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Description
stcrreg fits, via maximum likelihood, competing-risks regression models on st data, according

to the method of Fine and Gray (1999). Competing-risks regression posits a model for the subhazard
function of a failure event of primary interest. In the presence of competing failure events that impede
the event of interest, a standard analysis using Cox regression (see [ST] stcox) is able to produce
incidence-rate curves that either 1) are appropriate only for a hypothetical universe where competing
events do not occur or 2) are appropriate for the data at hand, yet the effects of covariates on these
curves are not easily quantified. Competing-risks regression, as performed using stcrreg, provides
an alternative model that can produce incidence curves that represent the observed data and for which
describing covariate effects is straightforward.

stcrreg can be used with single- or multiple-record data. stcrreg cannot be used when you
have multiple failures per subject.

Quick start
Competing-risks regression with covariates x1 and x2 and competing event defined by fvar = 2

using data that are stset with failure fvar = 1
stcrreg x1 x2, compete(fvar==2)

Same as above, but report coefficients instead of subhazard ratios
stcrreg x1 x2, compete(fvar==2) noshr

With cluster–robust standard errors for clustering by levels of cvar
stcrreg x1 x2, compete(fvar==2) vce(cluster cvar)

Competing events defined by fvar = 2, fvar = 3, and fvar = 4
stcrreg x1 x2, compete(fvar==2 3 4)

Specify indicator variable compvar identifying competing events
stcrreg x1 x2, compete(compvar)

Menu
Statistics > Survival analysis > Regression models > Competing-risks regression
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Syntax
stcrreg

[
indepvars

] [
if
] [

in
]
, compete(crvar[==numlist])

[
options

]
options Description

Model
∗compete(crvar[==numlist]) specify competing-risks event(s)
offset(varname) include varname in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints

Time varying

tvc(tvarlist) specify covariates to be interacted with time
texp(exp) specify a function of time; default is texp( t)

SE/Robust

vce(vcetype) vcetype may be robust, cluster clustvar, bootstrap,
or jackknife

noadjust do not use standard degree-of-freedom adjustment

Reporting

level(#) set confidence level; default is level(95)

noshr report coefficients, not subhazard ratios
noshow do not show st setting information
noheader suppress header from coefficient table
notable suppress coefficient table
nodisplay suppress output; iteration log is still displayed
nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables
coeflegend display legend instead of statistics

∗compete(crvar[==numlist]) is required.
You must stset your data before using stcrreg; see [ST] stset.
varlist and tvarlist may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, collect, fp, jackknife, mfp, mi estimate, nestreg, statsby, and stepwise are allowed; see

[U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights may be specified using stset; see [ST] stset. In multiple-record data, weights

are applied to subjects as a whole, not to individual observations. iweights are treated as fweights that can be
noninteger, but not negative.

collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptionsOptionsconstraintsdescrip
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/mimiestimate.pdf#mimiestimate
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
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Options

� � �
Model �

compete(crvar[==numlist]) is required and specifies the events that are associated with failure due
to competing risks.

If compete(crvar) is specified, crvar is interpreted as an indicator variable; any nonzero, nonmissing
values are interpreted as representing competing events.

If compete(crvar==numlist) is specified, records with crvar taking on any of the values in numlist
are assumed to be competing events.

The syntax for compete() is the same as that for stset’s failure() option. Use stset,
failure() to specify the failure event of interest, that is, the failure event you wish to model
using stcox, streg, stcrreg, or whatever. Use stcrreg, compete() to specify the event or
events that compete with the failure event of interest. Competing events, because they are not the
failure event of primary interest, must be stset as censored.

If you have multiple records per subject, only the value of crvar for the last chronological record
for each subject is used to determine the event type for that subject.

offset(varname), constraints(constraints); see [R] Estimation options.

� � �
Time varying �

tvc(tvarlist) specifies the variables to be included in the model as an interaction with a function
of time to form time-varying covariates. During estimation, these variables are interacted with
analysis time or with a function of analysis time specified in the texp() option.

texp(exp) is used in conjunction with tvc(tvarlist) to specify the function of analysis time that
should be used to multiply covariates specified in the tvc() option to include in the model time-
varying covariates that are deterministic functions of time. For example, specifying texp(ln( t))
would cause the covariates in option tvc() to be multiplied by the logarithm of analysis time. If
tvc(tvarlist) is used without texp(exp), Stata understands that you mean texp( t) and thus
multiplies the covariates by the analysis time.

Both tvc(tvarlist) and texp(exp) are explained more in Option tvc() and testing the proportional-
subhazards assumption below.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some
kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that
use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option. vce(robust)
is the default in single-record-per-subject st data. For multiple-record st data, vce(cluster idvar)
is the default, where idvar is the ID variable previously stset.

Standard Hessian-based standard errors—vcetype oim—are not statistically appropriate for this
model and thus are not allowed.

noadjust is for use with vce(robust) or vce(cluster clustvar). noadjust prevents the estimated
variance matrix from being multiplied by N/(N − 1) or g/(g − 1), where g is the number of
clusters. The default adjustment is somewhat arbitrary because it is not always clear how to count
observations or clusters. In such cases, however, the adjustment is likely to be biased toward 1,
so we would still recommend making it.

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
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� � �
Reporting �

level(#); see [R] Estimation options.

noshr specifies that coefficients be displayed rather than exponentiated coefficients or subhazard
ratios. This option affects only how results are displayed and not how they are estimated. noshr
may be specified at estimation time or when redisplaying previously estimated results (which you
do by typing stcrreg without a variable list).

noshow prevents stcrreg from showing the key st variables. This option is seldom used because
most people type stset, show or stset, noshow to set whether they want to see these variables
mentioned at the top of the output of every st command; see [ST] stset.

noheader suppresses the header information from the output. The coefficient table is still displayed.
noheader may be specified at estimation time or when redisplaying previously estimated results.

notable suppresses the table of coefficients from the output. The header information is still displayed.
notable may be specified at estimation time or when redisplaying previously estimated results.

nodisplay suppresses the output. The iteration log is still displayed.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are
seldom used.

The following options are available with stcrreg but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples stata.com

This section provides a summary of what can be done with stcrreg. For a more general tutorial
on competing-risks analysis, see Cleves, Gould, and Marchenko (2016, chap. 17).

