
Title stata.com

tsset — Declare data to be time-series data

Description Quick start Menu Syntax Options
Remarks and examples Stored results References Also see

Description
tsset manages the time-series settings of a dataset. tsset timevar declares the data in memory

to be a time series. This allows you to use Stata’s time-series operators and to analyze your data
with the ts commands. tsset panelvar timevar declares the data to be panel data, also known as
cross-sectional time-series data, which contain one time series for each value of panelvar. This allows
you to also analyze your data with the xt commands without having to xtset your data.

tsset without arguments displays how the data are currently set and sorts the data on timevar or
panelvar timevar.

tsset, clear is a rarely used programmer’s command to declare that the data are no longer a
time series.

Quick start
Declare data to be a time series with time variable tvar

tsset tvar

Same as above, but specify that tvar records time for a weekly time series
tsset tvar, weekly

Same as above, but specify that observations occur every two weeks
tsset tvar, weekly delta(2)

Declare a panel dataset with panel identifier pvar and time variable tvar

tsset pvar tvar

Same as above, but specify that observations on each panel are made daily
tsset pvar tvar, daily

Same as above, but specify that observations on each panel are made every three days
tsset pvar tvar, daily delta(3 days)

Display current time-series settings, and sort data by pvar and tvar if they are sorted differently
tsset

Menu
Statistics > Time series > Setup and utilities > Declare dataset to be time-series data

1

http://stata.com
https://www.stata.com/manuals/u11.pdf#u11.4.3.6Usingfactorvariableswithtime-seriesoperators
https://www.stata.com/manuals/xtxtset.pdf#xtxtset

2 tsset — Declare data to be time-series data

Syntax
Declare data to be time series

tsset timevar
[
, options

]
tsset panelvar timevar

[
, options

]
Display how data are currently tsset

tsset

Clear time-series settings

tsset, clear

In the declare syntax, panelvar identifies the panels and timevar identifies the times.

options Description

Main

unitoptions specify units of timevar

Delta

deltaoption specify length of period of timevar

noquery suppress summary calculations and output

collect is allowed; see [U] 11.1.10 Prefix commands.
noquery is not shown in the dialog box.

unitoptions Description

(default) timevar’s units from timevar’s display format
clocktime timevar is %tc: 0 = 1jan1960 00:00:00.000, 1 = 1jan1960 00:00:00.001, . . .
daily timevar is %td: 0 = 1jan1960, 1 = 2jan1960, . . .
weekly timevar is %tw: 0 = 1960w1, 1 = 1960w2, . . .
monthly timevar is %tm: 0 = 1960m1, 1 = 1960m2, . . .
quarterly timevar is %tq: 0 = 1960q1, 1 = 1960q2,. . .
halfyearly timevar is %th: 0 = 1960h1, 1 = 1960h2,. . .
yearly timevar is %ty: 1960 = 1960, 1961 = 1961, . . .
generic timevar is %tg: 0 = ?, 1 = ?, . . .

format(% fmt) specify timevar’s format and then apply default rule

In all cases, negative timevar values are allowed.

https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/d.pdf#dformat

tsset — Declare data to be time-series data 3

deltaoption specifies the period between observations in timevar units and may be specified as

deltaoption Example

delta(#) delta(1) or delta(2)
delta((exp)) delta((7*24))

delta(# units) delta(7 days) or delta(15 minutes) or delta(7 days 15 minutes)

delta((exp) units) delta((2+3) weeks)

Allowed units for %tc and %tC timevars are

seconds second secs sec
minutes minute mins min
hours hour
days day
weeks week

and for all other %t timevars, units specified must match the frequency of the data; for example, for
%ty, units must be year or years.

