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Description

mswitch fits dynamic regression models that exhibit different dynamics across unobserved states
using state-dependent parameters to accommodate structural breaks or other multiple-state phenomena.
These models are known as Markov-switching models because the transitions between the unobserved
states follow a Markov chain.

Two models are available: Markov-switching dynamic regression (MSDR) models that allow a quick
adjustment after the process changes state and Markov-switching autoregression (MSAR) models that
allow a more gradual adjustment.

Quick start
MSDR model for the dependent variable y with two state-dependent intercepts using tsset data

mswitch dr y

Same as above
mswitch dr y, states(2)

Same as above, but with three states and switching coefficients on x

mswitch dr y, switch(x) states(3)

MSDR model with two state-dependent intercepts and variance parameters
mswitch dr y, varswitch

MSAR model with two state-dependent intercepts and an autoregression (AR) term
mswitch ar y, ar(1)

Same as above, but with switching AR coefficients
mswitch ar y, ar(1) arswitch

Menu
Statistics > Time series > Markov-switching models
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Syntax

Markov-switching dynamic regression

mswitch dr depvar
[

nonswitch varlist
] [

if
] [

in
] [

, options
]

Markov-switching AR

mswitch ar depvar
[

nonswitch varlist
]
, ar(numlist)

[
msar options options

]
nonswitch varlist is a list of variables with state-invariant coefficients.

options Description

Main

states(#) specify number of states; default is states(2)

switch(
[

varlist
][
, noconstant

]
) specify variables with switching coefficients; by default, the

constant term is state dependent unless
switch(, noconstant) is specified

constant allow a state-invariant constant term; may be specified only
with switch(, noconstant)

varswitch specify state-dependent variance parameters; by default, the
variance parameter is constant across all states

p0(type) specify initial unconditional probabilities where type is one
of transition, fixed, or smoothed; the default is
p0(transition)

constraints(numlist) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim or robust

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

EM options

emiterate(#) specify the number of expectation-maximization (EM)
iterations; default is emiterate(10)

emlog show EM iteration log
emdots show EM iterations as dots

Maximization

maximize options control the maximization process

coeflegend display legend instead of statistics

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/r.pdf#rvce_option
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msar options Description

Model
∗ar(numlist) specify the number of AR terms
arswitch specify state-dependent AR coefficients

∗ar(numlist) is required.

You must tsset your data before using mswitch; see [TS] tsset.
varlist and nonswitch varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, nonswitch varlist, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, collect, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

ar(numlist) specifies the number of AR terms. This option may be specified only with command
mswitch ar. ar() is required to fit AR models.

arswitch specifies that the AR coefficients vary over the states. arswitch may be specified only
with option ar().

� � �
Main �

states(#) specifies the number of states. The default is states(2).

switch(
[

varlist
][
, noconstant

]
) specifies variables whose coefficients vary over the states. By

default, the constant term is state dependent and is included in the regression model. You may
suppress the constant term by specifying switch(, noconstant).

constant specifies that a state-invariant constant term be included in the model. This option may
be specified only with switch(, noconstant).

varswitch specifies that the variance parameters are state dependent. The default is constant variance
across all states.

p0(type) is rarely used. This option specifies the method for obtaining values for the uncondi-
tional transition probabilities. type is one of transition, fixed, or smoothed. The default is
p0(transition), which specifies that the values be computed using the matrix of conditional
transition probabilities. Type fixed specifies that each unconditional probability is 1/k, where k
is the number of states. Type smoothed specifies that the unconditional probabilities be estimated
as extra parameters of the model.

constraints(numlist) specifies the linear constraints to be applied to the parameter estimates.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (oim) and that are robust to some kinds of misspecification (robust); see
[R] vce option.

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/tstsset.pdf#tstsset
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
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� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
EM options �

emiterate(#), emlog, and emdots control the EM iterations that take place before estimation
switches to a quasi-Newton method. EM is used to obtain starting values.

emiterate(#) specifies the number of EM iterations; the default is emiterate(10).

emlog specifies that the EM iteration log be shown. The default is to not display the EM iteration
log.

emdots specifies that the EM iterations be shown as dots. The default is to not display the dots.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(matname); see [R] Maximize for all options
except from(), and see below for information on from().

from(matname) specifies initial values for the maximization process. If from() is specified, the
initial values are used in the EM step to improve the likelihood unless emiterate(0) is also
specified. The coefficients obtained at the end of the EM iterations serve as initial values for
the quasi-Newton method.

matname must be a row vector. The number of columns must equal the number of parameters
in the model, and the values must be in the same order as the parameters in e(b).

The following option is available with mswitch but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples stata.com

mswitch fits Markov-switching models in which the parameters vary over states. The states are
unobserved and follow a Markov process.

mswitch dr fits MSDR models that allow a quick adjustment after a state change and are often
used to model monthly and higher-frequency data. mswitch ar fits MSAR models that allow a more
gradual adjustment after a state change and are often used to model quarterly and lower-frequency
data. Estimation is by maximum likelihood. You must tsset your data before using mswitch; see
[TS] tsset.

Remarks are presented under the following headings:

Introduction
Markov-switching dynamic regression
Markov-switching AR
Video example

If you are new to Markov-switching models, we recommend that you begin with Introduction. A
more technical discussion and examples are presented in the model-specific sections.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
http://stata.com
https://www.stata.com/manuals/tstsset.pdf#tstsset
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Introduction
Markov-switching models are widely applied in the social sciences. For example, in economics, the

growth rate of Gross Domestic Product is modeled as a switching process to capture the asymmetrical
behavior observed over expansions and recessions (Hamilton 1989). Other economic examples include
modeling interest rates (Garcia and Perron 1996) and exchange rates (Engel and Hamilton 1990). In
finance, Kim, Nelson, and Startz (1998) model monthly stock returns, while Guidolin (2011b, 2011a)
provide many applications of these models to returns, portfolio choice, and asset pricing. In political
science, Jones, Kim, and Startz (2010) model Democratic and Republican partisan states in the United
States Congress.