Remarks are presented under the following headings:

The case for competing-risks regression
Using stcrreg
Multiple competing-event types
stcrreg as an alternative to stcox
Multiple records per subject
Option tvc() and testing the proportional-subhazards assumption

The case for competing-risks regression

In this section, we provide a brief history and literature review of competing-risks analysis, and
provide the motivation behind the stcrreg model. If you know you want to use stcrreg and are
anxious to get started, you can safely skip this section.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
http://stata.com
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Based on the method of Fine and Gray (1999), competing-risks regression provides a useful
alternative to Cox regression (Cox 1972) for survival data in the presence of competing risks.
Consider the usual survival analysis where one measures time-to-failure as a function of experimental
or observed factors. For example, we may be interested in measuring time from initial treatment to
recurrence of breast cancer in relation to factors such as treatment type and smoking status. The term
competing risk refers to the chance that instead of cancer recurrence, you will observe a competing
event, for example, death. The competing event, death, impedes the occurrence of the event of interest,
breast cancer. This is not to be confused with the usual right-censoring found in survival data, such
as censoring due to loss to follow-up. When subjects are lost to follow-up, they are still considered
at risk of recurrent breast cancer—it is just that the researcher is not in a position to record the
precise time that it happens. In contrast, death is a permanent condition that prevents future breast
cancer. While censoring merely obstructs you from observing the event of interest, a competing event
prevents the event of interest from occurring altogether. Because competing events are distinct from
standard censorings, a competing-risks analysis requires some new methodology and some caution
when interpreting the results from the old methodology.

Putter, Fiocco, and Geskus (2007) and Gichangi and Vach (2005) provide excellent tutorials covering
the problem of competing risks, nonparametric estimators and tests, competing-risks regression, and
the more general multistate models. Textbook treatments of competing-risks analysis can be found
within Andersen et al. (1993), Klein and Moeschberger (2003), Therneau and Grambsch (2000), and
Marubini and Valsecchi (1995). The texts by Crowder (2001) and Pintilie (2006) are devoted entirely
to the topic. In what follows, we assume that you are familiar with the basic concepts of survival
analysis, for example, hazard functions and Kaplan–Meier curves. For such an introduction to survival
analysis aimed at Stata users, see Cleves, Gould, and Marchenko (2016).

Without loss of generality, assume a situation where there is only one event that competes with the
failure event of interest. Before analyzing the problem posed by competing-risks data—the problem
stcrreg proposes to solve—we first formalize the mechanism behind it. Ignoring censoring for
the moment, recording a failure time in a competing-risks scenario can be represented as observing
the minimum of two potential failure times: the time to the event of interest, T1, and the time to
the competing event, T2. The problem of competing risks then becomes one of understanding the
nature of the bivariate distribution of (T1, T2), and in particular the correlation therein. Although
conceptually simple, unfortunately this joint distribution cannot be identified by the data (Pepe and
Mori 1993; Tsiatis 1975; Gail 1975). If you get to observe only the minimum, you are getting only
half the picture.

An alternate representation of the competing-risks scenario that relies on quantities that are data-
identifiable is described by Beyersman et al. (2009). In that formulation, we consider the hazard for
the event of interest, h1(t), and that for the competing event, h2(t). Both hazards can be estimated
from available data and when combined form a total hazard that any event will occur equal to
h(t) = h1(t) + h2(t). As risk accumulates according to h(t), event times T are observed. Whether
these events turn out to be failures of interest (type 1) or competing events (type 2) is determined by
the two component hazards at that precise time. The event will be a failure of interest with probability
h1(T )/{h1(T ) + h2(T )}, or a competing event with probability one minus that.

Instead of focusing on the survivor function for the event of interest, P (T > t and event type 1),
when competing risks are present you want to focus on the failure function, P (T ≤ t and event type 1),
also known as the cumulative incidence function (CIF). That is because you will not know what type
of event will occur until after it has occurred. It makes more sense to ask “What is the probability
of breast cancer within 5 months?” than to ask “What is probability that nothing happens before 5
months, and that when something does happen, it will be breast cancer and not death?”

Much of the literature on competing risks focuses on the inadequacy of the Kaplan–Meier (1958)
estimator (which we refer to as KM) as a measure of prevalence for the event of interest. Among
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others, Gooley et al. (1999) point out that 1−KM is a biased estimate of the CIF. The bias results from
KM treating competing events as if they were censored. That is, subjects that experience competing
events are treated as if they could later experience the event of interest, even though that is impossible.
Although you could interpret 1−KM as the probability of a type 1 failure in a hypothetical setting
where type 2 failures do not occur, this requires you to assume that h1(t) remains unchanged given
that h2(t) = 0, a rather strong and untestable assumption. Regardless of whether the independence
assumption holds, 1−KM is still not representative of the data at hand, under which competing events
do take place.

As such, 1−KM should be rejected in favor of the cumulative incidence estimator of the CIF; see
Coviello and Boggess (2004) for a Stata-specific presentation. The cumulative incidence estimator is
superior to 1−KM because it acknowledges that cumulative incidence is a function of both cause-specific
hazards, h1(t) and h2(t). Conversely, 1−KM treats the CIF as a function solely of h1(t).

When you have covariates, you can use stcox to perform regression on h1(t) by treating failures
of type 2 as censored, on h2(t) by treating failures of type 1 as censored, or on h1(t) and h2(t)
simultaneously by using the method of data duplication described by Lunn and McNeil (1995) and
Cleves (1999). Because cause-specific hazards are identified by the data, all three of the above analyses
are suitable for estimating how covariates affect the mechanism behind a given type of failure. For
example, if you are interested in how smoking affects breast cancer in general terms (competing
death notwithstanding), then a Cox model for h1(t) that treats death as censored is perfectly valid;
see Pintilie (2007).

If you are interested in the incidence of breast cancer, however, you want to use a Cox model that
models both h1(t) and h2(t), because the CIF for breast cancer will likely depend on both. Based on
the fitted model, you will have a hard time spotting the effects of covariates on cumulative incidence,
because the covariates can affect h1(t) and h2(t) differently, and the CIF is a nonlinear function of
these effects and of the baseline hazards. Whether increasing a covariate increases or decreases the
cumulative incidence depends on time and on the nominal value of that covariate, as well as on the
values of the other covariates. There is no way to determine the full effects of the covariates by just
looking at the model coefficients. You would have to estimate and graph the CIF for various sets of
covariate values, and this requires a bit of programming; see example 4.

An alternative model for the CIF that does make it easy to see the effects of covariates is that due
to Fine and Gray (1999). They specify a model for the hazard of the subdistribution (Gray 1988),
formally defined for failure type 1 as

h1(t) = limδ→0

{
P (t < T ≤ t+ δ and event type 1) | T > t or (T ≤ t and not event type 1)

δ

}
Less formally, think of this hazard as that which generates failure events of interest while keeping
subjects who experience competing events “at risk” so that they can be adequately counted as not
having any chance of failing. The advantage of modeling the subdistribution hazard, or subhazard, is
that you can readily calculate the CIF from it;

CIF1(t) = 1− exp{−H1(t)}

where H1(t) =
∫ t
0
h1(t)dt is the cumulative subhazard.

