure data

70570.174 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 308.702

3,766 of the 4,260 observations record actual time to rearrest;
remaining 494 were censored (11.6%)
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Introduction Time-to-event data

The data at hand

. describe

Contains data from recidivism.dta
obs: 4,260 Rearrest data (simulated)

vars: 10 11 Sep 2015 11:30
size: 80,940

storage display value
variable name type format label variable label

id int %9.0g Subject ID
age byte %9.0g Age (years)
married byte %11.0g mstat Marital status
educ byte %9.0g Years of education
wrkhis int %9.0g Longest job duration (months)
parrest byte %9.0g Number of prior arrests
crime byte %14.0g crime Type of crime
partic byte %9.0g treat Participation status
rearrest byte %9.0g Rearrested (1=yes)
rtime double %10.0g Months to rearrest (w/ rand. cens.)

Sorted by: id

9 / 45



Introduction Traditional modeling approaches

A Cox model for the treatment effect

I Many researchers would start by fitting a Cox model
I The Cox model leaves the baseline hazard unspecified

I Increases the flexibility of the model

I Estimate the probability that the event will occur in the next
moment, given that it has not yet happened

I Our estimated effect is a ratio of the hazard for those in the
treatment group to the hazard for those in the control group
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Introduction Traditional modeling approaches

Our question answered by the Cox PH model

I Include age at the time of release (age) and the number of prior
arrests (parrest) as covariates in our model

I The estimated hazard ratio is

λ(t|x, partic = 1)

λ(t|x, partic = 0)
=
λ0(t) exp(βpartic + xoβo)

λ0(t) exp(xoβo)
= exp(βpartic)

where x0βo = ageβage + parrestβparrest

Our research question

What is the effect of participation in a supported work program after
release from prison on the time until a subsequent arrest?

I Effect we are estimating is the ratio of the hazard of rearrest for those
who participate in the program to the hazard of rearrest those who do
not participate in the program
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Introduction Traditional modeling approaches

Example: Cox PH model
. stcox i.partic age parrest, nolog

Cox regression -- no ties

No. of subjects = 4,260 Number of obs = 4,260
No. of failures = 3,766
Time at risk = 70570.17407

LR chi2(3) = 405.10
Log likelihood = -27517.455 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

1.partic .5662226 .019774 -16.29 0.000 .528763 .606336
age 1.038272 .0035322 11.04 0.000 1.031372 1.045218

parrest 1.081966 .0082901 10.28 0.000 1.065839 1.098337

I Participating decreases the hazard of rearrest by a factor of about
0.57 relative to not participating

I But how many months of delay is that?
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Introduction Traditional modeling approaches

Problems to solve

1. We wanted our effect in terms of units of time, but we got a hazard
ratio instead

I It can be hard for nontechnical audiences to understand the units of
the hazard ratio

2. The interpretation of the hazard ratio for the treatment variable as
the effect of the treatment is only true if the treatment enters the xβ
term linearly

I If the treatment is interacted with other covariates, the effect of the
treatment varies over individuals
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Introduction Traditional modeling approaches

A parametric survival model for the treatment effect

I PH models can also be estimated by specifying a distribution for the
hazard function

I Gompertz, Weibull, exponential

I Using a parametric method allows us to also obtain an estimate of
the baseline hazard

I We can make predictions about mean survival time that rely on this
baseline hazard use them in subsequent calculations

I The hazard ratio has the same interpretation as in the Cox model
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Introduction Traditional modeling approaches

Example: Weibull PH model
. streg i.partic age parrest, distribution(weibull) nolog

Weibull regression -- log relative-hazard form

No. of subjects = 4,260 Number of obs = 4,260
No. of failures = 3,766
Time at risk = 70570.17407

LR chi2(3) = 416.38
Log likelihood = -7242.5323 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

1.partic .5642147 .0195953 -16.48 0.000 .5270867 .603958
age 1.038531 .0035222 11.15 0.000 1.031651 1.045458

parrest 1.082521 .0082692 10.38 0.000 1.066434 1.09885
_cons .0414343 .0042275 -31.20 0.000 .0339245 .0506065