These models are also used in health sciences. For example, in psychology, Markov-switching
models have been applied to daily data on manic and depressive states for individuals with rapid-
cycling bipolar disorder (Hamaker, Grasman, and Kamphuis 2010). In epidemiology, Lu, Zeng, and
Chen (2010) and Martı́nez-Beneito et al. (2008) model the incidence rate of infectious disease in
epidemic and nonepidemic states.

The Markov-switching regression model was initially developed in Quandt (1972) and Goldfeld
and Quandt (1973). In a seminal paper, Hamilton (1989) extended Markov-switching regressions for
AR processes and provided a nonlinear filter for estimation. Hamilton (1993) and Hamilton (1994,
chap. 22) provide excellent introductions to Markov-switching regression models.

Markov-switching models are used for series that are believed to transition over a finite set of
unobserved states, allowing the process to evolve differently in each state. The transitions occur
according to a Markov process. The time of transition from one state to another and the duration
between changes in state is random. For example, these models can be used to understand the process
that governs the time at which economic growth transitions between expansion and recession and the
duration of each period.

Consider the evolution of a series yt, where t = 1, 2, . . . , T , is characterized by two states, as in
the models below

State 1 : yt = µ1 + εt

State 2 : yt = µ2 + εt

where µ1 and µ2 are the intercept terms in state 1 and state 2, respectively. εt is a white noise
error with variance σ2. The two states model shifts in the intercept term. If the timing of switches
is known, the above model can be expressed as

yt = stµ1 + (1− st)µ2 + εt

where st is 1 if the process is in state 1 and 0 otherwise. The above model is a regression with
dummy variables and could be estimated with ordinary least squares using, for example, regress.

However, in the case of interest, we never know in which state the process is; that is to say, st is
not observed. Markov-switching regression models allow the parameters to vary over the unobserved
states. In the simplest case, we can express this model as a MSDR model with a state-dependent
intercept term

yt = µst + εt

where µst is the parameter of interest; µst = µ1 when st = 1, and µst = µ2 when st = 2.

Although one never knows with certainty in which state the process lies, the probabilities of being
in each state can be estimated. For a Markov process, the transition probabilities are of greater interest.
One-step transition probabilities are given by pst,st+1

, so for a two-state process, p11 denotes the
probability of staying in state 1 in the next period given that the process is in state 1 in the current
period. Likewise, p22 denotes the probability of staying in state 2. Values closer to 1 indicate a more
persistent process, or in other words, that it is expected to stay in a given state for a long time.

https://www.stata.com/manuals/rregress.pdf#rregress
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Estimation of Markov-switching models proceeds by predicting the probabilities of the unobserved
state and updating the likelihood at each period, akin to the Kalman filter. However, while the Kalman
filter is concerned with making linear updates on continuous latent variables, the filter developed in
Hamilton (1989) is a nonlinear algorithm that estimates the probabilities that a discrete, latent variable
is in one of several states. Also see Hamilton (1990) for estimation of the model parameters by an
EM algorithm, which is also a robust method to find reasonable starting values.

Markov-switching dynamic regression

In this section, we use a series of examples to describe MSDR models and the mswitch dr
command.

MSDR models allow a quick adjustment after the process changes state. These models are often
used to model monthly and higher-frequency data. When the process is in state s at time t, a general
specification of the MSDR model is written as

yt = µst + xtα+ ztβst + εs

where yt is the dependent variable, µs is the state-dependent intercept, xt is a vector of exogenous
variables with state-invariant coefficients α, zt is a vector of exogenous variables with state-dependent
coefficients βs, and εs is an independent and identically distributed (i.i.d.) normal error with mean
0 and state-dependent variance σ2

s . xt and zt may contain lags of yt. MSDR models allow states to
switch according to a Markov process as described in Markov-switching regression models under
Methods and formulas.

In the default model fit by mswitch dr, s = 2 and a constant σ2 is assumed (σ2
1 = σ2

2 = σ2), so
three parameters, µ1, µ2, and σ2, are estimated. There is no xt or zt. The number of states may be
increased with option states(). To include xt, you specify a varlist after the command name, and
to include zt, you specify option switch(). The assumption of constant variances over states may
be relaxed with option varswitch.

A more complete discussion of the MSDR model is provided in Specification of Markov-switching
models under Methods and formulas.

Example 1: MSDR model with switching intercepts

Suppose we wish to model the federal funds rate. One potential model is a constant-only model

rt = µst + εt

where rt is the federal funds rate, st is the state, and µst is the mean in each state. In usmacro.dta,
we have data for the series from the third quarter of 1954 to the fourth quarter of 2010 from the
Federal Reserve Economic Database, a macroeconomic database provided by the Federal Reserve
Bank of Saint Louis. The data are plotted below.
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We note that the decades of 1970s and 1980s were characterized by periods of high interest rates
while the rest of the sample displays moderate levels.

Thus, a two-state model seems reasonable. st ∈ (1, 2) is the state; µ1 is the mean in the moderate-
rate state; and µ2 is the mean in high-rate state. We can use mswitch dr with dependent variable
fedfunds to estimate the parameters of the model.