Competing-risks regression performed in this manner using stcrreg is quite similar to Cox
regression performed using stcox. The model is semiparametric in that the baseline subhazard
h1,0(t) (that for covariates set to zero) is left unspecified, while the effects of the covariates x are
assumed to be proportional:

h1(t|x) = h1,0(t) exp(xβ)
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Estimation with stcrreg will produce estimates of β, or exponentiated coefficients known as subhazard
ratios. A positive (negative) coefficient means that the effect of increasing that covariate is to increase
(decrease) the subhazard and thus increase (decrease) the CIF across the board.

Estimates of the baseline cumulative subhazard and of the baseline CIF are available via predict after
stcrreg; see [ST] stcrreg postestimation. Because proportionality holds for cumulative subhazards
as well, adjusting the baseline cumulative hazard and baseline CIF for a given set of covariate values
is quite easy and, in fact, done automatically for you by stcurve; see [ST] stcurve.

Using stcrreg

If you have used stcox before, stcrreg will look very familiar.

Example 1: Cervical cancer study

Pintilie (2006, sec. 1.6.2) describes data from 109 cervical cancer patients that were treated at a
cancer center between 1994 and 2000. The patients were treated and then the time in years until
relapse or loss to follow-up was recorded. Relapses were recorded as either “local” if cancer relapsed
in the pelvis, or “distant” if cancer recurred elsewhere but not in the pelvis. Patients who did not
respond to the initial treatment were considered to have relapsed locally after one day.

https://www.stata.com/manuals/ststcrregpostestimation.pdf#ststcrregpostestimation
https://www.stata.com/manuals/ststcurve.pdf#ststcurve
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. use https://www.stata-press.com/data/r18/hypoxia
(Hypoxia study)

. describe

Contains data from https://www.stata-press.com/data/r18/hypoxia.dta
Observations: 109 Hypoxia study

Variables: 16 7 Apr 2022 09:44
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

stnum int %8.0g Patient ID
age byte %8.0g Age (years)
hgb int %8.0g Hemoglobin (g/l)
tumsize float %9.0g Tumor size (cm)
ifp float %9.0g Interstitial fluid pressure

(marker, mmHg)
hp5 float %9.0g Hypoxia marker (percentage of

meas. < 5 mmHg)
pelvicln str1 %9s Pelvic node involvement:

N=Negative, E=Equivocal,
Y=Positive

resp str2 %9s Response after treatment:
CR=Complete response, NR=No
response

pelrec byte %9.0g yesno Pelvic disease observed
disrec byte %9.0g yesno Distant disease observed
survtime float %9.0g Time from diagnosis to death or

last follow-up time (yrs)
stat byte %8.0g Status at last follow-up: 0=Alive,

1=Dead
dftime float %9.0g Time from diagnosis to first

failure or last follow-up (yrs)
dfcens byte %8.0g Censoring variable: 1=Failure,

0=Censored
failtype byte %8.0g Failure type: 1 if pelrec, 2 if

disrec & not pelrec, 0 otherwise
pelnode byte %8.0g 1 if pelvic nodes negative or

equivocal

Sorted by:

The dftime variable records analysis time in years and the failtype variable records the type of
event observed: 0 for loss to follow-up (censored), 1 for a local relapse, and 2 for a distant relapse.
Among the covariates used in the analysis were a hypoxia marker (hp5) that measures the degree of
oxygenation in the tumor, interstitial fluid pressure (ifp), tumor size (tumsize), and an indicator of
pelvic node involvement (pelnode == 0 if positive involvement and pelnode == 1 otherwise). The
main goal of the study was to determine whether ifp and hp5 influence the outcome, controlling for
the other covariates. Following Pintilie (2006), we focus on ifp and not on hp5. For more details
regarding this study and the process behind the measured data, see Fyles et al. (2002) and Milosevic
et al. (2001).

We wish to fit a competing-risks model that treats a local relapse as the event of interest and a
distant relapse as the competing event. Although a distant relapse does not strictly prevent a future
local relapse, presumably, the treatment protocol changed based on which event was first observed.
As such, both events can be treated as competing with one another because the conditions of the
study ended once any relapse was observed. Because no deaths occurred before first relapse, death
is not considered a competing event in this analysis.
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To fit the model, we first stset the data and specify that a local relapse, failtype == 1, is the
event of interest. We then specify to stcrreg the covariates and that a distant relapse (failtype
== 2) is a competing event.

. stset dftime, failure(failtype == 1)
(output omitted )

. stcrreg ifp tumsize pelnode, compete(failtype == 2)

Failure _d: failtype==1
Analysis time _t: dftime

Iteration 0: Log pseudolikelihood = -138.67925
Iteration 1: Log pseudolikelihood = -138.53082
Iteration 2: Log pseudolikelihood = -138.5308
Iteration 3: Log pseudolikelihood = -138.5308

Competing-risks regression No. of obs = 109
No. of subjects = 109

Failure event: failtype == 1 No. failed = 33
Competing event: failtype == 2 No. competing = 17

No. censored = 59

Wald chi2(3) = 33.21
Log pseudolikelihood = -138.5308 Prob > chi2 = 0.0000

Robust
_t SHR std. err. z P>|z| [95% conf. interval]

ifp 1.033206 .0178938 1.89 0.059 .9987231 1.068879
tumsize 1.297332 .1271191 2.66 0.008 1.070646 1.572013
pelnode .4588123 .1972067 -1.81 0.070 .1975931 1.065365

From the above we point out the following:

• When we stset the data, distant relapses were set as censored because they are not the
event of interest and any standard, noncompeting-risks analysis would want to treat them
as censored. stcrreg option compete() tells Stata which of these “censored” events are
actually competing events that require special consideration in a competing-risks regression.
Because competing events are not the event of interest, stcrreg will issue an error if
competing events are not stset as censored.

• stcrreg lists the event code(s) for the event of interest under “Failure event(s):” and
the competing event code(s) under “Competing event(s):”. The syntax for stset and
stcrreg allows you to have multiple codes for both. For competing events, multiple event
codes can be devoted entirely to one competing event type, many competing event types,
or some combination of both. The methodology behind stcrreg extends to more than one
competing event type and is concerned only with whether events are competing events, not
with their exact type. The focus is on the event of interest.