/ln_p -.2314783 .0125867 -18.39 0.000 -.2561477 -.2068089

p .7933599 .0099857 .7740276 .813175
1/p 1.260462 .015865 1.229748 1.291944

I Participating decreases the hazard of rearrest by a factor of about
0.56 relative to not participating
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Introduction Traditional modeling approaches

Example: Weibull PH model with an interaction
. streg i.partic##c.parrest c.age, distribution(weibull) nolog
Weibull regression -- log relative-hazard form
No. of subjects = 4,260 Number of obs = 4,260
No. of failures = 3,766
Time at risk = 70570.17407

LR chi2(4) = 423.72
Log likelihood = -7238.858 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

1.partic .6836782 .0540455 -4.81 0.000 .5855491 .7982523
parrest 1.110348 .0133167 8.73 0.000 1.084552 1.136757

partic#c.parrest
1 .9588852 .0148206 -2.72 0.007 .9302729 .9883775

age 1.038525 .0035235 11.14 0.000 1.031641 1.045453
_cons .0368276 .0040948 -29.69 0.000 .0296162 .0457948

/ln_p -.2300976 .0125948 -18.27 0.000 -.2547829 -.2054122

p .7944561 .010006 .7750847 .8143116
1/p 1.258723 .0158534 1.228031 1.290182

I Hazard ratio must now be interpreted conditional on the number of
prior arrests
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Introduction Traditional modeling approaches

Conditional vs. marginal

I Conditional interpretation is helpful for questions that focus on
individuals

I What is the probability that a patient will live 15 years past diagnosis if
she gets the treatment given that she is 45 years old?

I What is the probability that a former prisoner will be rearrested before
18 months if he participates in the supported work program given that
he has 3 prior convictions?

I Marginal interpretation is helpful for questions that focus on
populations

I What is the average increase in life expectancy for patients that get
this new treatment?

I What is the average increase in time-to-rearrest for former prisoners
who participate in a supported work program?
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The potential-outcomes framework Overview

By switching to a potential-outcomes framework for analysis of
observational survival-time data we gain

1. Estimation techniques that deal with inherently missing information

I What would have happened had an individual who was not treated
been treated instead

I What would have happened had an individual who was treated not
been treated instead

2. Effects that are easier to interpret

I The estimated effect will be the average difference in time until the
event occurs when everyone gets the treatment instead of when no one
gets the treatment

3. Effects that are population-averaged, even when the treatment is
interacted with a covariate
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The potential-outcomes framework Potential outcomes

Missing outcome data

I The “fundamental problem of causal inference” (Holland (1986)) is
that we only observe one of the potential outcomes

I The other potential outcome is missing

1. We only see tpartic for ex-prisoners who participated in the
supported-work program

2. We only see tnopartic for ex-prisoners who did not participate in the
supported-work program

I We can use classic tools for missing-data analysis to estimate
treatment effects

I Regression adjustment
I Weighting observations for the probability that they were observed
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The potential-outcomes framework Potential outcomes

Goal: Find the missing potential outcome

I For each treatment level, there is a potential outcome that we would
observe if a subject received that treatment level

I Potential outcomes are the data that we wish we had to estimate
causal treatment effects

I Suppose that we could see

1. the time to rearrest for each ex-prisoner when he participated in the
post-release supported-work program, and

2. the time to rearrest for each ex-prisoner when he did not participate in
the post-release supported-work program
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The potential-outcomes framework Potential outcomes

Potential outcomes
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The potential-outcomes framework The average treatment effect

Average treatment effect

I The average difference in the (observed) potential outcomes would
estimate the population average treatment effect

I The average of a potential outcome in the population is known as the
potential-outcome mean (POM) for a treatment level

I The ATE is a difference in POMs

ATE = POMparticipate − POMnoparticipate

= E[ti (partic)]− E[ti (nopartic)]

ti (partic) is the time to rearrest when person i participates
and
ti (nopartic) is the time to rearrest when person i does not participate

I The ATE provides a measure of the effect in the units of time in which
the time to event is measured

22 / 45



Survival treatment-effects estimators Model assumptions

As good as random

I The conditional independence (CI) assumption says that the potential
outcomes must be independent of the treatment assignment process
once we condition on observable covariates