. use https://www.stata-press.com/data/r18/usmacro
(Federal Reserve Economic Data - St. Louis Fed)

. mswitch dr fedfunds

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: Log likelihood = -508.66031
Iteration 1: Log likelihood = -508.6382
Iteration 2: Log likelihood = -508.63592
Iteration 3: Log likelihood = -508.63592

Markov-switching dynamic regression

Sample: 1954q3 thru 2010q4 Number of obs = 226
Number of states = 2 AIC = 4.5455
Unconditional probabilities: transition HQIC = 4.5760

SBIC = 4.6211
Log likelihood = -508.63592

fedfunds Coefficient Std. err. z P>|z| [95% conf. interval]

State1
_cons 3.70877 .1767083 20.99 0.000 3.362428 4.055112

State2
_cons 9.556793 .2999889 31.86 0.000 8.968826 10.14476

sigma 2.107562 .1008692 1.918851 2.314831

p11 .9820939 .0104002 .9450805 .9943119

p21 .0503587 .0268434 .0173432 .1374344

The header reports the sample size, fit statistics, the number of states, and the method used for
computing the unconditional state probabilities. The EM algorithm was used to find the starting values
for the quasi-Newton optimizer, and we see that it took three iterations for the model to converge.
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Finally, the header reports that the transition method was used to compute the unconditional state
probabilities as a function of the transition probabilities; see Methods and formulas.

The estimation table reports results for each state-dependent mean and the constant error variance.
Below that, the table displays the elements of the first k − 1 rows of the transition matrix, where k
is the number of states.

State 1 is the moderate-rate state and has a mean interest rate of 3.71%. State 2 is the high-rate
state and has a mean interest rate of 9.56%. p11 is the estimated probability of staying in state 1
in the next period given that the process is in state 1 in the current period. The estimate of 0.98
implies that state 1 is highly persistent. Similarly, p21 is the probability of transitioning to state 1
from state 2. The probability of staying in state 2 is therefore 1 − 0.05 = 0.95, which implies that
state 2 is also highly persistent.

Note that it is arbitrary which state is called 1 or 2. Changing the initial values for the iterations, for
example, can change the state labels for a given model-data combination. The transition probabilities
will get swapped in accordance with the change in labels.

Technical note
As mentioned in Introduction, a model with one state is equivalent to linear regression. To estimate

a one-state constant-only model for the data in example 1, you type

. mswitch dr fedfunds, states(1)

This is equivalent to typing

. arima fedfunds, technique(nr)

or

. regress fedfunds

The commands produce nearly identical parameter estimates for the coefficients.

Example 2: MSDR model with switching intercepts and coefficients

Continuing example 1, we specify a more complex model that includes the lagged value of the
interest rate and allows its coefficient to switch as well. The respecified model is

rt = µst + φstrt−1 + εt
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We estimate the switching coefficient by including the switch() option.

. mswitch dr fedfunds, switch(L.fedfunds)

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: Log likelihood = -265.37725
Iteration 1: Log likelihood = -264.74265
Iteration 2: Log likelihood = -264.71073
Iteration 3: Log likelihood = -264.71069
Iteration 4: Log likelihood = -264.71069

Markov-switching dynamic regression

Sample: 1954q4 thru 2010q4 Number of obs = 225
Number of states = 2 AIC = 2.4152
Unconditional probabilities: transition HQIC = 2.4581

SBIC = 2.5215
Log likelihood = -264.71069

fedfunds Coefficient Std. err. z P>|z| [95% conf. interval]

State1
fedfunds

L1. .7631424 .0337234 22.63 0.000 .6970457 .8292392

_cons .724457 .2886657 2.51 0.012 .1586826 1.290231

State2
fedfunds

L1. 1.061174 .0185031 57.35 0.000 1.024908 1.097439

_cons -.0988764 .1183838 -0.84 0.404 -.3309043 .1331515

sigma .6915759 .0358644 .6247373 .7655653

p11 .6378175 .1202616 .3883032 .830089

p21 .1306295 .0495924 .0600137 .2612432

The output indicates that the coefficients on the lagged dependent variable in the two states are
significant. Also, we favor this model over the constant-only model because the Schwarz’s Bayesian
information criterion (SBIC) for this model, 2.52, is lower than the SBIC for the constant-only model,
4.62.

Example 3: Changing the number of states for an MSDR model

Continuing example 2, we now specify a Taylor-rule model with two and three states and select
the preferred number of states.

Taylor-rule models specify that the interest rate depends on its own lag, the current value of
inflation, and the output gap. In our dataset, ogap is the output gap and inflation is inflation.
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First, we fit a two-state MSDR Taylor-rule model with fedfunds as the interest rate.

. mswitch dr fedfunds, switch(L.fedfunds ogap inflation)

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: Log likelihood = -229.43752
Iteration 1: Log likelihood = -229.25718
Iteration 2: Log likelihood = -229.25614
Iteration 3: Log likelihood = -229.25614

Markov-switching dynamic regression

Sample: 1955q3 thru 2010q4 Number of obs = 222
Number of states = 2 AIC = 2.1645
Unconditional probabilities: transition HQIC = 2.2325

SBIC = 2.3331
Log likelihood = -229.25614

fedfunds Coefficient Std. err. z P>|z| [95% conf. interval]

State1
fedfunds

L1. .8314458 .0333236 24.95 0.000 .7661328 .8967587

ogap .1355425 .0294113 4.61 0.000 .0778975 .1931875
inflation -.0273928 .0408057 -0.67 0.502 -.1073704 .0525849

_cons .6554954 .1373889 4.77 0.000 .386218 .9247727

State2
fedfunds

L1. .9292574 .0270852 34.31 0.000 .8761713 .9823435

ogap .0343072 .0240138 1.43 0.153 -.0127589 .0813733
inflation .2125275 .0297351 7.15 0.000 .1542477 .2708072

_cons -.0944924 .1279231 -0.74 0.460 -.3452171 .1562324

sigma .5764495 .0302562 .5200968 .638908

p11 .7279288 .0929915 .5159594 .8703909

p21 .2114578 .0641179 .1120643 .3629704

The results indicate that inflation does not significantly affect fedfunds in state 1 but that it does
in state 2.
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Would a model with three states be better than the above two-state model?