• We see that out of the 109 patients, 33 experienced a local relapse, 17 experienced a distant
relapse, and the remaining 59 were lost to follow-up before any relapse.

• In the column labeled “SHR” are the estimated subhazard ratios, and you interpret these
similarly to hazard ratios in Cox regression. Because the estimated subhazard ratio for ifp
is greater than 1, higher interstitial fluid pressures are associated with higher incidence of
local relapses controlling for tumor size, pelvic node involvement, and the fact that distant
relapses can also occur. However, this effect is not highly significant.

• To see the estimated coefficients instead of subhazard ratios, use the noshr option either
when fitting the model or when replaying results.
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• Standard errors are listed as “Robust”, even though we did not specify any sampling weights,
vce(robust), or vce(cluster clustvar). As mentioned in the previous section, competing-
risks regression works by keeping subjects who experience competing events at risk so that
they can be adequately counted as having no chance of failing. Doing so requires a form of
sample weighting that invalidates the usual model-based standard errors; see Methods and
formulas. Robust standard errors are conventional in stcrreg.

• The output lists a “log pseudolikelihood” rather than the standard log likelihood. This
is also a consequence of the inherent sample weighting explained in the previous bullet. The
log pseudolikelihood is used as a maximization criterion to obtain parameter estimates, but
is not representative of the distribution of the data. For this reason, likelihood-ratio (LR) tests
(the lrtest command) are not valid after stcrreg. Use Wald tests (the test command)
instead.

As mentioned above, you can use the noshr option to obtain coefficients instead of subhazard
ratios.

. stcrreg, noshr

Competing-risks regression No. of obs = 109
No. of subjects = 109

Failure event: failtype == 1 No. failed = 33
Competing event: failtype == 2 No. competing = 17

No. censored = 59

Wald chi2(3) = 33.21
Log pseudolikelihood = -138.5308 Prob > chi2 = 0.0000

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ifp .0326664 .0173188 1.89 0.059 -.0012777 .0666105
tumsize .2603096 .0979851 2.66 0.008 .0682623 .4523568
pelnode -.779114 .4298199 -1.81 0.070 -1.621546 .0633175

Just as with stcox, this model has no constant term. It is absorbed as part of the baseline subhazard,
which is not directly estimated.

Example 2: CIF curves after stcrreg

In the above analysis, we stated that with increased interstitial fluid pressure comes an increase
in the incidence of local relapses in the presence of possible distant relapses. To demonstrate this
visually, we use stcurve to compare two CIF curves: one for ifp == 5 and one for ifp == 20. For
both curves, we assume positive pelvic node involvement (pelnode==0) and tumor size set at the
mean over the data.
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. stcurve, cif at(ifp=(5 20) pelnode=0)
note: function evaluated at specified values of selected covariates and

overall means of other covariates (if any).
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Competing-risks regression

For positive pelvic node involvement and mean tumor size, the probability of local relapse within
2 years is roughly 26% when the interstitial fluid pressure is 5 mmHg and near 40% when this is
increased to 20 mmHg. Both probabilities take into account the possibility that a distant relapse could
occur instead.

Multiple competing-event types

Competing-risks regression generalizes to the case where more than one type of event competes
with the event of interest. If you have such data, after you stset the failure event of interest, you
can lump together all competing event codes into the compete() option of stcrreg. It does not
matter whether multiple codes represent the same competing-event type, or if they represent multiple
types. The results will be the same.

Example 3: UDCA in patients with PBC

Therneau and Grambsch (2000, sec. 8.4.3) analyze data from patients with primary biliary cirrhosis
(PBC), a chronic liver disease characterized by progressive destruction of the bile ducts. Data were
obtained from 170 patients in a randomized double-blind trial conducted at the Mayo Clinic from
1988 to 1992. The trial was for a new treatment, ursodeoxycholic acid (UDCA; Lindor et al. [1994]).
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. use https://www.stata-press.com/data/r18/udca, clear
(Randomized trial of UDCA in PBC)

. describe

Contains data from https://www.stata-press.com/data/r18/udca.dta
Observations: 188 Randomized trial of UDCA in PBC

Variables: 8 3 Apr 2022 09:37
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

id int %9.0g Patient ID
entry int %td Date of enrollment
eventtime float %td Date of first event or loss to

follow-up
treat byte %9.0g 0=placebo 1=UDCA
stage byte %9.0g Histologic stage: 0=stage 1/2 at

entry 1=stage 3/4
lbili float %9.0g log(bilirubin value)
etype byte %9.0g event Event type (see notes)
wt double %4.2f Observation weight

Sorted by: id

The etype variable is coded as any of eight distinct event types (or no event) according to table 1.

Table 1. Event codes for the etype variable

Event code Event type

0 No event (censored)
1 Death
2 Transplant
3 Histologic progression
4 Development of varices
5 Development of ascites
6 Development of encephalopathy
7 Doubling of bilirubin
8 Worsening of symptoms

Cleves (1999) analyzed these data by estimating the cause-specific hazards for each of the eight
events. In the version of the data used there, the time at which any adverse event occurred was
recorded, but here we record only the time of the first adverse event for each patient. We do so
because we wish to perform a competing-risks analysis where we are interested in the time to the
first adverse event and the type of that event. The events compete because only one can be first.

We are interested in whether treatment will decrease the incidence of histologic progression (etype
== 3) as the first adverse outcome, in reference to treatment (treat), the logarithm of bilirubin level
(lbili), and histologic stage at entry (stage). Because the patients entered the study at different
times (entry), when stsetting the data we must specify this variable as the origin, or onset of risk.

The competing-risks analysis described above could thus proceed as follows:

. stset eventtime, failure(etype == 3) origin(entry)

. stcrreg treat lbili stage, compete(etype == 1 2 4 5 6 7 8)

except for one minor complication. Some patients experienced multiple “first events”, and thus ties
exist. For example, consider patient 8 who experienced four adverse events at the same time:
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. list if id == 8

id entry eventtime treat stage lbili etype wt

8. 8 25may1988 02jul1990 0 1 1.629241 Ascites 0.25
9. 8 25may1988 02jul1990 0 1 1.629241 Ence 0.25

10. 8 25may1988 02jul1990 0 1 1.629241 Bili_2 0.25
11. 8 25may1988 02jul1990 0 1 1.629241 Worse 0.25

While most patients are represented by one record each, patients with multiple first events are represented
by multiple records. Rather than break ties arbitrarily, we take advantage of how importance weights
(iweights) are handled by stcrreg. Importance weights are treated like frequency weights, but
they are allowed to be noninteger. As such, we define the weight variable (wt) to equal one for
single-record patients and to equal one divided by the number of tied events for multiple-record
patients. In this way, each patient contributes a total weight of one observation.