Options

� � �
Main �

unitoptions clocktime, daily, weekly, monthly, quarterly, halfyearly, yearly, generic,
and format(% fmt) specify the units in which timevar is recorded.

timevar will usually be a %t variable; see [D] Datetime. If timevar already has a %t display format
assigned to it, you do not need to specify a unitoption; tsset will obtain the units from the
format. If you have not yet bothered to assign the appropriate %t format, however, you can use the
unitoptions to tell tsset the units. Then tsset will set timevar’s display format for you. Thus,
the unitoptions are convenience options; they allow you to skip formatting the time variable. The
following all have the same net result:

Alternative 1 Alternative 2 Alternative 3

format t %td (t not formatted) (t not formatted)
tsset t tsset t, daily tsset t, format(%td)

timevar is not required to be a %t variable; it can be any variable of your own concocting so
long as it takes on only integer values. In such cases, it is called generic and considered to be
%tg. Specifying the unitoption generic or attaching a special format to timevar, however, is not
necessary because tsset will assume that the variable is generic if it has any numerical format
other than a %t format (or if it has a %tg format).

clear—used in tsset, clear—makes Stata forget that the data ever were tsset. This is a rarely
used programmer’s option.

� � �
Delta �

delta() specifies the period between observations in timevar and is commonly used when timevar
is %tc. delta() is only sometimes used with the other %t formats or with generic time variables.

https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/ddatetime.pdf#dDatetime

4 tsset — Declare data to be time-series data

If delta() is not specified, delta(1) is assumed. This means that at timevar = 5, the previous
time is timevar = 5 − 1 = 4 and the next time would be timevar = 5 + 1 = 6. Lag and lead
operators, for instance, would work this way. This would be assumed regardless of the units of
timevar.

If you specified delta(2), then at timevar = 5, the previous time would be timevar = 5− 2 = 3
and the next time would be timevar = 5 + 2 = 7. Lag and lead operators would work this way.
In the observation with timevar = 5, L.price would be the value of price in the observation
for which timevar = 3 and F.price would be the value of price in the observation for which
timevar = 7. If you then add an observation with timevar = 4, the operators will still work
appropriately; that is, at timevar = 5, L.price will still have the value of price at timevar = 3.

There are two aspects of timevar: its units and its length of period. The unitoptions set the units.
delta() sets the length of period.

We mentioned that delta() is commonly used with %tc timevars because Stata’s %tc variables
have units of milliseconds. If delta() is not specified and in some model you refer to L.price,
you will be referring to the value of price 1 ms ago. Few people have data with periodicity
of a millisecond. Perhaps your data are hourly. You could specify delta(3600000). Or you
could specify delta((60*60*1000)), because delta() will allow expressions if you include an
extra pair of parentheses. Or you could specify delta(1 hour). They all mean the same thing:
timevar has periodicity of 3,600,000 ms. In an observation for which timevar = 1,489,572,000,000
(corresponding to 15mar2007 10:00:00), L.price would be the observation for which timevar =
1,489,572,000,000− 3,600,000 = 1,489,568,400,000 (corresponding to 15mar2007 9:00:00).

When you tsset the data and specify delta(), tsset verifies that all the observations follow the
specified periodicity. For instance, if you specified delta(2), then timevar could contain any subset
of {. . . ,−4,−2, 0, 2, 4, . . . } or it could contain any subset of {. . . ,−3,−1, 1, 3, . . . }. If timevar
contained a mix of values, tsset would issue an error message. If you also specify panelvar—you
type tsset panelvar timevar, delta(2)—the check is made on each panel independently. One
panel might contain timevar values from one set and the next, another, and that would be fine.

The following option is available with tsset but is not shown in the dialog box:

noquery prevents tsset from performing most of its summary calculations and suppresses output.
With this option, only the following results are posted:

r(tdelta) r(tsfmt)
r(panelvar) r(unit)
r(timevar) r(unit1)

Remarks and examples stata.com

Remarks are presented under the following headings:

Overview
Panel data
Video example

http://stata.com

tsset — Declare data to be time-series data 5

Overview

tsset sets timevar so that Stata’s time-series operators are understood in varlists and expressions.
The time-series operators are

Operator Meaning

L. lag xt−1

L2. 2-period lag xt−2

. . .

F. lead xt+1

F2. 2-period lead xt+2

. . .

D. difference xt − xt−1

D2. difference of difference xt − xt−1 − (xt−1 − xt−2) = xt − 2xt−1 + xt−2

. . .

S. “seasonal” difference xt − xt−1

S2. lag-2 (seasonal) difference xt − xt−2

. . .