. mswitch dr fedfunds, switch(L.fedfunds ogap inflation) states(3)

(output omitted )
Markov-switching dynamic regression

Sample: 1955q3 thru 2010q4 Number of obs = 222
Number of states = 3 AIC = 1.8819
Unconditional probabilities: transition HQIC = 1.9995

SBIC = 2.1732
Log likelihood = -189.89493

fedfunds Coefficient Std. err. z P>|z| [95% conf. interval]

State1
fedfunds

L1. .8464528 .0333558 25.38 0.000 .7810768 .9118289

ogap .1201963 .0232725 5.16 0.000 .0745831 .1658095
inflation -.0425582 .0354295 -1.20 0.230 -.1119986 .0268823

_cons .5261322 .1266922 4.15 0.000 .2778201 .7744443

State2
fedfunds

L1. .9690083 .0264825 36.59 0.000 .9171036 1.020913

ogap .0464126 .0200199 2.32 0.020 .0071742 .0856509
inflation .129891 .0246793 5.26 0.000 .0815204 .1782616

_cons -.003411 .1073026 -0.03 0.975 -.2137203 .2068983

State3
fedfunds

L1. .4178809 .0809287 5.16 0.000 .2592637 .5764981

ogap .1074994 .1131837 0.95 0.342 -.1143366 .3293353
inflation .9098978 .073298 12.41 0.000 .7662364 1.053559

_cons .6018558 .8892436 0.68 0.499 -1.14103 2.344741

sigma .4383746 .0247954 .3923735 .4897688

p11 .7253673 .080781 .5440016 .8539626
p12 .2564064 .0784299 .1334292 .4357351

p21 .1641264 .0548589 .0822933 .3006733
p22 .7994156 .0578715 .6626847 .8899285

p31 .6177947 .3482191 .0823972 .9667733
p32 .3822052 .3482191 .0332267 .9176028

We favor the three-state model over the two-state model because it has the lower SBIC. The three
states, in this case, can be thought of as representing low, moderate, and high-interest rate states.

The results for the three-state model indicate that inflation does not affect the interest rate in
state 1, but it does affect the interest rate in states 2 and 3. The results also indicate that when the
coefficient on inflation is large and significant in state 3, the output gap coefficient is not significant.
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Technical note
In some situations, the quasi-Newton optimization will not converge, which implies that the

parameters of the specified model are not identified by the data. These convergence problems most
frequently arise when attempting to fit a model with too many states.

Example 4: Switching variances

All examples thus far have assumed a constant variance across states. In some cases, we may wish
to relax this assumption. For example, in the snp500 dataset we have weekly data on the absolute
returns of the S&P 500 index from the period 2004w17 to 2014w18, which we present below. The
graph indicates that there were high-volatility periods in 2008 to 2009 and in late 2011. It would be
unreasonable to assume that the variance in this high-volatility state is equal to the variance in the
low-volatility state.
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Below we fit areturns, the absolute returns, with an MSDR model in which the coefficients on
the lagged dependent variable and the variances differ by state.

. use https://www.stata-press.com/data/r18/snp500
(Federal Reserve Economic Data - St. Louis Fed)

. mswitch dr areturns, switch(L.areturns) varswitch

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: Log likelihood = -753.27687
Iteration 1: Log likelihood = -746.54052
Iteration 2: Log likelihood = -745.80825
Iteration 3: Log likelihood = -745.7977
Iteration 4: Log likelihood = -745.7977

Markov-switching dynamic regression

Sample: 2004w19 thru 2014w18 Number of obs = 520
Number of states = 2 AIC = 2.8992
Unconditional probabilities: transition HQIC = 2.9249

SBIC = 2.9647
Log likelihood = -745.7977

areturns Coefficient Std. err. z P>|z| [95% conf. interval]

State1
areturns

L1. .0790744 .0301862 2.62 0.009 .0199105 .1382384

_cons .7641424 .0782852 9.76 0.000 .6107062 .9175785

State2
areturns

L1. .527953 .0857841 6.15 0.000 .3598193 .6960867

_cons 1.972771 .2784204 7.09 0.000 1.427077 2.518465

sigma1 .5895792 .0517753 .4963544 .7003135

sigma2 1.605333 .1262679 1.375985 1.872908

p11 .7530865 .0634387 .6097999 .856167

p21 .6825357 .0662574 .5414358 .7965346

The estimated standard deviations, reported in sigma1 and sigma2, indicate that state 1 corresponds
to the low-volatility periods and that state 2 corresponds to the high-volatility periods.

Example 5: An MSDR model of population health

We can apply these same methods to noneconomic data that exhibit similar periods of high and low
volatility. For example, in public health and epidemiology, the process that determines the incidence
of disease over time may evolve with changes in health practices.