The only further modification we need is to specify vce(cluster id) so that our standard errors
account for the correlation within multiple records on the same patient.

. stset eventtime [iw=wt], failure(etype == 3) origin(entry)
(output omitted )

. stcrreg treat lbili stage, compete(etype == 1 2 4 5 6 7 8) vce(cluster id)

Failure _d: etype==3
Analysis time _t: (eventtime-origin)

Origin: time entry
Weight: [iweight=wt]

Iteration 0: Log pseudolikelihood = -62.158461
Iteration 1: Log pseudolikelihood = -61.671367
Iteration 2: Log pseudolikelihood = -61.669225
Iteration 3: Log pseudolikelihood = -61.669225

Competing-risks regression No. of obs = 170
No. of subjects = 170

Failure event: etype == 3 No. failed = 13
Competing events: etype == 1 2 4 5 6 7 8 No. competing = 59

No. censored = 98

Wald chi2(3) = 1.89
Log pseudolikelihood = -61.669225 Prob > chi2 = 0.5955

(Std. err. adjusted for 170 clusters in id)

Robust
_t SHR std. err. z P>|z| [95% conf. interval]

treat .5785214 .3238038 -0.98 0.328 .1931497 1.732786
lbili 1.012415 .367095 0.03 0.973 .4974143 2.060623
stage .5537101 .3305371 -0.99 0.322 .1718534 1.78405

In the above, we clustered on id but we did not stset it as an id() variable. That was because
we wanted stcrreg to treat each observation within patient as its own distinct spell, not as a set of
overlapping spells.

Treatment with UDCA seems to decrease the incidence of histologic progression as a first adverse
event. However, the effect is not significant, most likely as a result of observing so few failures.
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stcrreg as an alternative to stcox

In this section, we demonstrate that you may also use stcox to perform a cumulative-incidence
analysis, and we compare that approach with one that uses stcrreg.

Example 4: HIV and SI as competing events

Geskus (2000) and Putter, Fiocco, and Geskus (2007) analyzed data from 324 homosexual men
from the Amsterdam Cohort Studies on HIV infection and AIDS. During the course of infection, the
syncytium inducing (SI) HIV phenotype appeared in many of these individuals. The appearance of the
SI phenotype worsens prognosis. Thus the time to SI appearance in the absence of an AIDS diagnosis
is of interest. In this context, a diagnosis of AIDS acts as a competing event.

. use https://www.stata-press.com/data/r18/hiv_si
(HIV and SI as competing risks)

. describe

Contains data from https://www.stata-press.com/data/r18/hiv_si.dta
Observations: 324 HIV and SI as competing risks

Variables: 4 3 Apr 2022 13:40
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

patnr int %8.0g ID
time float %9.0g Years from HIV infection
status byte %10.0g stat Status
ccr5 byte %9.0g ccr5 WM (deletion in C-C chemokine

receptor 5 gene)

Sorted by:

In what follows, we re-create the analysis performed by Putter, Fiocco, and Geskus (2007), treating
AIDS and SI as competing events and modeling cumulative incidence in relation to covariate ccr5.
ccr5 equals 1 if a specific deletion in the C-C chemokine receptor 5 gene is present and equals zero
otherwise (wild type).

We can model the cumulative incidence of SI on ccr5 directly with stcrreg:
. stset time, failure(status == 2) // SI is the event of interest

(output omitted )
. stcrreg ccr5, compete(status == 1) // AIDS is the competing event

(output omitted )
Competing-risks regression No. of obs = 324

No. of subjects = 324
Failure event: status == 2 No. failed = 107
Competing event: status == 1 No. competing = 113

No. censored = 104

Wald chi2(1) = 0.01
Log pseudolikelihood = -579.06241 Prob > chi2 = 0.9172

Robust
_t SHR std. err. z P>|z| [95% conf. interval]

ccr5 1.023865 .2324119 0.10 0.917 .6561827 1.597574

It seems that this particular genetic mutation has little relation with the incidence of SI, a point
we emphasize further with a graph:
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. stcurve, cif at(ccr5=(0 1)) title(SI) range(0 13) yscale(range(0 0.5))
note: function evaluated at specified covariate values.

0

.1

.2

.3

.4

C
um

ul
at

iv
e 

in
ci

de
nc

e

0 5 10 15
Analysis time

ccr5=0
ccr5=1

SI

The above analysis compared SI incidence curves under the assumption that the subhazard for
SI, that which generates SI events in the presence of AIDS, was proportional with respect to ccr5.
Because we modeled the subhazard and not the cause-specific hazard, obtaining estimates of cumulative
incidence was straightforward and depended only on the subhazard for SI and not on that for AIDS.

As explained in The case for competing-risks regression, the cumulative incidence of SI is a
function of both the cause-specific hazard for SI, h1(t), and that for AIDS, h2(t), because SI and
AIDS are competing events. Suppose for the moment that we are not interested in the incidence of SI
in the presence of AIDS, but instead in the biological mechanism that causes SI in general. We can
model this mechanism with stcox by treating AIDS events as censored.

. stcox ccr5

(output omitted )
Cox regression with no ties

No. of subjects = 324 Number of obs = 324
No. of failures = 107
Time at risk = 2,261.96

LR chi2(1) = 1.19
Log likelihood = -549.73443 Prob > chi2 = 0.2748

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

ccr5 .7755334 .1846031 -1.07 0.286 .4863914 1.23656

Because we initially stset our data with SI as the event of interest, AIDS events are treated as
censored by stcox (but not by stcrreg). In any case, the ccr5 mutation somewhat decreases the
risk of SI, but this effect is not significant.

We make the above interpretation with no regard to AIDS as a competing risk because we are
interested only in the biological mechanism behind SI. To estimate the cumulative incidence of SI, we
first need to make a choice. Either we can pretend a diagnosis of AIDS does not exist as a competing
risk and use stcurve to plot survivor curves for SI based on the Cox model above, or we can
acknowledge AIDS as a competing risk and model that cause-specific hazard also.

We choose the latter. Before fitting the model, however, we need to re-stset the data with AIDS
as the event of interest.
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. stset time, failure(status == 1) // AIDS is the event of interest
(output omitted )

. stcox ccr5

(output omitted )
Cox regression with Breslow method for ties

No. of subjects = 324 Number of obs = 324
No. of failures = 113
Time at risk = 2,261.96

LR chi2(1) = 21.98
Log likelihood = -555.37301 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

ccr5 .2906087 .0892503 -4.02 0.000 .1591812 .530549

Patients with the ccr5 mutation have a significantly lower risk of AIDS.

