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Description

psdensity estimates the spectral density of a stationary process using the parameters of a previously
estimated parametric model.

psdensity works after arfima, arima, and ucm; see [TS] arfima, [TS] arima, and [TS] ucm.

Quick start
Obtain spectral density values spden and corresponding frequencies sfreq

psdensity spden sfreq

Obtain power spectrum values pspec and corresponding frequencies pfreq

psdensity pspec pfreq, pspectrum

Same as above, but limit the frequency range to between 0 and 1
psdensity pspec pfreq, pspectrum range(0 1)

After ucm, obtain spectral density values for the second stochastic cycle cpden and corresponding
frequencies cfreq

psdensity cpden cfreq, cycle(2)

Menu
Statistics > Time series > Postestimation > Parametric spectral density
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Syntax
psdensity

[
type

]
newvarsd newvarf

[
if
] [

in
] [

, options
]

where newvarsd is the name of the new variable that will contain the estimated spectral density and
newvarf is the name of the new variable that will contain the frequencies at which the spectral density
estimate is computed.

options Description

pspectrum estimate the power spectrum rather than the spectral density
range(a b) limit the frequency range to [a, b)
cycle(#) estimate the spectral density from the specified stochastic cycle; only allowed

after ucm
smemory estimate the spectral density of the short-memory component of the ARFIMA

process; only allowed after arfima

Options

pspectrum causes psdensity to estimate the power spectrum rather than the spectral density. The
power spectrum is equal to the spectral density times the variance of the process.

range(a b) limits the frequency range. By default, the spectral density is computed over [0, π).
Specifying range(a b) causes the spectral density to be computed over [a, b). We require that
0 ≤ a < b < π.

cycle(#) causes psdensity to estimate the spectral density from the specified stochastic cycle after
ucm. By default, the spectral density from the first stochastic cycle is estimated. cycle(#) must
specify an integer that corresponds to a cycle in the model fit by ucm.

smemory causes psdensity to ignore the ARFIMA fractional integration parameter. The spectral
density computed is for the short-memory ARMA component of the model.

Remarks and examples stata.com

Remarks are presented under the following headings:

The frequency-domain approach to time series
Some ARMA examples

The frequency-domain approach to time series

A stationary process can be decomposed into random components that occur at the frequencies
ω ∈ [0, π]. The spectral density of a stationary process describes the relative importance of these
random components. psdensity uses the estimated parameters of a parametric model to estimate
the spectral density of a stationary process.

We need some concepts from the frequency-domain approach to time-series analysis to interpret
estimated spectral densities. Here we provide a simple, intuitive explanation. More technical presen-
tations can be found in Priestley (1981), Harvey (1989, 1993), Hamilton (1994), Fuller (1996), and
Wei (2006).

https://www.stata.com/manuals/d.pdf#dDatatypes
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
http://stata.com
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In the time domain, the dependent variable evolves over time because of random shocks. The
autocovariances γj , j ∈ {0, 1, . . . ,∞}, of a covariance-stationary process yt specify its variance and
dependence structure, and the autocorrelations ρj , j ∈ {1, 2, . . . ,∞}, provide a scale-free measure
of its dependence structure. The autocorrelation at lag j specifies whether realizations at time t and
realizations at time t− j are positively related, unrelated, or negatively related.

In the frequency domain, the dependent variable is generated by an infinite number of random
components that occur at the frequencies ω ∈ [0, π]. The spectral density specifies the relative
importance of these random components. The area under the spectral density in the interval (ω, ω+dω)
is the fraction of the variance of the process than can be attributed to the random components that
occur at the frequencies in the interval (ω, ω + dω).

The spectral density and the autocorrelations provide the same information about the dependence
structure, albeit in different domains. The spectral density can be written as a weighted average of
the autocorrelations of yt, and it can be inverted to retrieve the autocorrelations as a function of the
spectral density.

Like autocorrelations, the spectral density is normalized by γ0, the variance of yt. Multiplying the
spectral density by γ0 yields the power spectrum of yt, which changes with the units of yt.

A peak in the spectral density around frequency ω implies that the random components around ω
make an important contribution to the variance of yt.

A random variable primarily generated by low-frequency components will tend to have more runs
above or below its mean than an independent and identically distributed (i.i.d.) random variable, and
its plot may look smoother than the plot of the i.i.d. variable. A random variable primarily generated
by high-frequency components will tend to have fewer runs above or below its mean than an i.i.d.
random variable, and its plot may look more jagged than the plot of the i.i.d. variable.

Technical note

A more formal specification of the spectral density allows us to be more specific about how the
spectral density specifies the relative importance of the random components.

If yt is a covariance-stationary process with absolutely summable autocovariances, its spectrum is
given by

gy(ω) =
1

2π
γ0 +

1

π

∞∑
k=1

γk cos(ωk) (1)

where gy(ω) is the spectrum of yt at frequency ω and γk is the kth autocovariance of yt. Taking
the inverse Fourier transform of each side of (1) yields

γk =

∫ π

−π
gy(ω)e

iωkdω (2)

where i is the imaginary number i =
√
−1.