In mumpspc.dta, we have monthly data on the number of new mumps cases and the interpolated
population in New York City between January 1928 to December 1972. The mumpspc variable
represents the number of new mumps cases per 10,000 residents. We apply seasonal differencing
to the population-adjusted mumpspc variable using time-series operators, and we plot the resulting
series; see [U] 11.4.4 Time-series varlists.

https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
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The data clearly show periods of high and low volatility. We fit a two-state MSDR model to
the seasonally differenced dependent variable with state-dependent variances and state-dependent
coefficients on the lagged dependent variable. This model does not have a constant term, so we
specify suboption noconstant in switch() after the variable with a switching coefficient.

. use https://www.stata-press.com/data/r18/mumpspc
(Hipel and Mcleod (1994) with interpolated population)

. mswitch dr S12.mumpspc, varswitch switch(LS12.mumpspc, noconstant)

(output omitted )
Markov-switching dynamic regression

Sample: 1929m2 thru 1972m6 Number of obs = 521
Number of states = 2 AIC = -0.4826
Unconditional probabilities: transition HQIC = -0.4634

SBIC = -0.4336
Log likelihood = 131.7225

S12.mumpspc Coefficient Std. err. z P>|z| [95% conf. interval]

State1
mumpspc

LS12. .420275 .0167461 25.10 0.000 .3874533 .4530968

State2
mumpspc

LS12. .9847369 .0258383 38.11 0.000 .9340947 1.035379

sigma1 .0562405 .0050954 .0470901 .067169

sigma2 .2611362 .0111191 .2402278 .2838644

p11 .762733 .0362619 .6846007 .8264175

p21 .1473767 .0257599 .1036675 .2052939

The output indicates that there are two distinct states; state 1 is the low-volatility state and state 2
is the high-volatility state. While the lagged seasonally differenced number of mumps cases is a
significant predictor of current seasonally differenced cases, the estimates differ between states. Both
states are persistent.
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Markov-switching AR

In this section, we use a series of examples to describe MSAR models and the mswitch ar
command.

MSAR models allow a gradual adjustment after the process changes state. These models are often
used to model quarterly and lower-frequency data. An MSAR model with two state-dependent AR
terms for the dependent variable that is in state s at time t is

yt = µst + xtα+ ztβst

+ φ1,st(yt−1 − µst−1 − xt−1α− zt−1βst−1
)

+ φ2,st(yt−2 − µst−2
− xt−2α− zt−2βst−2

)

+ εst

where yt is the dependent variable at time t; µst is the state-dependent intercept; xt are covariates
whose coefficients α are state invariant; zt are covariates whose coefficients βst are state-dependent;
φ1,st is the first AR term in state st; φ2,st is the second AR term in state st; and εst is the i.i.d. normal
error with mean 0 and state-dependent variance. As in MSDR models, xt and zt may contain lags of
yt.

Note that µst−1
is the intercept corresponding to the state that the process was in the previous

period and that µst−2
is the intercept corresponding to the state that the process was in at t − 2.

Similarly, βst−1
is the coefficient vector on zt−1 corresponding to the state that the process was in

the previous period, and βst−2
is the coefficient vector on zt−2 corresponding to the state that the

process was in at t− 2.

In the default model fit by mswitch ar, s = 2 and a constant σ2 is assumed (σ2
1 = σ2

2 = σ2).
In the simplest form, a single AR term is specified and the coefficient is common to both states, so
four parameters, µ1, µ2, φ, and σ2, are estimated. There is no xt or zt.

The number of AR terms may be increased by specifying a numlist in ar(). To allow the estimated
parameters for the AR terms to vary across states, you specify option arswitch. The number of states
may be increased with option states(). To include xt, you specify a varlist after the command
name, and to include zt, you specify option switch(). The assumption of constant variances over
states may be relaxed with option varswitch.

MSAR models allow states to switch according to a Markov process, as described in Methods and
formulas under Markov-switching regression models. A more complete discussion of the MSAR model
is provided in Specification of Markov-switching models under Methods and formulas.
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Example 6: MSAR model with switching intercepts

Hamilton (1989) and Hamilton (1994, chap. 22) fit an MSAR to the growth of quarterly U.S. real
gross national product using data from 1952q1 to 1984q4. We replicate those results here using
rgnp.dta.

. use https://www.stata-press.com/data/r18/rgnp
(Data from Hamilton (1989))

. mswitch ar rgnp, ar(1/4)

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: Log likelihood = -182.54411 (not concave)
Iteration 1: Log likelihood = -182.12714 (not concave)
Iteration 2: Log likelihood = -181.68666
Iteration 3: Log likelihood = -181.42534
Iteration 4: Log likelihood = -181.26493
Iteration 5: Log likelihood = -181.26339
Iteration 6: Log likelihood = -181.26339

Markov-switching autoregression

Sample: 1952q2 thru 1984q4 Number of obs = 131
Number of states = 2 AIC = 2.9048
Unconditional probabilities: transition HQIC = 2.9851

SBIC = 3.1023
Log likelihood = -181.26339

rgnp Coefficient Std. err. z P>|z| [95% conf. interval]

rgnp
ar

L1. .0134871 .1199941 0.11 0.911 -.2216971 .2486713
L2. -.0575212 .137663 -0.42 0.676 -.3273357 .2122934
L3. -.2469833 .1069103 -2.31 0.021 -.4565235 -.037443
L4. -.2129214 .1105311 -1.93 0.054 -.4295583 .0037155

State1
_cons -.3588127 .2645396 -1.36 0.175 -.8773007 .1596753

State2
_cons 1.163517 .0745187 15.61 0.000 1.017463 1.309571

sigma .7690048 .0667396 .6487179 .9115957

p11 .754671 .0965189 .5254555 .8952432

p21 .0959153 .0377362 .0432569 .1993221

The output indicates that the average growth rate of U.S. real gross national product during expansions
is 1.16% and during recessions is −0.36%, with each state being persistent.