We have now modeled both cause-specific hazards separately. Cleves (1999); Lunn and Mc-
Neil (1995); and Putter, Fiocco, and Geskus (2007) (among others) describe an approach based
on data duplication where both hazards can be modeled simultaneously. Such an approach has the
advantage of being able to set the effects of ccr5 on both hazards as equal and to test that hypothesis.
Also, you can model the baseline hazards as proportional rather than entirely distinct. However, for
the least parsimonious model with event-specific covariate effects and event-specific baseline hazards,
the data duplication method is no different than fitting separate models for each event type, just as
we have done above. Because data duplication will reveal no simpler model for these data, we do
not describe it further.

We can derive estimates of cumulative incidence for SI based on the above cause-specific hazard
models, but the process is a bit more complicated than before. The cumulative incidence of SI (event
type 1) in the presence of AIDS (event type 2) is calculated as

ĈIF1(t) =
∑
j:tj≤t

ĥ1(tj)Ŝ(tj−1)

with
Ŝ(t) =

∏
j:tj≤t

{
1− ĥ1(tj)− ĥ2(tj)

}
The tj index the times at which events (of any type) occur, and ĥ1(tj) and ĥ2(tj) are the cause-specific
hazard contributions for SI and AIDS respectively. Baseline hazard contributions can be obtained with
predict after stcox, and they can be transformed to hazard contributions for any covariate pattern by
multiplying them by the exponentiated linear predictor for that pattern. Hazard contributions represent
the increments of the cumulative hazards at each event time. Ŝ(t) estimates the probability that you
are event free at time t.
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We begin by refitting both models and predicting the hazard contributions.

. stset time, failure(status == 2) // SI
(output omitted )

. stcox ccr5
(output omitted )

. predict h_si_0, basehc
(217 missing values generated)

. generate h_si_1 = h_si_0*exp(_b[ccr5])
(217 missing values generated)

. stset time, failure(status == 1) // AIDS
(output omitted )

. stcox ccr5
(output omitted )

. predict h_aids_0, basehc
(211 missing values generated)

. gsort _t -_d

. by _t: replace h_aids_0 = . if _n > 1
(1 real change made, 1 to missing)

. generate h_aids_1 = h_aids_0*exp(_b[ccr5])
(212 missing values generated)

Variables h si 0 and h aids 0 hold the baseline hazard contributions, those for ccr5 == 0.
Variables h si 1 and h aids 1 hold the hazard contributions for ccr5 == 1, and they were obtained
by multiplying the baseline contributions by the exponentiated coefficient for ccr5. When we ran
stcox with AIDS as the event of interest, the output indicated that we had tied failure times (the
analysis for SI had no ties). As such, this required the extra step of setting any duplicated hazard
contributions to missing. As it turned out, this affected only one observation.

Hazard contributions are generated only at times when events are observed and are set to missing
otherwise. Because we will be summing and multiplying over event times, we next drop the observations
that contribute nothing and then replace missing with zero for those observations that have some
hazard contributions missing and some nonmissing.

. drop if missing(h_si_0) & missing(h_aids_0)
(105 observations deleted)

. replace h_aids_0 = 0 if missing(h_aids_0)
(107 real changes made)

. replace h_aids_1 = 0 if missing(h_aids_1)
(107 real changes made)

. replace h_si_0 = 0 if missing(h_si_0)
(112 real changes made)

. replace h_si_1 = 0 if missing(h_si_1)
(112 real changes made)

We can now sort by analysis time and calculate the estimated event-free survivor functions. Recall
that you can express a product as an exponentiated sum of logarithms, which allows us to take
advantage of Stata’s sum() function for obtaining running sums.

. sort _t

. generate S_0 = exp(sum(log(1- h_aids_0 - h_si_0)))

. generate S_1 = exp(sum(log(1- h_aids_1 - h_si_1)))

Finally, we calculate the estimated CIFs and graph:

. generate cif_si_0 = sum(S_0[_n-1]*h_si_0)

. label var cif_si_0 "ccr5=0"

https://www.stata.com/manuals/fnmathematicalfunctions.pdf#fnMathematicalfunctionssum()
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. generate cif_si_1 = sum(S_1[_n-1]*h_si_1)

. label var cif_si_1 "ccr5=1"

. twoway line cif_si* _t if _t<13, connect(J J) sort yscale(range(0 0.5))
> title(SI) ytitle(Cumulative incidence) xtitle(Analysis time)
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This model formulation shows ccr5 to have more of an effect on the incidence of SI, although the
effect is still small. Note that under this formulation, the effect of ccr5 is not constrained to be overall
increasing or overall decreasing. In fact, when t > 11 years or so, those with the ccr5 mutation
actually have an increased SI incidence. That is due to time-accumulated reduced competition from
AIDS, the risk of which is significantly lower when the ccr5 mutation is present.

Putter, Fiocco, and Geskus (2007) also performed the same analysis using AIDS as the event of
interest, something we leave to you as an exercise.

We have described two different modeling approaches for estimating the cumulative incidence of
SI. Although you may prefer the stcrreg approach because it is much simpler, that does not mean
it is a better model than the one based on stcox. The better model is the one whose assumptions
more closely fit the data. The stcrreg model assumes that the effect of ccr5 is proportional on
the subhazard for SI. The stcox model assumes proportionality on the cause-specific hazards for
both SI and AIDS. Because our analysis uses only one binary covariate, we can compare both models
with a nonparametric estimator of the CIF to see which fits the data more closely; see [ST] stcrreg
postestimation.

Multiple records per subject

stcrreg can be used with data where you have multiple records per subject, as long as 1) you
stset an ID variable that identifies the subjects and 2) you carefully consider the role played by
time-varying covariates in subjects who fail because of competing events. We explain both issues
below.

Stata’s st suite of commands allows for multiple records per subject. Having multiple records
allows you to record gaps in subjects’ histories and to keep track of time-varying covariates. If you
have multiple records per subject, you identify which records belong to which subjects by specifying
an ID variable to stset option id().

https://www.stata.com/manuals/ststcrregpostestimation.pdf#ststcrregpostestimation
https://www.stata.com/manuals/ststcrregpostestimation.pdf#ststcrregpostestimation
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Consider the sample data listed below:

. list if id == 18

id _t0 _t _d x

1. 18 3 5 0 5.1
2. 18 5 8 0 7.8
3. 18 11 12 0 6.7
4. 18 12 20 1 8.9

These data reflect the following:

• Subject 18 first became at risk at analysis time 3 (delayed entry) with covariate value x
equal to 5.1.