Time-series operators may be repeated and combined. L3.gnp refers to the third lag of variable
gnp, as do LLL.gnp, LL2.gnp, and L2L.gnp. LF.gnp is the same as gnp. DS12.gnp refers to the
one-period difference of the 12-period difference. LDS12.gnp refers to the same concept, lagged
once.

D1. = S1., but D2. 6= S2., D3. 6= S3., and so on. D2. refers to the difference of the difference.
S2. refers to the two-period difference. If you wanted the difference of the difference of the 12-period
difference of gnp, you would write D2S12.gnp.

Operators may be typed in uppercase or lowercase. Most users would type d2s12.gnp instead of
D2S12.gnp.

You may type operators however you wish; Stata internally converts operators to their canonical
form. If you typed ld2ls12d.gnp, Stata would present the operated variable as L2D3S12.gnp.

Stata also understands operator(numlist). to mean a set of operated variables; thus, typing
L(1/3).gnp in a varlist is the same as typing L.gnp L2.gnp L3.gnp. Here are some sample data:

. list year gnp L(1/3).gnp

L. L2. L3.
year gnp gnp gnp gnp

1. 1989 5452.8 . . .
2. 1990 5764.9 5452.8 . .
3. 1991 5932.4 5764.9 5452.8 .
4. 1992 6229.1 5932.4 5764.9 5452.8
5. 1993 6519.1 6229.1 5932.4 5764.9

6. 1994 6892.2 6519.1 6229.1 5932.4
7. 1995 7330.1 6892.2 6519.1 6229.1
8. 1996 7453.9 7330.1 6892.2 6519.1

The first two columns show variables in the dataset: year and gnp. The remaining columns show
lagged values of gnp that are not in the data but become available when using time-series operators.
The third column shows the lag of gnp (L.gnp). The first value of L.gnp is missing because the lag

6 tsset — Declare data to be time-series data

of gnp in 1989 is the gnp of 1988, which occurs before the initial period of our time series. The
missing values in the remaining columns follow similar logic. When using estimators with time-series
operators, it is important to remember that the size of the estimation sample decreases because of the
missing values for the initial time periods.

The operators can also be applied to a list of variables by enclosing the variables in parentheses;
for example,

. list year gnp cpi L(1/3).(gnp cpi)

L. L2. L3. L. L2. L3.
year gnp cpi gnp gnp gnp cpi cpi cpi

1. 1989 5452.8 100
2. 1990 5764.9 105 5452.8 . . 100 . .
3. 1991 5932.4 108 5764.9 5452.8 . 105 100 .
4. 1992 6229.1 110 5932.4 5764.9 5452.8 108 105 100
5. 1993 6519.1 112 6229.1 5932.4 5764.9 110 108 105

6. 1994 6892.2 119 6519.1 6229.1 5932.4 112 110 108
7. 1995 7330.1 122 6892.2 6519.1 6229.1 119 112 110
8. 1996 7453.9 126 7330.1 6892.2 6519.1 122 119 112

In operator#., making # zero returns the variable itself. L0.gnp is gnp. Thus, you can type list
year l(0/3).gnp to mean list year gnp L.gnp L2.gnp L3.gnp.

The parenthetical notation may be used with any operator. Typing D(1/3).gnp would return the
first through third differences.

The parenthetical notation may be used in operator lists with multiple operators, such as
L(0/3)D2S12.gnp.

Operator lists may include up to one set of parentheses, and the parentheses may enclose a numlist;
see [U] 11.1.8 numlist.

Before you can use these time-series operators, however, the dataset must satisfy two requirements:

1. the dataset must be tsset and

2. the dataset must be sorted by timevar or, if it is a cross-sectional time-series dataset, by panelvar
timevar.

tsset handles both requirements. As you use Stata, however, you may later use a command that
re-sorts that data, and if you do, the time-series operators will not work:

. tsset time
(output omitted)

. regress y x l.x
(output omitted)

. (you continue to use Stata and, sometime later:)

. regress y x l.x
not sorted
r(5);

Then typing tsset without arguments will reestablish the sort order:

. tsset
(output omitted)

. regress y x l.x
(output omitted)

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(5)

tsset — Declare data to be time-series data 7

Here typing tsset is the same as typing sort time. Had we previously tsset country time,
however, typing tsset would be the same as typing sort country time. You can type the sort
command or type tsset without arguments; it makes no difference.