Example 7: Switching AR coefficients

Continuing example 6, we now fit an MSAR with state-dependent AR coefficients to the same
dataset. We include only two AR terms in each state to better estimate the parameters.
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. mswitch ar rgnp, ar(1/2) arswitch

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: Log likelihood = -179.68471
Iteration 1: Log likelihood = -179.56238
Iteration 2: Log likelihood = -179.32917
Iteration 3: Log likelihood = -179.32356
Iteration 4: Log likelihood = -179.32354
Iteration 5: Log likelihood = -179.32354

Markov-switching autoregression

Sample: 1951q4 thru 1984q4 Number of obs = 133
Number of states = 2 AIC = 2.8319
Unconditional probabilities: transition HQIC = 2.9114

SBIC = 3.0275
Log likelihood = -179.32354

rgnp Coefficient Std. err. z P>|z| [95% conf. interval]

State1
ar

L1. .3710719 .1754383 2.12 0.034 .0272191 .7149246
L2. .7002937 .187409 3.74 0.000 .3329787 1.067609

_cons -.0055216 .2057086 -0.03 0.979 -.408703 .3976599

State2
ar

L1. .4621503 .1652473 2.80 0.005 .1382715 .7860291
L2. -.3206652 .1295937 -2.47 0.013 -.5746642 -.0666662

_cons 1.195482 .1225987 9.75 0.000 .9551925 1.435771

sigma .6677098 .0719638 .5405648 .8247604

p11 .3812383 .1424841 .1586724 .6680876

p21 .3564492 .0994742 .1914324 .5644178

The results indicate that state 1 has negative average growth that is different than the positive average
growth in state 2. The AR coefficients for state 1 indicate that shocks will die out very slowly, while
the AR coefficients for state 2 indicate that shocks will die out moderately quickly. In other words,
shocks in a recession last a long time, while shocks in an expansion die out moderately quickly.

Example 8: Markov-switching regression model with constraints

mswitch can fit models subject to constraints. To facilitate the optimization, mswitch estimates
a logit transform of the transition probabilities (see Methods and formulas) and a log transformation
of the variance parameter. Therefore, all constraints must be specified to the transformed parameter.

In example 6, the estimated transition probability of staying in state 1 was about 0.75. In this
example, we constrain that probability to be 0.75 and estimate the remaining parameters. For this case,
the transformed value is q = −ln(0.75/0.25) = −1.0986123. We use the constraint command to
define this constraint; see [R] constraint.

https://www.stata.com/manuals/rconstraint.pdf#rconstraint
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. constraint 1 [p11]_cons = -1.0986123

. mswitch ar rgnp, ar(1/4) constraints(1)

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: Log likelihood = -182.86708
Iteration 1: Log likelihood = -182.05084 (not concave)
Iteration 2: Log likelihood = -181.79998
Iteration 3: Log likelihood = -181.29292
Iteration 4: Log likelihood = -181.26463
Iteration 5: Log likelihood = -181.26456
Iteration 6: Log likelihood = -181.26456

Markov-switching autoregression

Sample: 1952q2 thru 1984q4 Number of obs = 131
Number of states = 2 AIC = 2.8895
Unconditional probabilities: transition HQIC = 2.9609

SBIC = 3.0651
Log likelihood = -181.26456

( 1) [p11]_cons = -1.098612

rgnp Coefficient Std. err. z P>|z| [95% conf. interval]

rgnp
ar

L1. .0133924 .1196067 0.11 0.911 -.2210324 .2478172
L2. -.0591073 .133834 -0.44 0.659 -.3214172 .2032025
L3. -.247326 .1067244 -2.32 0.020 -.456502 -.0381499
L4. -.2130605 .1106088 -1.93 0.054 -.4298498 .0037288

State1
_cons -.3648129 .23039 -1.58 0.113 -.8163689 .0867432

State2
_cons 1.163125 .0738402 15.75 0.000 1.018401 1.307849

sigma .7682327 .0644585 .6517376 .9055508

p11 .75 (constrained)

p21 .0962226 .037246 .0439668 .1977399

The point estimates are similar to those reported in example 6 while the standard errors reported here
are slightly smaller.

Note that an MSAR model with no AR terms is equivalent to estimating an MSDR model, so typing

. mswitch ar rgnp, ar(0)

is the same as typing

. mswitch dr rgnp

Technical note

Achieving convergence in Markov-switching models can be difficult due to the existence of multiple
local minimums. Furthermore, a model with switching variance is able to generate a likelihood function
that is unbounded when µ = yi and σ2 → 0 (Frühwirth-Schnatter 2006, chap. 6). Four methods for
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overcoming convergence problems are 1) selecting an alternate optimization algorithm by using the
technique() option; 2) using alternative starting values by specifying the from() option; 3) using
improved starting values, which can be obtained by increasing the number of EM iterations specified
in the emiterate() option; and 4) transforming the variables to be on the same scale.