• At time 5, subject 18’s x value changed to 7.8.

• Subject 18 left the study at time 8 only to return at time 11 (gap), with x equal to 6.7 at
that time.

• At time 12, x changed to 8.9.

• Subject 18 failed at time 20 with x equal to 8.9 at that time.

An analysis of these data with Cox regression using stcox is capable of processing all of this
information. Intermittent records are treated as censored ( d==0), and either failure or censoring
occurs on the last record (here failure with d==1). When subjects are not under observation, they
are simply not considered at risk of failure. Time-varying covariates are also processed correctly. For
example, if some other subject failed at time 7, then the risk calculations would count subject 18 at
risk with x equal to 7.8 at that time.

stcox will give the same results for the above data whether or not you stset the ID variable, id.
Whether you treat the above data as four distinct subjects (three censored and one failed) or as one
subject with a four-record history is immaterial. The only difference you may encounter concerns
robust and replication-based standard errors, in which case if you stset an ID variable, then stcox
will automatically cluster on this variable.

Such a distinction, however, is of vital importance to stcrreg. While stcox is concerned only
about detecting one type of failure, stcrreg relies on precise accounting of the number of subjects
who fail because of the event of interest, those who fail because of competing events, and those
who are censored. In particular, the weighting mechanism behind stcrreg depends on an accurate
estimate of the probability a subject will be censored; see Methods and formulas. As such, it makes
a difference whether you want to treat the above as four distinct subjects or as one subject. If you
have multiple records per subject, you must stset your ID variable before using stcrreg. When
counting the number failed, number competing, and number censored, stcrreg only considers what
happened at the end of a subject’s history. Intermittent records are treated simply as temporary entries
to and exits from the analysis, and the exits are not counted as censored in the strict sense.

Furthermore, when using stcrreg with covariates that change over multiple records (time-varying
covariates), you need to carefully consider what happens when subjects experience competing failures.
For the above sample data, subject 18 failed because of the event of interest ( d==1). Consider,
however, what would have happened had this subject failed because of a competing event instead.
Competing-risks regression keeps such subjects “at risk” of failure from the event of interest even
after they fail from competing events; see Methods and formulas. Because these subjects will be used
in future risk calculations for which they have no data, stcrreg will use the last available covariate
values for these calculations. For the above example, if subject 18 experiences a competing event at
time 20, then the last available value of x, 8.9, will be used in all subsequent risk calculations. If
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the last available values are as good a guess as any as to what future values would have been—for
example, a binary covariate recording pretransplant versus posttransplant status—then this is not an
issue. If, however, you have reason to believe that a subject’s covariates would have been much
different had the subject remained under observation, then the results from stcrreg could be biased.

Example 5: Hospital-acquired pneumonia

Consider the following simulated data from a competing-risks analysis studying the effects of
pneumonia.

. use https://www.stata-press.com/data/r18/pneumonia, clear
(Hospital-acquired pneumonia)

. describe

Contains data from https://www.stata-press.com/data/r18/pneumonia.dta
Observations: 957 Hospital-acquired pneumonia

Variables: 7 7 Apr 2022 15:35

Variable Storage Display Value
name type format label Variable label

id int %9.0g Patient ID
age byte %9.0g Age at admission
ndays int %9.0g Days in ICU
died byte %9.0g 1 if died
censored byte %9.0g 1 if alive and in ICU at the end

of the study
discharged byte %9.0g 1 if discharged
pneumonia byte %9.0g 1 if pneumonia

Sorted by: id

The above data are for 855 ICU patients. One hundred twenty-three patients contracted pneumonia,
of which 21 did before admission and 102 during their stay. Those patients who contracted pneumonia
during their stay are represented by two records with the time-varying covariate pneumonia recording
the change in status.

We perform a competing-risks regression for the cumulative incidence of death during ICU stay
with age and pneumonia as covariates. We also treat hospital discharge as a competing event.

. stset ndays, id(id) failure(died)
(output omitted )

. stcrreg age pneumonia, compete(discharged) noshow nolog

Competing-risks regression No. of obs = 957
No. of subjects = 855

Failure events: died nonzero, nonmissing No. failed = 178
Competing events: discharged nonzero, nonmissing No. competing = 641

No. censored = 36

Wald chi2(2) = 121.21
Log pseudolikelihood = -1128.6096 Prob > chi2 = 0.0000

(Std. err. adjusted for 855 clusters in id)

Robust
_t SHR std. err. z P>|z| [95% conf. interval]

age 1.021612 .0076443 2.86 0.004 1.006739 1.036705
pneumonia 5.587052 .9641271 9.97 0.000 3.983782 7.835558
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Both increased age and contracting pneumonia are associated with an increased incidence of death in
the ICU.

Option tvc() and testing the proportional-subhazards assumption

In the previous section, we considered data with multiple records per subject. Such data make it
possible to record discretely time-varying covariates, those whose values change at discrete points in
time. Each change is captured by a new record.

Consider instead what happens when you have covariates that vary continuously with respect to
time. Competing-risks regression assumes the following relationship between subhazard and baseline
subhazard

h1(t) = h1,0(t) exp(β1x1 + · · ·+ βkxk)

where h1,0(t) is the baseline subhazard function. For most purposes, this model is sufficient, but
sometimes we may wish to introduce variables of the form zi(t) = zig(t), which vary continuously
with time so that

h1(t) = h1,0(t) exp {β1x1 + · · ·+ βkxk + g(t)(γ1z1 + · · ·+ γmzm)} (1)

where (z1, . . . , zm) are the baseline (constant) covariates. Fitting this model has the net effect of
estimating the regression coefficient, γi, for the covariate g(t)zi, which is a function of analysis time.

The covariates (z1, . . . , zm) are specified using the tvc(tvarlist) option, and g(t) is specified
using the texp(exp) option, where t in g(t) is analysis time. For example, if we want g(t) = log(t),
we would use texp(log( t)) because t stores the analysis time once the data are stset.

When subjects fail because of competing events, covariate values for these subjects continue
to be used in subsequent risk calculations; see the previous section for details. When this occurs,
any covariates specified using tvc() will continue to respect their time interactions even after these
subjects fail. Because such behavior is unlikely to reflect any real data situation, we do not recommend
using tvc() for this purpose.