There are two syntaxes for setting your data:

tsset timevar
tsset panelvar timevar

In both, timevar must contain integer values. If panelvar is specified, it too must contain integer values,
and the dataset is declared to be a cross-section of time series, such as a collection of time series
for different countries. Such datasets can be analyzed with xt commands as well as ts commands.
If you tsset panelvar timevar, you do not need to xtset the data to use the xt commands.

If you save the data after typing tsset, the data will be remembered to be time series, and you
will not have to tsset the data again.

Example 1: Numeric time variable

You have monthly data on personal income. Variable t records the time of an observation, but
there is nothing special about the name of the variable. There is nothing special about the values of
the variable, either. t is not required to be %tm variable—perhaps you do not even know what that
means. t is just a numeric variable containing integer values that represent the month, and we will
imagine that t takes on the values 1, 2, . . . , 9, although it could just as well be −3, −2 . . . , 5,
or 1,023, 1,024, . . . , 1,031. What is important is that the values are dense: adjacent months have a
time value that differs by 1.

. use https://www.stata-press.com/data/r18/tssetxmpl

. list t income

t income

1. 1 1153
2. 2 1181

(output omitted)
9. 9 1282

. tsset t

Time variable: t, 1 to 9
Delta: 1 unit

. regress income l.income
(output omitted)

Example 2: Adjusting the starting date

In the example above, that t started at 1 was not important. As we said, the t variable could
just as well be recorded −3, −2 . . . , 5, or 1,023, 1,024, . . . , 1,031. What is important is that the
difference in t between observations be delta() when there are no gaps.

Although how time is measured makes no difference, Stata has formats to display time nicely if
it is recorded in certain ways; you can learn about the formats by seeing [D] Datetime. Stata likes
time variables in which 1jan1960 is recorded as 0. In our previous example, if t = 1 corresponds to
July 1995, then we could make a variable that fits Stata’s preference by typing

. generate newt = tm(1995m7) + t - 1

https://www.stata.com/manuals/ddatetime.pdf#dDatetime

8 tsset — Declare data to be time-series data

tm() is the function that returns a month equivalent; tm(1995m7) evaluates to the constant 426,
meaning 426 months after January 1960. We now have variable newt containing

. list t newt income

t newt income

1. 1 426 1153
2. 2 427 1181
3. 3 428 1208

(output omitted)
9. 9 434 1282

If we put a %tm format on newt, it will display more cleanly:

. format newt %tm

. list t newt income

t newt income

1. 1 1995m7 1153
2. 2 1995m8 1181
3. 3 1995m9 1208

(output omitted)
9. 9 1996m3 1282

We could now tsset newt rather than t:

. tsset newt

Time variable: newt, 1995m7 to 1996m3
Delta: 1 month

Technical note
In addition to monthly, Stata understands clock times (to the millisecond level) as well as daily,

weekly, quarterly, half-yearly, and yearly data. See [D] Datetime for a description of these capabilities.

Let’s reconsider the previous example, but rather than monthly, let’s assume the data are daily,
weekly, etc. The only thing to know is that, corresponding to function tm(), there are functions td(),
tw(), tq(), and th() and that, corresponding to format %tm, there are formats %td, %tw, %tq, and
%th. Here is what we would have typed had our data been on a different time scale:

https://www.stata.com/manuals/ddatetime.pdf#dDatetime

tsset — Declare data to be time-series data 9

Daily: if your t variable had t=1 corresponding to 15mar1993
. generate newt = td(15mar1993) + t - 1
. tsset newt, daily

Weekly: if your t variable had t=1 corresponding to 1994w1:
. generate newt = tw(1994w1) + t - 1
. tsset newt, weekly

Monthly: if your t variable had t=1 corresponding to 2004m7:
. generate newt = tm(2004m7) + t - 1
. tsset newt, monthly

Quarterly: if your t variable had t=1 corresponding to 1994q1:
. generate newt = tq(1994q1) + t - 1
. tsset newt, quarterly

Half-yearly: if your t variable had t=1 corresponding to 1921h2:
. generate newt = th(1921h2) + t - 1
. tsset newt, halfyearly