I The random-assignment methods used with experimental data are
useful, because observational-data methods build on them

I Instead of assuming that the treatment is randomly assigned, we
assume that the treatment is as good as randomly assigned after
conditioning on covariates

I More formally, we only need conditional mean independence which
says that after conditioning on covariates, the treatment does not
affect the means of the potential outcomes
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Survival treatment-effects estimators Model assumptions

A positive probability of treatment

I The predicted probability of treatment must be sufficiently greater
than 0 and cannot be too close to certainty

I Formally, for each possible xi in the population and each treatment
level t, 0 < P(ti = t|x) < 1

I Could weaken this assumption when calculating the average
treatment effect on the treated

I Individuals cannot be treated with certainty, or formally,
P(ti = t|x) < 1

I When the overlap assumption is not satisfied, the estimators perform
poorly because

I For estimators that use regression adjustment, we’re making
predictions that are based on little or no data

I For estimators that use weighting, our weights become very large or
very small and thus unstable
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Survival treatment-effects estimators Model assumptions

Correct censoring model

If our data is censored, then we must assume

1. The censoring time is fixed or that the process that determines when
an observation is censored is independent of the outcome, conditional
upon covariates

I Standard assumption in survival analysis
I For example, we rule out ex-prisoners who anticipate being rearrested

soon dropping out of our study early

2. That the method used to adjust for censoring is correct

I For estimators that do not require an explicit model of the censoring
process, this is not any more restrictive than what we assumed for
conditional mean independence

I For estimators that do require a model of the censoring process, this
means that we must correctly specify that model
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Survival treatment-effects estimators Model choice

We can broadly divide the survival-time treatment effects estimators by

1. Whether we want to model the outcome, the treatment, or both

2. Whether or not we must specify a model for the censoring process

No censoring model
Model Estimator

outcome → Regression adjustment (RA)
outcome & treatment → Inverse-probability weighted RA with

likelihood-adjusted censoring (LAC-IPWRA)

Censoring model required
Model Estimator

outcome → Weighted regression adjustment (WRA)
treatment → Inverse-probability weighted (IPW)

outcome & treatment → Inverse-probability weighted RA with
weighting-adjusted censoring (WAC-IPWRA)
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Survival treatment-effects estimators Model choice

Auxiliary models

I Recall that the potential-outcomes framework formulates the
estimation of the ATE as a missing-data problem

I We use the parameters of auxiliary models to solve the missing-data
problem

I How we condition on covariates so that the treatment is as good as
randomly assigned

I Also handles the data lost to censoring

I For the following examples, our auxiliary models will be

Outcome Weibull model with covariates parrest (number of prior arrests) and
age

Treatment Logit model with covariates married (whether or not the former
prisoner is married at the time of release), wrkhis (number of months
of work history prior to incarceration), and educ (years of completed
schooling)

Censoring Weibull model with covariates crime (type of crime for most recent
arrest) and age, which we allow to be nonlinear
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Survival treatment-effects estimators Modeling the outcome

Regression adjustment estimators

I RA estimators fit separate survival models for each treatment level and
then

1. Estimate each POMi as the predicted time to event using the estimated
coefficients from the model for those who got treatment level i

2. Use differences between the POMs to estimate the ATE

I RA estimators model the outcome without any assumptions about the
functional form for the probability of treatment model

I Censoring is handled in the log-likelihood functions of the survival
models
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Survival treatment-effects estimators Modeling the outcome

Example: RA – modeling the outcome

. stteffects ra (parrest age) (partic), nolog

Survival treatment-effects estimation Number of obs = 4,260
Estimator : regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: none

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
partic

(1 vs 0) 12.23334 .8485777 14.42 0.000 10.57016 13.89652

POmean
partic

0 12.34105 .4430541 27.85 0.000 11.47268 13.20942

If no ex-prisoners participated in the supported-work program,
then the average time to rearrest would be 12.3 months

If all ex-prisoners participated in the program,
then the average time to rearrest would increase by 12.2 months
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Survival treatment-effects estimators Modeling treatment assignment

Inverse-probability-weighted estimators

I Inverse-probability-weighted (IPW) estimators

1. Account for the missing potential outcome by estimating the
treatment-assignment model and creating a weight for each
observation equal to the inverse of the probability that it is observed