Video example

Markov-switching models in Stata

Stored results
mswitch stores the following in e():

Scalars
e(N) number of observations
e(N gaps) number of gaps
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k aux) number of auxiliary parameters
e(states) number of states
e(ll) log likelihood
e(rank) rank of e(V)
e(aic) Akaike information criterion
e(hqic) Hannan–Quinn information criterion
e(sbic) Schwarz’s Bayesian information criterion
e(tmin) minimum time
e(tmax) maximum time
e(emiter) number of EM iterations

Macros
e(cmd) mswitch
e(cmdline) command as typed
e(eqnames) names of equations
e(depvar) name of dependent variable
e(switchvars) list of switching variables
e(nonswitchvars) list of nonswitching variables
e(model) dr or ar
e(title) title in estimation output
e(tsfmt) format for the current time variable
e(timevar) time variable specified in tsset
e(tmins) formatted minimum time
e(tmaxs) formatted maximum time
e(vce) vcetype specified in vce()
e(vcetype) title use to label Std. err.
e(technique) maximization technique
e(p0) unconditional probabilities
e(varswitch) varswitch, if specified
e(arswitch) arswitch, if specified
e(ar) list of AR lags, if ar() is specified
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

https://www.youtube.com/watch?v=Vex5VEtVcsw
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Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance
e(initvals) matrix of initial values
e(uncprob) matrix of unconditional probabilities

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Markov-switching regression models
Markov chains
Specification of Markov-switching models

Markov-switching dynamic regression
Markov-switching AR

Likelihood function with latent states
Smoothed probabilities
Unconditional probabilities

Markov-switching regression models

Consider the evolution of yt, where t = 1, 2, . . . , T , that is characterized by two states or regimes
as in the models below

State 1 : yt = µ1 + φyt−1 + εt

State 2 : yt = µ2 + φyt−1 + εt

where µ1 and µ2 are the intercept terms in state 1 and state 2, respectively; φ is the AR parameter;
and εt is a white noise error with variance σ2. The two states model abrupt shifts in the intercept
term. If the timing of switches is known, the above model can be expressed as

yt = stµ1 + (1− st)µ2 + φyt−1 + εt

where st is 1 if the process is in state 1 and 0 otherwise. Estimation in this case can be performed
using standard procedures.

In the case of interest, we never know in which state the process is; that is to say, st is not observed.
Markov-switching regression models specify that the unobserved st follows a Markov chain. In the
simplest case, we can express this model as a state-dependent intercept term for k states

yt = µst + φyt−1 + εt

where µst = µ1 when st = 1, µst = µ2 when st = 2, . . . , and µst = µk when st = k. The
conditional density of yt is assumed to be dependent only on the realization of the current state st
and is given by f(yt|st = i, yt−1; θ), where θ is a vector of parameters. There are k conditional
densities for k states, and estimation of θ is performed by updating the conditional likelihood using
a nonlinear filter.
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Markov chains

st is an irreducible, aperiodic Markov chain starting from its ergodic distribution π = (π1, . . . , πk);
see Hamilton (1994, chap. 22). The probability that st is equal to j ∈ (1, . . . , k) depends only on
the most recent realization, st−1, and is given by

Pr(st = j|st−1 = i) = pij

All possible transitions from one state to the other can be collected in a k × k transition matrix

P =


p11 . . . pk1
p12 . . . pk2

...
. . .

...
p1k . . . pkk


which governs the evolution of the Markov chain. All elements of P are nonnegative and each
column sums to 1. For an excellent introduction on the properties of Markov chains, refer to
Hamilton (1994, chap. 22) and Frühwirth-Schnatter (2006, chap. 10). For a deeper treatment, see
Karlin and Taylor (1975, chap. 2 and 3).

The fact that
∑k

j=1 pij = 1 causes some numerical complications. We handle these complications
by estimating functions of pij and by normalizing pik. In particular, we estimate qij in

pij =
exp(−qij)

1 + exp(−qi1) + exp(−qi2) + · · ·+ exp(−qi,k−1)

for j ∈ {1, 2, . . . , k − 1}. We normalize pik by imposing

pik =
1

1 + exp(−qi1) + exp(−qi2) + · · ·+ exp(−qi,k−1)

The estimates of pij are displayed, but the estimates of qij are stored in e(b).

Specification of Markov-switching models

Consider an AR(1) model given by

yt = µ+ φyt−1 + εt

This model can be rewritten in terms of an AR(1) error specification as

yt = ν + et

et = ρet−1 + εt

which can be written as the single equation

yt = ν + ρ(yt−1 − ν) + εt

such that φ = ρ and µ = ν(1− ρ).
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This result, however, does not hold in the case of Markov-switching regression models, as seen
below in a simple two-state case where the constant term is state dependent. Consider the following
models:

Model I : yt = µst + φyt−1 + εt

Model II : yt = µst + φ(yt−1 − µst−1
) + εt

Model I is also referred to as a MSDR model or a Markov-switching intercept model (Krolzig 1997). It
may consist of other switching parameters, but for simplicity, we only consider the switching-intercept
case. The evolution of yt depends on the realization of the switching intercept at time t. The discrete
latent state st that governs the value of the intercept at time t has a transition matrix

P =

[
p11 p21
p12 p22

]
This specification allows for two possible intercepts at any given time t.

By contrast, the evolution of yt in model II depends on the value of the switching mean at its
current state and its lagged value. Model II is also referred to as MSAR or Markov-switching mean
(Krolzig 1997). At any given time t, there are four possible values of the intercept given by

µ1 − ρµ1

µ2 − ρµ1

µ1 − ρµ2

µ2 − ρµ2

which implies that models I and II do not yield equivalent representations as compared with the AR(1)
model with no switching.

The MA(∞) representation shown below better illustrates the different dynamics of yt obtained
as a result of these specifications.

Model I : yt =
∞∑
i=0

φiµst−i
+

∞∑
i=0

φiεt

Model II : yt = µst +

∞∑
i=0

φiεt

In model I, the effect of a one-time change in state accumulates over time similar to a permanent
shift in the error term εt. In model II, the effect of a one-time change in state is the same for all
time periods. Also see Hamilton (1993).