Yearly: if your t variable had t=1 corresponding to 1842:
. generate newt = 1842 + t - 1
. tsset newt, yearly

In each example above, we subtracted one from our time variable in constructing the new time
variable newt because we assumed that our starting time value was 1. For the quarterly example, if
our starting time value were 5 and that corresponded to 1994q1, we would type

. generate newt = tq(1994q1) + t - 5

Had our initial time value been t = 742 and that corresponded to 1994q1, we would have typed

. generate newt = tq(1994q1) + t - 742

Example 3: Time-series data but no time variable

Perhaps we have the same time-series data but no time variable:

. use https://www.stata-press.com/data/r18/tssetxmpl2, clear

. list income

income

1. 1153
2. 1181
3. 1208
4. 1272
5. 1236

6. 1297
7. 1265
8. 1230
9. 1282

10 tsset — Declare data to be time-series data

Say that we know that the first observation corresponds to July 1995 and continues without gaps. We
can create a monthly time variable and format it by typing

. generate t = tm(1995m7) + _n -1

. format t %tm

We can now tsset our dataset and list it:
. tsset t

Time variable: t, 1995m7 to 1996m3
Delta: 1 month

. list t income

t income

1. 1995m7 1153
2. 1995m8 1181
3. 1995m9 1208

(output omitted)
9. 1996m3 1282

Example 4: Time variable as a string

Your data might include a time variable that is encoded into a string. In the example below
each monthly observation is identified by string variable yrmo containing the month and year of the
observation, sometimes with punctuation between:

. use https://www.stata-press.com/data/r18/tssetxmpl, clear

. list yrmo income

yrmo income

1. 7/1995 1153
2. 8/1995 1181
3. 9/1995 1208
4. 10/1995 1272
5. 11/1995 1236

6. 12/1995 1297
7. 1/1996 1265
8. 2.1996 1230
9. 3- 1996 1282

The first step is to convert the string to a numeric representation. Doing so is easy using the monthly()
function; see [D] Datetime.

. generate mdate = monthly(yrmo, "MY")

. list yrmo mdate income

yrmo mdate income

1. 7/1995 426 1153
2. 8/1995 427 1181
3. 9/1995 428 1208

(output omitted)
9. 3- 1996 434 1282

https://www.stata.com/manuals/ddatetime.pdf#dDatetime

tsset — Declare data to be time-series data 11

Our new variable, mdate, contains the number of months from January 1960. Now that we have
numeric variable mdate, we can tsset the data:

. format mdate %tm

. tsset mdate

Time variable: mdate, 1995m7 to 1996m3
Delta: 1 month

In fact, we can combine the two and type

. tsset mdate, format(%tm)

Time variable: mdate, 1995m7 to 1996m3
Delta: 1 month

or type

. tsset mdate, monthly

Time variable: mdate, 1995m7 to 1996m3
Delta: 1 month

In all cases, we obtain

. list yrmo mdate income

yrmo mdate income

1. 7/1995 1995m7 1153
2. 8/1995 1995m8 1181
3. 9/1995 1995m9 1208
4. 10/1995 1995m10 1272
5. 11/1995 1995m11 1236

6. 12/1995 1995m12 1297
7. 1/1996 1996m1 1265
8. 2.1996 1996m2 1230
9. 3- 1996 1996m3 1282

Stata can convert many different date formats, including strings like 12jan2009; January 12, 2009;
12-01-2009; 01/12/2009; 01/12/09; 12jan2009 8:14; 12-01-2009 13:12; 01/12/09 1:12 pm; Wed Jan
31 13:03:25 CST 2009; 1998q1; and more. See [D] Datetime.

Example 5: Time-series data with gaps

Gaps in the time series cause no difficulties:

. use https://www.stata-press.com/data/r18/tssetxmpl3, clear

. list yrmo income

yrmo income

1. 7/1995 1153
2. 8/1995 1181
3. 11/1995 1236
4. 12/1995 1297
5. 1/1996 1265

6. 3- 1996 1282

https://www.stata.com/manuals/ddatetime.pdf#dDatetime

12 tsset — Declare data to be time-series data

. generate mdate = monthly(yrmo, "MY")

. tsset mdate, monthly

Time variable: mdate, 1995m7 to 1996m3, but with gaps
Delta: 1 month

Once the dataset has been tsset, we can use the time-series operators. The D operator specifies first
differences:

. list mdate income d.income

D.
mdate income income

1. 1995m7 1153 .
2. 1995m8 1181 28
3. 1995m11 1236 .
4. 1995m12 1297 61
5. 1996m1 1265 -32

6. 1996m3 1282 .