Evaluating (2) at k = 0 yields

γ0 =

∫ π

−π
gy(ω)dω
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which means that the variance of yt can be decomposed in terms of the spectrum gy(ω). In particular,
gy(ω)dω is the contribution to the variance of yt attributable to the random components in the interval
(ω, ω + dω).

The spectrum depends on the units in which yt is measured, because it depends on the γ0. Dividing
both sides of (1) by γ0 gives us the scale-free spectral density of yt:

fy(ω) =
1

2π
+

1

π

∞∑
k=1

ρk cos(ωk)

By construction, ∫ π

−π
fy(ω)dω = 1

so fy(ω)dω is the fraction of the variance of yt attributable to the random components in the interval
(ω, ω + dω).

Some ARMA examples

In this section, we estimate and interpret the spectral densities implied by the estimated ARMA
parameters. The examples illustrate some of the essential relationships between covariance-stationary
processes, the parameters of ARMA models, and the spectral densities implied by the ARMA-model
parameters.

See [TS] ucm for a discussion of unobserved-components models and the stochastic-cycle model
derived by Harvey (1989) for stationary processes. The stochastic-cycle model has a different pa-
rameterization of the spectral density, and it tends to produce spectral densities that look more like
probability densities than ARMA models. See Remarks and examples in [TS] ucm for an introduction
to these models, some examples, and some comparisons between the stochastic-cycle model and
ARMA models.

https://www.stata.com/manuals/tsucm.pdf#tsucm
https://www.stata.com/manuals/tsucm.pdf#tsucmRemarksandexamples
https://www.stata.com/manuals/tsucm.pdf#tsucm
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Example 1

Let’s consider the changes in the number of manufacturing employees in the United States, which
we plot below.

. use https://www.stata-press.com/data/r18/manemp2
(FRED data: Number of manufacturing employees in U.S.)

. tsline D.manemp, yline(-0.206)
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We added a horizontal line at the sample mean of −0.0206 to highlight that there appear to be
more runs above or below the mean than we would expect in data generated by an i.i.d. process.

As a first pass at modeling this dependence, we use arima to estimate the parameters of a first-order
autoregressive (AR(1)) model. Formally, the AR(1) model is given by

yt = αyt−1 + εt

where yt is the dependent variable, α is the autoregressive coefficient, and εt is an i.i.d. error term.
See [TS] arima for an introduction to ARMA modeling and the arima command.

https://www.stata.com/manuals/tsarima.pdf#tsarima
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. arima D.manemp, ar(1) noconstant

(setting optimization to BHHH)
Iteration 0: Log likelihood = -870.64844
Iteration 1: Log likelihood = -870.64794
Iteration 2: Log likelihood = -870.64789
Iteration 3: Log likelihood = -870.64787
Iteration 4: Log likelihood = -870.64786
(switching optimization to BFGS)
Iteration 5: Log likelihood = -870.64786
Iteration 6: Log likelihood = -870.64786

ARIMA regression

Sample: 1950m2 thru 2011m2 Number of obs = 733
Wald chi2(1) = 730.51

Log likelihood = -870.6479 Prob > chi2 = 0.0000

OPG
D.manemp Coefficient std. err. z P>|z| [95% conf. interval]

ARMA
ar

L1. .5179561 .0191638 27.03 0.000 .4803959 .5555164

/sigma .7934554 .0080636 98.40 0.000 .777651 .8092598

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

The statistically significant estimate of 0.518 for the autoregressive coefficient indicates that there
is an important amount of positive autocorrelation in this series.

The spectral density of a covariance-stationary process is symmetric around 0. Following convention,
psdensity estimates the spectral density over the interval [0, π) at the points given in Methods and
formulas.

Now we use psdensity to estimate the spectral density of the process implied by the estimated
ARMA parameters. We specify the names of two new variables in the call to psdensity. The first
new variable will contain the estimated spectral density. The second new variable will contain the
frequencies at which the spectral density is estimated.
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. psdensity psden1 omega

. line psden1 omega
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The above graph is typical of a spectral density of an AR(1) process with a positive coefficient. The
curve is highest at frequency 0, and it tapers off toward zero or a positive asymptote. The estimated
spectral density is telling us that the low-frequency random components are the most important random
components of an AR(1) process with a positive autoregressive coefficient.

The closer the α is to 1, the more important are the low-frequency components relative to the
high-frequency components. To illustrate this point, we plot the spectral densities implied by AR(1)
models with α = 0.1 and α = 0.9.
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As α gets closer to 1, the plot of the spectral density gets closer to being a spike at frequency 0,
implying that only the lowest-frequency components are important.

Example 2

Now let’s consider a dataset for which the estimated coefficient from an AR(1) model is negative.
Below we plot the changes in initial claims for unemployment insurance in the United States.