We do, however, recommend using tvc() to model time-varying coefficients, because these can
be used to test the proportionality assumption behind competing-risks regression. Consider a version
of (1) that contains only one fixed covariate, x1, and sets z1 = x1:

h1(t) = h1,0(t) exp [{β1 + γ1g(t)}x1]

Given this new arrangement, we consider that β1 + γ1g(t) is a (possibly) time-varying coefficient
on the covariate x1, for some specified function of time g(t). The coefficient has a time-invariant
component β1, with γ1 determining the magnitude of the time-dependent deviations from β1. As
such, a test of γ1 = 0 is a test of time invariance for the coefficient on x1.

Confirming that a coefficient is time invariant is one way of testing the proportional-subhazards
assumption. Proportional subhazards implies that the relative subhazard (that is, β) is fixed over time,
and this assumption would be violated if a time interaction proved significant.
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Example 6: Testing proportionality of subhazards

Returning to our cervical cancer study (example 1), we now include time interactions on all three
covariates as a way of testing the proportional-subhazards assumption for each:

. use https://www.stata-press.com/data/r18/hypoxia
(Hypoxia study)

. stset dftime, failure(failtype == 1)
(output omitted )

. stcrreg ifp tumsize pelnode, compete(failtype == 2) tvc(ifp tumsize pelnode)
> noshr

(output omitted )
Competing-risks regression No. of obs = 109

No. of subjects = 109
Failure event: failtype == 1 No. failed = 33
Competing event: failtype == 2 No. competing = 17

No. censored = 59

Wald chi2(6) = 44.93
Log pseudolikelihood = -136.79 Prob > chi2 = 0.0000

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

main
ifp .0262093 .0174458 1.50 0.133 -.0079838 .0604025

tumsize .37897 .1096628 3.46 0.001 .1640348 .5939052
pelnode -.766362 .473674 -1.62 0.106 -1.694746 .162022

tvc
ifp .0055901 .0081809 0.68 0.494 -.0104441 .0216243

tumsize -.1415204 .0908955 -1.56 0.119 -.3196722 .0366314
pelnode .0610457 .5676173 0.11 0.914 -1.051464 1.173555

Note: Variables in tvc equation interacted with _t.

We used the default function of time g(t) = t, although we could have specified otherwise with
the texp() option. After looking at the significance levels in the equation labeled “tvc”, we find no
indication that the proportionality assumption has been violated.

When you use tvc() in this manner, there is no issue of postfailure covariate values for subjects
who fail from competing events. The covariate values are assumed constant—the coefficients change
with time.
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Stored results
stcrreg stores the following in e():

Scalars
e(N) number of observations
e(N sub) number of subjects
e(N fail) number of failures
e(N compete) number of competing events
e(N censor) number of censored subjects
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log pseudolikelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) p-value for model test
e(rank) rank of e(V)
e(fmult) 1 if > 1 failure events, 0 otherwise
e(crmult) 1 if > 1 competing events, 0 otherwise
e(fnz) 1 if nonzero indicates failure, 0 otherwise
e(crnz) 1 if nonzero indicates competing, 0 otherwise
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) stcrreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(mainvars) variables in main equation
e(tvc) covariates interacted with time from option tvc()
e(texp) function of time used for covariates from option tvc()
e(fevent) failure event(s) in estimation output
e(crevent) competing event(s) in estimation output
e(compete) competing event(s) as typed
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset1) offset
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
In what follows, we assume single-record data and time-invariant covariates or coefficients.

Extensions to both multiple-record data and time-varying covariates that are functions of time are
achieved by treating the mechanisms that generate censorings, competing events, and failure events
of interest as counting processes; see Fine and Gray (1999) and Andersen et al. (1993) for further
details.

Let xi be the row vector of m covariates for the time interval (t0i, ti ] for the ith observation in the
dataset (i = 1, . . . , n). stcrreg obtains parameter estimates β̂ by maximizing the log-pseudolikelihood
function

logL =

n∑
i=1

δiwi

xiβ+ offseti − log

∑
j∈Ri

wjπji exp(xjβ+ offsetj)




where δi indicates a failure of interest for observation i and Ri is the set of observations, j, that are
at risk at time ti (that is, all j such that t0j < ti ≤ tj). wi and offseti are the usual observation
weights and linear offsets, if specified.

The log likelihood given above is identical to that for standard Cox regression (Breslow method
for ties) with the exception of the weights πji. These weights are used to keep subjects who have
failed because of competing events in subsequent risk sets and to decrease their weight over time as
their likelihood of being otherwise censored increases.

Formally, extend Ri above not only to include those at risk of failure at time ti, but also to include
those subjects already having experienced a competing-risks event. Also, define

πji =
Ŝc(ti)

Ŝc{min(tj , ti)}

if subject j experiences a competing event; πji = 1 otherwise. Ŝc(t) is the Kaplan–Meier estimate
of the survivor function for the censoring distribution—that which treats censorings as the events of
interest—evaluated at time t, and tj is the time at which subject j experienced his or her competing-
failure event. As a matter of convention, Ŝc(t) is treated as the probability of being censored up to
but not including time t.
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Because of the sample weighting inherent to this estimator, the standard Hessian-based estimate
of variance is not statistically appropriate and is thus rejected in favor of a robust, sandwich-type
estimator, as derived by Fine and Gray (1999).

Define zi = xiβ̂+ offseti. (Pseudo)likelihood scores are given by

ûi = η̂i + ψ̂i

where η̂i = (η̂1i, . . . , η̂mi)
′, and

η̂ki = δi (xki − aki)− exp(zi)
∑

j:t0i<tj≤ti

δjwjπij(xki − akj)∑
`∈Rj

w`π`j exp(z`)

for

aki =

∑
`∈Ri

w`π`ixk` exp(z`)∑
`∈Ri

w`π`i exp(z`)

The ψ̂i are variance contributions due to data estimation of the weights πji, with

ψ̂i =
γiq̂(ti)

r(ti)
−

∑
j:t0i<tj≤ti

γj ĥc(tj)q̂(tj)

r(tj)

γi indicates censoring for observation i, r(t) is the number at risk of failure (or censoring) at time t,

ĥc(t) =

∑n
i=1 γiI(ti = t)

r(t)

and the kth component of q̂(t) is

q̂k(t) =
∑
i∈C(t)

wi exp(zi)
∑

j:t0i<tj≤ti

δjwjπij(xki − akj)∑
`∈Rj

w`π`j exp(z`)
I(tj ≥ t)

where C(t) is the set of observations that experienced a competing event prior to time t.

By default, stcrreg calculates the Huber/White/sandwich estimator of the variance and calculates
its clustered version if either the vce(cluster clustvar) option is specified or an ID variable has been
stset. See Maximum likelihood estimators and Methods and formulas in [P] robust for details on
how the pseudolikelihood scores defined above are used to calculate this variance estimator.
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