We can use the operators in an expression or varlist context; we do not have to create a new variable
to hold D.income. We can use D.income with the list command, with regress or any other Stata
command that allows time-series varlists.

Example 6: Clock times

We have data from a large hotel in Las Vegas that changes the reservation prices for its rooms
hourly. A piece of the data looks like

. use https://www.stata-press.com/data/r18/tssetxmpl4, clear

. list in 1/5

time price

1. 02.13.2007 08:00 140
2. 02.13.2007 09:00 155
3. 02.13.2007 10:00 160
4. 02.13.2007 11:00 155
5. 02.13.2007 12:00 160

Variable time is a string variable. The first step in making this dataset a time-series dataset is to
convert the string to a numeric variable:

. generate double t = clock(time, "MDY hm")

. list in 1/5

time price t

1. 02.13.2007 08:00 140 1.487e+12
2. 02.13.2007 09:00 155 1.487e+12
3. 02.13.2007 10:00 160 1.487e+12
4. 02.13.2007 11:00 155 1.487e+12
5. 02.13.2007 12:00 160 1.487e+12

tsset — Declare data to be time-series data 13

See [D] Datetime conversion for an explanation of what is going on here. clock() is the function
that converts strings to datetime (%tc) values. We typed clock(time, "MDY hm") to convert string
variable time, and we told clock() that the values in time were in the order month, day, year,
hour, and minute. We stored new variable t as a double because time values are large and that is
required to prevent rounding. Even so, the resulting values 1.487e+12 look rounded, but that is only
because of the default display format for new variables. We can see the values better if we change
the format:

. format t %20.0gc

. list in 1/5

time price t

1. 02.13.2007 08:00 140 1,486,972,800,000
2. 02.13.2007 09:00 155 1,486,976,400,000
3. 02.13.2007 10:00 160 1,486,980,000,000
4. 02.13.2007 11:00 155 1,486,983,600,000
5. 02.13.2007 12:00 160 1,486,987,200,000

Even better would be to change the format to %tc—Stata’s clock-time format:

. format t %tc

. list in 1/5

time price t

1. 02.13.2007 08:00 140 13feb2007 08:00:00
2. 02.13.2007 09:00 155 13feb2007 09:00:00
3. 02.13.2007 10:00 160 13feb2007 10:00:00
4. 02.13.2007 11:00 155 13feb2007 11:00:00
5. 02.13.2007 12:00 160 13feb2007 12:00:00

We could drop variable time. New variable t contains the same information as time and t is better
because it is a Stata time variable, the most important property of which being that it is numeric
rather than string. We can tsset it. Here, however, we also need to specify the length of the periods
with tsset’s delta() option. Stata’s time variables are numeric, but they record milliseconds since
01jan1960 00:00:00. By default, tsset uses delta(1), and that means the time-series operators
would not work as we want them to work. For instance, L.price would look back only 1 ms (and
find nothing). We want L.price to look back 1 hour (3,600,000 ms):

. tsset t, delta(1 hour)

Time variable: t, 13feb2007 08:00:00 to 13feb2007 14:00:00
Delta: 1 hour

. list t price l.price in 1/5

L.
t price price

1. 13feb2007 08:00:00 140 .
2. 13feb2007 09:00:00 155 140
3. 13feb2007 10:00:00 160 155
4. 13feb2007 11:00:00 155 160
5. 13feb2007 12:00:00 160 155

https://www.stata.com/manuals/ddatetimeconversion.pdf#dDatetimeconversion

14 tsset — Declare data to be time-series data

Example 7: Clock times must be double

In the previous example, it was of vital importance that when we generated the %tc variable t,

. generate double t = clock(time, "MDY hm")

we generated it as a double. Let’s see what would have happened had we forgotten and just typed
generate t = clock(time, "MDY hm"). Let’s go back and start with the same original data:

. use https://www.stata-press.com/data/r18/tssetxmpl4, clear

. list in 1/5

time price

1. 02.13.2007 08:00 140
2. 02.13.2007 09:00 155
3. 02.13.2007 10:00 160
4. 02.13.2007 11:00 155
5. 02.13.2007 12:00 160

Remember, variable time is a string variable, and we need to convert it to numeric. So we convert,
but this time we forget to make the new variable a double:

. generate t = clock(time, "MDY hm")

. list in 1/5

time price t

1. 02.13.2007 08:00 140 1.49e+12
2. 02.13.2007 09:00 155 1.49e+12
3. 02.13.2007 10:00 160 1.49e+12
4. 02.13.2007 11:00 155 1.49e+12
5. 02.13.2007 12:00 160 1.49e+12

We see the first difference—t now lists as 1.49e+12 rather than 1.487e+12 as it did previously—but
this is nothing that would catch our attention. We would not even know that the value is different.
Let’s continue.

We next put a %20.0gc format on t to better see the numerical values. In fact, that is not something
we would usually do in an analysis. We did that in the example to emphasize to you that the t values
were really big numbers. We will repeat the exercise just to be complete, but in real analysis, we
would not bother.

. format t %20.0gc

. list in 1/5

time price t

1. 02.13.2007 08:00 140 1,486,972,780,544
2. 02.13.2007 09:00 155 1,486,976,450,560
3. 02.13.2007 10:00 160 1,486,979,989,504
4. 02.13.2007 11:00 155 1,486,983,659,520
5. 02.13.2007 12:00 160 1,486,987,198,464

Okay, we see big numbers in t. Let’s continue.

Next we put a %tc format on t, and that is something we would usually do, and you should
always do. You should also list a bit of the data, as we did:

tsset — Declare data to be time-series data 15

. format t %tc

. list in 1/5

time price t

1. 02.13.2007 08:00 140 13feb2007 07:59:40
2. 02.13.2007 09:00 155 13feb2007 09:00:50
3. 02.13.2007 10:00 160 13feb2007 09:59:49
4. 02.13.2007 11:00 155 13feb2007 11:00:59
5. 02.13.2007 12:00 160 13feb2007 11:59:58

By now, you should see a problem: the converted datetime values are off by a second or two. That
was caused by rounding. Dates and times should be the same, not approximately the same, and when
you see a difference like this, you should say to yourself, “The conversion is off a little. Why is
that?” and then you should think, “Of course, rounding. I bet that I did not create t as a double.”

Let us assume, however, that you do not do this. You instead plow ahead:

. tsset t, delta(1 hour)
time values with period less than delta() found
r(451);

And that is what will happen when you forget to create t as a double. The rounding will cause
uneven period, and tsset will complain.

By the way, it is important only that clock times (%tc and %tC variables) be stored as doubles.
The other date values %td, %tw, %tm, %tq, %th, and %ty are small enough that they can safely be
stored as floats, although forgetting and storing them as doubles does no harm.

Technical note
Stata provides two clock-time formats, %tc and %tC. %tC provides a clock with leap seconds. Leap

seconds are occasionally inserted to account for randomness of the earth’s rotation, which gradually
slows. Unlike the extra day inserted in leap years, the timing of when leap seconds will be inserted
cannot be foretold. The authorities in charge of such matters announce a leap second approximately
6 months before insertion. Leap seconds are inserted at the end of the day, and the leap second is
called 23:59:60 (that is, 11:59:60 p.m.), which is then followed by the usual 00:00:00 (12:00:00 a.m.).
Most nonastronomers find these leap seconds vexing. The added seconds cause problems because
of their lack of predictability—knowing how many seconds there will be between 01jan2012 and
01jan2013 is not possible—and because there are not necessarily 24 hours in a day. If you use a leap
second–adjusted clock, most days have 24 hours, but a few have 24 hours and 1 second. You must
look at a table to find out.