2. Account for data lost to censoring by estimating the censoring model
and creating a weight that is equal to the inverse of the probability
that the observation is censored

3. Use both weights to create weighted averages of the outcomes for each
treatment level (the POMs)

4. Use differences between the POMs to estimate the ATE

I Observations that are not likely to contain missing data get a weight
close to one; and the converse

I IPW do not make any assumptions about the functional form for the
outcome model
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Survival treatment-effects estimators Modeling treatment assignment

Special properties of estimators with a censoring model

I Fixed censoring processes, such as administrative censoring, are
precluded

I Time to censoring must be random conditional on covariates
I We must correctly specify our censoring model

I The random censoring process cannot vary by treatment level
I These estimators are not appropriate, for example, with risky

treatments where the risk is modified by some covariate

I These estimators require the overlap assumption to be extended so
that the probability of not being censored is also sufficiently greater
than 0 and less than 1
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Survival treatment-effects estimators Modeling treatment assignment

Example: IPW – modeling treatment assignment and censoring
. stteffects ipw (partic i.married age wrkhis educ)

(i.crime c.age##c.age), nolog

Survival treatment-effects estimation Number of obs = 4,260
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit
Censoring model: Weibull

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
partic

(1 vs 0) 12.36087 1.119836 11.04 0.000 10.16603 14.55571

POmean
partic

0 12.95968 .5959098 21.75 0.000 11.79172 14.12764

If no ex-prisoners participated in the supported-work program,
then the average time to rearrest would be 13 months

If all ex-prisoners participated in the program,
then the average time to rearrest would increase by 12.4 months
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Survival treatment-effects estimators Modeling the outcome and treatment assignment

IPW RA estimators

I Inverse probability weighted regression adjustment (IPWRA) estimators
combine the methods of RA with weights derived from a model for
treatment assignment and possibly a censoring model, just like IPW

I IPWRA estimators come in two varieties, distinguished by the method
used for censoring

1. Likelihood-adjusted censoring IPWRA (LAC-IPWRA) estimators
2. Weighted-adjusted censoring IPWRA (WAC-IPWRA) estimators

I LAC-IPWRA estimators handle censoring like the RA estimators, by
including a term in the log-likelihood function for the outcome

I WAC-IPWRA estimators handle censoring like the IPW estimators, by
adjusting the weights for data lost to censoring
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Survival treatment-effects estimators Modeling the outcome and treatment assignment

Fitting the IPWRA model

I To use the LAC-IPWRA estimator, we just specify the outcome and
treatment model

. stteffects ipwra (parrest age)
(partic i.married wrkhis educ)

I To use the WAC-IPWRA estimator, we need to also specify the censoring
model

. stteffects ipwra (parrest age)
(partic i.married wrkhis educ)
(i.crime c.age##c.age)

I Stata automatically switches between the two methods for handling
censoring for IPWRA estimators
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Survival treatment-effects estimators Modeling the outcome and treatment assignment

Example: IPWRA – modeling the outcome and treatment assignment

. stteffects ipwra (parrest age) (partic i.married age wrkhis educ), nolog

Survival treatment-effects estimation Number of obs = 4,260
Estimator : IPW regression adjustment
Outcome model : Weibull
Treatment model: logit
Censoring model: none

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
partic

(1 vs 0) 12.41034 .8772714 14.15 0.000 10.69092 14.12976

POmean
partic

0 12.41359 .4667908 26.59 0.000 11.4987 13.32849

If no ex-prisoners participated in the supported-work program,
then the average time to rearrest would be 12.4 months

If all ex-prisoners participated in the program,
then the average time to rearrest would increase by 12.4 months
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Postestimation Review of results

Example: Our various model specifications
. estimates table RA IPW IPWRA_LAC IPWRA_WAC,

keep(ATE: POmean:) b(%8.1f) se(%8.1f) modelwidth(9)

Variable RA IPW IPWRA_LAC IPWRA_WAC

ATE
r.partic

1 12.2 12.4 12.4 12.6
0.8 1.1 0.9 1.1

POmean
r.partic

0 12.3 13.0 12.4 12.8
0.4 0.6 0.5 0.6

legend: b/se
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Postestimation Checking model specification

