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Description

tssmooth exponential models the trend of a variable whose change from the previous value
is serially correlated. More precisely, it models a variable whose first difference follows a low-order,
moving-average process.

Quick start
Create smooth using a single-exponential smoother over y with tsset data

tssmooth exponential smooth=y

Same as above, but forecast 10 periods out of sample
tssmooth exponential smooth=y, forecast(10)

Same as above, but use 111 as the initial value for the recursion
tssmooth exponential smooth=y, forecast(10) s0(111)

Same as above, but use 0.5 as the smoothing parameter
tssmooth exponential smooth=y, forecast(10) s0(111) parms(.5)

Note: The above commands can also be used to apply the smoother separately to each panel of a
panel dataset when a panelvar has been specified using tsset or xtset.

Menu
Statistics > Time series > Smoothers/univariate forecasters > Single-exponential smoothing
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Syntax
tssmooth exponential

[
type

]
newvar = exp

[
if
] [

in
] [

, options
]

options Description

Main

replace replace newvar if it already exists
parms(#α) use #α as smoothing parameter
samp0(#) use # observations to obtain initial value for recursion
s0(#) use # as initial value for recursion
forecast(#) use # periods for the out-of-sample forecast

You must tsset your data before using tssmooth exponential; see [TS] tsset.
exp may contain time-series operators; see [U] 11.4.4 Time-series varlists.
collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

replace replaces newvar if it already exists.

parms(#α) specifies the parameter α for the exponential smoother; 0 < #α < 1. If parms(#α)
is not specified, the smoothing parameter is chosen to minimize the in-sample sum-of-squared
forecast errors.

samp0(#) and s0(#) are mutually exclusive ways of specifying the initial value for the recursion.

samp0(#) specifies that the initial value be obtained by calculating the mean over the first #
observations of the sample.

s0(#) specifies the initial value to be used.

If neither option is specified, the default is to use the mean calculated over the first half of the
sample.

forecast(#) gives the number of observations for the out-of-sample prediction; 0 ≤ # ≤ 500. The
default is forecast(0) and is equivalent to not forecasting out of sample.

Remarks and examples stata.com
Introduction
Examples
Treatment of missing values

Introduction

Exponential smoothing can be viewed either as an adaptive-forecasting algorithm or, equivalently,
as a geometrically weighted moving-average filter. Exponential smoothing is most appropriate when
used with time-series data that exhibit no linear or higher-order trends but that do exhibit low-
velocity, aperiodic variation in the mean. Abraham and Ledolter (1983), Bowerman, O’Connell, and
Koehler (2005), and Montgomery, Johnson, and Gardiner (1990) all provide good introductions to
single-exponential smoothing. Chatfield (2001, 2004) discusses how single-exponential smoothing
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relates to modern time-series methods. For example, simple exponential smoothing produces optimal
forecasts for several underlying models, including ARIMA(0,1,1) and the random-walk-plus-noise
state-space model. (See Chatfield [2001, sec. 4.3.1].)

The exponential filter with smoothing parameter α creates the series St, where

St = αXt + (1− α)St−1 for t = 1, . . . , T

and S0 is the initial value. This is the adaptive forecast-updating form of the exponential smoother.
This implies that

St = α

T−1∑
k=0

(1− α)KXT−k + (1− α)TS0

which is the weighted moving-average representation, with geometrically declining weights. The
choice of the smoothing constant α determines how quickly the smoothed series or forecast will adjust
to changes in the mean of the unfiltered series. For small values of α, the response will be slow
because more weight is placed on the previous estimate of the mean of the unfiltered series, whereas
larger values of α will put more emphasis on the most recently observed value of the unfiltered series.

Examples

Example 1: Smoothing a series for specified parameters

Let’s consider some examples using sales data. Here we forecast sales for three periods with a
smoothing parameter of 0.4:

. use https://www.stata-press.com/data/r18/sales1

. tssmooth exponential sm1=sales, parms(.4) forecast(3)

exponential coefficient = 0.4000
sum-of-squared residuals = 8345
root mean squared error = 12.919

To compare our forecast with the actual data, we graph the series and the forecasted series over
time.