. use https://www.stata-press.com/data/r18/icsa1, clear

. tsline D.icsa, yline(0.08)
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The plot looks a little more jagged than we would expect from an i.i.d. process, but it is hard to
tell. Below we estimate the AR(1) coefficient.

. arima D.icsa, ar(1) noconstant

(setting optimization to BHHH)
Iteration 0: Log likelihood = -9934.0659
Iteration 1: Log likelihood = -9934.0657
Iteration 2: Log likelihood = -9934.0657

ARIMA regression

Sample: 14jan1967 thru 19feb2011 Number of obs = 2302
Wald chi2(1) = 666.06

Log likelihood = -9934.066 Prob > chi2 = 0.0000

OPG
D.icsa Coefficient std. err. z P>|z| [95% conf. interval]

ARMA
ar

L1. -.2756024 .0106789 -25.81 0.000 -.2965326 -.2546722

/sigma 18.10988 .1176556 153.92 0.000 17.87928 18.34048

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

The estimated coefficient is negative and statistically significant.
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The spectral density implied by the estimated parameters is

. psdensity psden2 omega2

. line psden2 omega2
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The above graph is typical of a spectral density of an AR(1) process with a negative coefficient.
The curve is lowest at frequency 0, and it monotonically increases to its highest point, which occurs
when the frequency is π.

When the coefficient of an AR(1) model is negative, the high-frequency random components are
the most important random components of the process. The closer the α is to −1, the more important
are the high-frequency components relative to the low-frequency components. To illustrate this point,
we plot the spectral densities implied by AR(1) models with α = −0.1, and α = −0.9.
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As α gets closer to −1, the plot of the spectral density shifts toward becoming a spike at frequency
π, implying that only the highest-frequency components are important.

For examples of psdensity after arfima and ucm, see [TS] arfima and [TS] ucm.

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
Spectral density after arima or arfima
Spectral density after ucm

Introduction

The spectral density f(ω) is estimated at the values ω ∈ {ω1, ω2, . . . , ωN} using one of the
formulas given below. Given a sample of size N , after accounting for any if or in restrictions, the
N values of ω are given by ωi = π(i− 1)/(N − 1) for i ∈ {1, 2, . . . , N}.

In the rare case in which the dataset in memory has insufficient observations for the desired
resolution of the estimated spectral density, you may use tsappend or set obs (see [TS] tsappend
or [D] obs) to increase the number of observations in the current dataset.

You may use an if restriction or an in restriction to restrict the observations to handle panel data
or to compute the estimates for a subset of the observations.

Spectral density after arima or arfima

Let φk and θk denote the p autoregressive and q moving-average parameters of an ARMA model,
respectively. Box et al. (2016) show that the spectral density implied by the ARMA parameters is

fARMA(ω;φ, θ, σ
2
ε , γ0) =

σ2
ε

2πγ0

|1 + θ1e
−iω + θ2e

−i2ω + · · ·+ θqe
−iqω|2

|1− φ1e−iω − φ2e−i2ω − · · · − φpe−ipω|2

where ω ∈ [0, π] and σ2
ε is the variance of the idiosyncratic error and γ0 is the variance of the

dependent variable. We estimate γ0 using the arima parameter estimates.

The spectral density for the ARFIMA model is

fARFIMA(ω;φ, θ, d, σ
2
ε , γ0) = |1− eiω|−2dfARMA(ω;φ, θ, σ

2
ε )

where d, −1/2 < d < 1/2, is the fractional integration parameter. The spectral density goes to infinity
as the frequency approaches 0 for 0 < d < 1/2, and it is zero at frequency 0 for −1/2 < d < 0.

The smemory option causes psdensity to perform the estimation with d = 0, which is equivalent
to estimating the spectral density of the fractionally differenced series.

The power spectrum omits scaling by γ0.

https://www.stata.com/manuals/tsarfima.pdf#tsarfima
https://www.stata.com/manuals/tsucm.pdf#tsucm
https://www.stata.com/manuals/tstsappend.pdf#tstsappend
https://www.stata.com/manuals/dobs.pdf#dobs
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Spectral density after ucm

The spectral density of an order-k stochastic cycle with frequency λ and damping ρ is (Trimbur 2006)

f(ω; ρ, λ, σ2
κ) =

{
(1− ρ2)2k−1

σ2
κ

∑k−1
i=0

(
k−1
i

)2
ρ2i

}
×

∑k
j=0

∑k
i=0(−1)j+i

(
k
j

)(
k
i

)
ρj+i cosλ(j − i) cosω(j − i)

2π {1 + 4ρ2 cos2 λ+ ρ4 − 4ρ(1 + ρ2) cosλ cosω + 2ρ2 cos 2ω}k

where σ2
κ is the variance of the cycle error term.

The variance of the cycle is

σ2
ω = σ2

κ

∑k−1
i=0

(
k−1
i

)2
ρ2i

(1− ρ2)2k−1

and the power spectrum omits scaling by σ2
ω .
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