Testing the overlap assumption: Predictions

I Recall that we want the predicted probability of treatment at each
treatment level to be sufficiently greater than 0 and sufficiently less
than 1

. quietly stteffects ipw (partic i.married age wrkhis educ)
(i.crime c.age##c.age)

. predict ps0 ps1, ps

. summarize ps0 if partic==0

Variable Obs Mean Std. Dev. Min Max

ps0 1,605 .4178441 .1242475 .1202521 .8840557

. summarize ps1 if partic==1

Variable Obs Mean Std. Dev. Min Max

ps1 2,655 .6480752 .1187267 .2051178 .9346817

There is no evidence that the overlap assumption is violated
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Postestimation Checking model specification

Testing the overlap assumption: Plots
I We can also examine treatment probabilities using an overlap plot

. teffects overlap
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Overlap Plot

What we want is for the densities to span the x axis without
massing near 0 or 1 and to overlap, as we see here
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Postestimation Checking model specification

Testing the overlap assumption: Censoring

I Also recall that we want the predicted probability of treatment at
each treatment level to be sufficiently greater than 0 and less than 1

. predict prnotcens, censurv

. summarize prnotcens if rearrest==1

Variable Obs Mean Std. Dev. Min Max

prnotcens 3,766 .9036242 .1128106 .2329026 .9999843

The smallest probability of not being censored is 0.233

We might be a little concerned about how close maximum is to 1
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Conclusion

Summing up

I The potential-outcomes framework gives us

1. Estimation techniques that deal with counterfactuals, the inherently
missing information about what would have happened had a subject
received a different treatment

2. Effects that are on the same time scale as the time in which the
outcome is measured

3. Population-averaged effects

I Using Stata for treatment-effects analysis of survival-time data gives
you

1. Access to a variety of estimators
2. A range of postestimation commands to check the assumptions of the

models
3. The world’s greatest manuals for a statistical software package should

you have any questions
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Conclusion

Now what?

I Go to [TE] teffects intro advanced for more information and lots of
links to literature and examples
http://www.stata.com/manuals14/teteffectsintroadvanced.pdf

I Also check out [TE] stteffects intro for more information about survival-time
treatment-effects estimators, including additional specification tests and
multivalued treatments
http://www.stata.com/manuals14/testteffectsintro.pdf
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Conclusion

Thank you
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Appendix Appendix 1: Ratio of unconditional hazards

I The ratio of hazards of unconditional (marginal) distributions is not
the same as an average of conditional hazard ratios

λpartic(t)

λnopartic(t)
=

fpartic (t)
Spartic (t)

fnopartic (t)
Snopartic (t)

6= E

[
λpartic(t|xβpartic)

λnopartic(t|xβnopartic)

]

λpartic(t) is the unconditional hazard when everyone participates
λnopartic(t) is the unconditional hazard when no one participates
fpartic(t) is the unconditional density when everyone participates
fnopartic(t) is the unconditional density when no one participates
Spartic(t) is the unconditional survival function when everyone participates
Snopartic(t) is the unconditional survival function when no one participates
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Appendix Appendix 2: Why robust standard errors?

I Have a multistep estimator

I Example based on RA, same logic works for IPW and IPWRA

1. Model outcome conditional on covariates for treated observations
2. Model outcome conditional on covariates for not treated observations
3. Estimate predicted mean survival time of all observations given

covariates from treated model estimates
4. Estimate predicted mean survival time of all observations given

covariates from not-treated model estimates
5. Difference in means of predicted means estimates ATE
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Appendix Appendix 2: Why robust standard errors?

I Each step can be obtained by solving moment conditions yielding a
method of moments estimator known as an estimating equation (EE)
estimator

I mi (θ) is vector of moment equations and m(θ) = 1/N
∑N

i=1 mi (θ)

I The estimator for the variance-covariance matrix of the estimator has

the form 1/N(DMD ′) where D =
(

1
N

∂m(θ)
∂θ

)−1
and

M = 1
N

∑N
i=1 mi (θ)mi (θ)

I Stacked moments do not yield a symmetric D, so no simplification
under correct specification
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