From a time-series analysis point of view, the nonconstant day causes the most problems. Let’s
say that you have data on blood pressure for a set of patients, taken hourly at 1:00, 2:00, . . . , and that
you have tsset your data with delta(1 hour). On most days, L24.bp would be blood pressure at
the same time yesterday. If the previous day had a leap second, however, and your data were recorded
using a leap second–adjusted clock, there would be no observation L24.bp because 86,400 seconds
before the current reading does not correspond to an on-the-hour time; 86,401 seconds before the
current reading corresponds to yesterday’s time. Thus, whenever possible, using Stata’s %tc encoding
rather than %tC is better.

When times are recorded by computers using leap second–adjusted clocks, however, avoiding %tC
is not possible. For performing most time-series analysis, the recommended procedure is to map the

https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(451)

16 tsset — Declare data to be time-series data

%tC values to %tc and then tsset those. You must ask yourself whether the process you are studying
is based on the clock—the nurse does something at 2 o’clock every day—or the true passage of
time—the emitter spits out an electron every 86,400,000 ms.

When dealing with computer-recorded times, first find out whether the computer (and its time-
recording software) use a leap second–adjusted clock. If it does, convert that to a %tC value. Then
use function cofC() to convert to a %tc value and tsset that. If variable T contains the %tC value,

. generate double t = cofC(T)

. format t %tc

. tsset t, delta(. . .)

Function cofC() moves leap seconds forward: 23:59:60 becomes 00:00:00 of the next day.

Panel data

Example 8: Time-series data for multiple groups

Assume that we have a time series on average annual income and that we have the series for two
groups: individuals who have not completed high school (edlevel = 1) and individuals who have
(edlevel = 2).

. use https://www.stata-press.com/data/r18/tssetxmpl5, clear

. list edlevel year income, sep(0)

edlevel year income

1. 1 1988 14500
2. 1 1989 14750
3. 1 1990 14950
4. 1 1991 15100
5. 2 1989 22100
6. 2 1990 22200
7. 2 1992 22800

We declare the data to be a panel by typing
. tsset edlevel year, yearly

Panel variable: edlevel (unbalanced)
Time variable: year, 1988 to 1992, but with a gap

Delta: 1 year

Having tsset the data, we can now use time-series operators. The difference operator, for example,
can be used to list annual changes in income:

. list edlevel year income d.income, sep(0)

D.
edlevel year income income

1. 1 1988 14500 .
2. 1 1989 14750 250
3. 1 1990 14950 200
4. 1 1991 15100 150
5. 2 1989 22100 .
6. 2 1990 22200 100
7. 2 1992 22800 .

tsset — Declare data to be time-series data 17

We see that in addition to producing missing values due to missing times, the difference operator
correctly produced a missing value at the start of each panel. Once we have tsset our panel data,
we can use time-series operators and be assured that they will handle missing time periods and panel
changes correctly.

Video example

Formatting and managing dates

Stored results
tsset stores the following in r():

Scalars
r(imin) minimum panel ID
r(imax) maximum panel ID
r(tmin) minimum time
r(tmax) maximum time
r(tdelta) delta
r(gaps) 1 if there are gaps, 0 otherwise

Macros
r(panelvar) name of panel variable
r(timevar) name of time variable
r(tdeltas) formatted delta
r(tmins) formatted minimum time
r(tmaxs) formatted maximum time
r(tsfmt) %fmt of time variable
r(unit) units of time variable: Clock, clock, daily, weekly, monthly, quarterly,

halfyearly, yearly, or generic
r(unit1) units of time variable: C, c, d, w, m, q, h, y, or ""
r(balanced) unbalanced, weakly balanced, or strongly balanced; panels are strongly

balanced if they all have the same time values, weakly balanced if same
number of observations but different time values, otherwise unbalanced

References
Cox, N. J. 2010. Stata tip 68: Week assumptions. Stata Journal 10: 682–685.

. 2012. Stata tip 111: More on working with weeks. Stata Journal 12: 565–569.

Also see
[TS] tsfill — Fill in gaps in time variable

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. Other brand and product names are registered trademarks or
trademarks of their respective companies. Copyright c© 1985–2023 StataCorp LLC,
College Station, TX, USA. All rights reserved.

®

https://www.youtube.com/watch?v=SOQvXICIRNY
http://www.stata-journal.com/article.html?article=dm0052
https://doi.org/10.1177/1536867X1201200316
https://www.stata.com/manuals/tstsfill.pdf#tstsfill