. tsline sm1 sales, title("Single exponential forecast")
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The graph indicates that our forecasted series may not be adjusting rapidly enough to the changes
in the actual series. The smoothing parameter α controls the rate at which the forecast adjusts.
Smaller values of α adjust the forecasts more slowly. Thus we suspect that our chosen value of 0.4
is too small. One way to investigate this suspicion is to ask tssmooth exponential to choose the
smoothing parameter that minimizes the sum-of-squared forecast errors.

. tssmooth exponential sm2=sales, forecast(3)

computing optimal exponential coefficient (0,1)

optimal exponential coefficient = 0.7815
sum-of-squared residuals = 6727.7056
root mean squared error = 11.599746

The output suggests that the value of α = 0.4 is too small. The graph below indicates that the
new forecast tracks the series much more closely than the previous forecast.

. tsline sm2 sales, title("Single exponential forecast with optimal alpha")
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parms(0.7815) = sales Sales

Single exponential forecast with optimal alpha

We noted above that simple exponential forecasts are optimal for an ARIMA (0,1,1) model. (See
[TS] arima for fitting ARIMA models in Stata.) Chatfield (2001, 90) gives the following useful
derivation that relates the MA coefficient in an ARIMA (0,1,1) model to the smoothing parameter in
single-exponential smoothing. An ARIMA (0,1,1) is given by

xt − xt−1 = εt + θεt−1

where εt is an independent and identically distributed white-noise error term. Thus given θ̂, an estimate
of θ, an optimal one-step prediction of x̂t+1 is x̂t+1 = xt + θ̂εt. Because εt is not observable, it
can be replaced by

ε̂t = xt − x̂t−1

yielding
x̂t+1 = xt + θ̂(xt − x̂t−1)

Letting α̂ = 1 + θ̂ and doing more rearranging implies that

x̂t+1 = (1 + θ̂)xt − θ̂x̂t−1

x̂t+1 = α̂xt − (1− α̂)x̂t−1

https://www.stata.com/manuals/tsarima.pdf#tsarima
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Example 2: Comparing ARIMA to exponential smoothing

Let’s compare the estimate of the optimal smoothing parameter of 0.7815 with the one we could
obtain using [TS] arima. Below we fit an ARIMA(0,1,1) to the sales data and then remove the estimate
of α. The two estimates of α are quite close, given the large estimated standard error of θ̂.

. arima sales, arima(0,1,1)

(setting optimization to BHHH)
Iteration 0: Log likelihood = -189.91037
Iteration 1: Log likelihood = -189.62405
Iteration 2: Log likelihood = -189.60468
Iteration 3: Log likelihood = -189.60352
Iteration 4: Log likelihood = -189.60343
(switching optimization to BFGS)
Iteration 5: Log likelihood = -189.60342

ARIMA regression

Sample: 2 thru 50 Number of obs = 49
Wald chi2(1) = 1.41

Log likelihood = -189.6034 Prob > chi2 = 0.2347

OPG
D.sales Coefficient std. err. z P>|z| [95% conf. interval]

sales
_cons .5025469 1.382727 0.36 0.716 -2.207548 3.212641

ARMA
ma

L1. -.1986561 .1671699 -1.19 0.235 -.5263031 .1289908

/sigma 11.58992 1.240607 9.34 0.000 9.158378 14.02147

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

. di 1 + _b[ARMA:L.ma]

.80134387

Example 3: Handling panel data

tssmooth exponential automatically detects panel data. Suppose that we had sales figures for
five companies in long form. Running tssmooth exponential on the variable that contains all five
series puts the smoothed series and the predictions in one variable in long form. When the smoothing
parameter is chosen to minimize the squared prediction error, an optimal value for the smoothing
parameter is chosen separately for each panel.

https://www.stata.com/manuals/tsarima.pdf#tsarima
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. use https://www.stata-press.com/data/r18/sales_cert, clear

. tsset

Panel variable: id (strongly balanced)
Time variable: t, 1 to 100

Delta: 1 unit

. tssmooth exponential sm5=sales, forecast(3)

-> id = 1

computing optimal exponential coefficient (0,1)

optimal exponential coefficient = 0.8702
sum-of-squared residuals = 16070.567
root mean squared error = 12.676974

-> id = 2

computing optimal exponential coefficient (0,1)

optimal exponential coefficient = 0.7003
sum-of-squared residuals = 20792.393
root mean squared error = 14.419568

-> id = 3

computing optimal exponential coefficient (0,1)

optimal exponential coefficient = 0.6927
sum-of-squared residuals = 21629
root mean squared error = 14.706801

-> id = 4

computing optimal exponential coefficient (0,1)

optimal exponential coefficient = 0.3866
sum-of-squared residuals = 22321.334
root mean squared error = 14.940326

-> id = 5

computing optimal exponential coefficient (0,1)

optimal exponential coefficient = 0.4540
sum-of-squared residuals = 20714.095
root mean squared error = 14.392392

tssmooth exponential computed starting values and chose an optimal α for each panel individually.