Model II allows yt to depend on lagged values of the state st−1, which in turn leads to four
conditional densities. We define a new state variable s∗t such that s∗t is a four-state Markov chain
and yt depends only on the current state as

s∗t = 1 if st = 1 and st−1 = 1

s∗t = 2 if st = 2 and st−1 = 1

s∗t = 3 if st = 1 and st−1 = 2

s∗t = 4 if st = 2 and st−1 = 2
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The corresponding 4× 4 transition matrix is

P =


p11 0 p11 0
p12 0 p12 0
0 p21 0 p21
0 p22 0 p22


The conditional density of yt is given by f(yt|s∗t = i, yt−1; θ) for i = 1, . . . , 4. Also see Hamil-
ton (1994, chap. 22). More generally, for MSAR models, s∗t is a k(p+1)-state Markov chain, where
p is the number of lagged states. Because MSAR models require larger state vectors, they are often
used with low-frequency data and smaller AR lags. However, the state vector in MSDR models does
not depend on the AR lags and can thus be used to accommodate high-frequency data and higher AR
lags.

Markov-switching dynamic regression

A general specification of the MSDR model is written as

yt = µs + xtα+ ztβs + εs

where yt is the dependent variable, µs is the state-dependent intercept, xt is a vector of exogenous
variables with state-invariant coefficients α, zt is a vector of exogenous variables with state-dependent
coefficients βs, and εs is an i.i.d. normal error with mean 0 and state-dependent variance σ2

s . xt and
zt may contain lags of yt.

Markov-switching AR

A general specification of the MSAR model is written as

yt = µst + xtα+ ztβst +

p∑
i=1

φi,st(yt−i − µst−i − xt−iα− zt−iβst−i
) + εst

where yt is the dependent variable at time t, µst is the state-dependent intercept, xt are covariates whose
coefficients α are state-invariant, and zt are covariates whose coefficients βst are state-dependent.
As in MSDR models, xt and zt may contain lags of yt.

φi,st is the ith AR term in state st. Note that µst−i
is the intercept corresponding to the state that

the process was in at period t − i. Similarly, βst−i
is the coefficient vector on zt−i corresponding

to the state that the process was in at period t− i.
εst is the i.i.d. normal error with mean 0 and state-dependent variance.

This representation clarifies that the demeaned, lagged errors depend on the state previously
occupied by the process. This dependence is not present in the MSDR model.
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Likelihood function with latent states
The conditional density of yt is given by f(yt|st = i, yt−1; θ) for i = 1, . . . , k. The marginal

density of yt is obtained by weighting the conditional densities by their respective probabilities. This
is written as follows:

f(yt|θ) =
k∑

i=1

f(yt|st = i, yt−1; θ) Pr(st = i; θ)

Let ηt denote a k × 1 vector of conditional densities given by

ηt =


f(yt|st = 1; yt−1; θ)
f(yt|st = 2; yt−1; θ)

...
f(yt|st = k; yt−1; θ)


Constructing the likelihood function requires estimating the probability that st takes on a specific

value using the data through time t and model parameters θ. Let Pr(st = i|yt; θ) denote the conditional
probability of observing st = i based on data until time t. Then

Pr(st = i|yt; θ) =
f(yt|st = i, yt−1; θ) Pr(st = i|yt−1; θ)

f(yt|yt−1; θ)

where f(yt|yt−1; θ) is the likelihood of yt and Pr(st = i|yt−1; θ) is the forecasted probability of
st = i given observation until time t− 1. Then

Pr(st = 1|yt−1; θ) =
k∑

j=1

Pr(st = i|st−1 = j, yt−1; θ) Pr(st−1 = j|yt−1; θ)

Let ξt|t and ξt|t−1 denote k× 1 vectors of conditional probabilities Pr(st = i|yt; θ) and Pr(st =
i|yt−1; θ). The likelihood is then obtained by iterating on the following equations [Hamilton (1994,
chap. 22)]:

ξt|t =
(ξt|t−1 � ηt)

1′(ξt|t−1 � ηt)

ξt+1|t = P ξt|t

where 1 is a k × 1 vector of 1s. The log-likelihood function is obtained as

L(θ) =

T∑
t=1

logf(yt|yt−1; θ)

where
f(yt|yt−1; θ) = 1′(ξt|t−1 � ηt)
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Smoothed probabilities

Let ξt|T , where t < T , denote the k × 1 vector of conditional probabilities Pr(st = i|yT ; θ),
which represents the probability of st = i using observations available through time T . The smoothed
probabilities are calculated using an algorithm developed in Kim (1994).

ξt|T = ξt|t � {P′ (ξt+1|T(÷)ξt+1|t)}

where (÷) denotes element-by-element division. The smoothed probabilities are obtained by iterating
backwards from t = T − 1, T − 2, . . . , 1.

Unconditional probabilities

The log-likelihood function has a recursive structure that starts from the unconditional state
probabilities ξ1|0. These unconditional state probabilities are unknown. There are three standard ways
to obtain them.

By default, or by option p0(transition), the unconditional state probabilities are estimated from
the conditional transition probabilities and the Markov structure of the model. Specifically, the vector
of unconditional state probabilities is obtained as

π = (A′A)−1A′ek+1

where A is a (k + 1)× k matrix given by

A =

[
Ik −P

1′

]
Ik denotes a k × k identity matrix, and ek denotes the kth column of Ik.

Sometimes researchers prefer to estimate unconditional state probabilities by adding k−1 additional
parameters to the model. This method is seldom used because it requires enough observations to
estimate the additional parameters. mswitch uses this method when option p0(smoothed) is specified.

Sometimes researchers prefer to set the unconditional state probabilities to 1/k. mswitch uses
this method when option p0(fixed) is specified.
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