Treatment of missing values

Missing values in the middle of the data are filled in with the one-step-ahead prediction using the
previous values. Missing values at the beginning or end of the data are treated as if the observations
were not there.

tssmooth exponential treats observations excluded from the sample by if and in just as if
they were missing.
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Example 4: Handling missing data in the middle of a sample

Here the 28th observation is missing. The prediction for the 29th observation is repeated in the
new series.

. use https://www.stata-press.com/data/r18/sales1, clear

. tssmooth exponential sm1=sales, parms(.7) forecast(3)

(output omitted )
. generate sales2=sales if t!=28
(4 missing values generated)

. tssmooth exponential sm3=sales2, parms(.7) forecast(3)

exponential coefficient = 0.7000
sum-of-squared residuals = 6842.4
root mean squared error = 11.817

. list t sales2 sm3 if t>25 & t<31

t sales2 sm3

26. 26 1011.5 1007.5
27. 27 1028.3 1010.3
28. 28 . 1022.9
29. 29 1028.4 1022.9
30. 30 1054.8 1026.75

Because the data for t = 28 are missing, the prediction for period 28 has been used in its place.
This implies that the updating equation for period 29 is

S29 = αS28 + (1− α)S28 = S28

which explains why the prediction for t = 28 is repeated.

Because this is a single-exponential procedure, the loss of that one observation will not be noticed
several periods later.

. generate diff = sm3-sm1 if t>28
(28 missing values generated)

. list t diff if t>28 & t<39

t diff

29. 29 -3.5
30. 30 -1.050049
31. 31 -.3150635
32. 32 -.0946045
33. 33 -.0283203

34. 34 -.0085449
35. 35 -.0025635
36. 36 -.0008545
37. 37 -.0003662
38. 38 -.0001221
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Example 5: Handling missing data at the beginning and end of a sample

Now consider an example in which there are data missing at the beginning and end of the sample.

. generate sales3=sales if t>2 & t<49
(7 missing values generated)

. tssmooth exponential sm4=sales3, parms(.7) forecast(3)

exponential coefficient = 0.7000
sum-of-squared residuals = 6215.3
root mean squared error = 11.624

. list t sales sales3 sm4 if t<5 | t>45

t sales sales3 sm4

1. 1 1031 . .
2. 2 1022.1 . .
3. 3 1005.6 1005.6 1016.787
4. 4 1025 1025 1008.956

46. 46 1055.2 1055.2 1057.2

47. 47 1056.8 1056.8 1055.8
48. 48 1034.5 1034.5 1056.5
49. 49 1041.1 . 1041.1
50. 50 1056.1 . 1041.1
51. 51 . . 1041.1

52. 52 . . 1041.1
53. 53 . . 1041.1

The output above illustrates that missing values at the beginning or end of the sample cause the
sample to be truncated. The new series begins with nonmissing data and begins predicting immediately
after it stops.

One period after the actual data concludes, the exponential forecast becomes a constant. After the
actual end of the data, the forecast at period t is substituted for the missing data. This also illustrates
why the forecasted series is a constant.

Stored results
tssmooth exponential stores the following in r():

Scalars
r(N) number of observations
r(alpha) α smoothing parameter
r(rss) sum-of-squared prediction errors
r(rmse) root mean squared error
r(N pre) number of observations used in calculating starting values
r(s1 0) initial value for St

Macros
r(method) smoothing method
r(exp) expression specified
r(timevar) time variable specified in tsset
r(panelvar) panel variable specified in tsset
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Methods and formulas
The formulas for deriving smoothed series are as given in the text. When the value of α is not

specified, an optimal value is found that minimizes the mean squared forecast error. A method of
bisection is used to find the solution to this optimization problem.

A truncated description of the specified exponential filter is used to label the new variable. See
[D] label for more information about labels.

An untruncated description of the specified exponential filter is saved in the characteristic tssmooth
for the new variable. See [P] char for more information about characteristics.
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