STATA SPATIAL AUTOREGRESSIVE MODELS REFERENCE MANUAL

RELEASE 18

A Stata Press Publication
StataCorp LLC
College Station, Texas

Copyright (c) 1985-2023 StataCorp LLC
All rights reserved
Version 18

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
ISBN-10: 1-59718-398-9
ISBN-13: 978-1-59718-398-7

This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means-electronic, mechanical, photocopy, recording, or otherwise-without the prior written permission of StataCorp LLC unless permitted subject to the terms and conditions of a license granted to you by StataCorp LLC to use the software and documentation. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document.

StataCorp provides this manual "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make improvements and/or changes in the product(s) and the program(s) described in this manual at any time and without notice.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto DVD, CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes.

The automobile dataset appearing on the accompanying media is Copyright (c) 1979 by Consumers Union of U.S., Inc., Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.

Stata, STPTE Stata Press, Mata, məTE and NetCourse are registered trademarks of StataCorp LLC.
Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC.

Other brand and product names are registered trademarks or trademarks of their respective companies.
For copyright information about the software, type help copyright within Stata.

The suggested citation for this software is
StataCorp. 2023. Stata 18. Statistical software. StataCorp LLC.
The suggested citation for this manual is
StataCorp. 2023. Stata 18 Spatial Autoregressive Models Reference Manual. College Station, TX: Stata Press.

Contents

Intro Introduction to spatial data and SAR models 1
Intro 1 A brief introduction to SAR models 5
Intro 2 The W matrix 10
Intro 3 Preparing data for analysis 16
Intro 4 Preparing data: Data with shapefiles 22
Intro 5 Preparing data: Data containing locations (no shapefiles) 34
Intro 6 Preparing data: Data without shapefiles or locations 37
Intro 7 Example from start to finish 40
Intro 8 The Sp estimation commands 55
estat moran Moran's test of residual correlation with nearby residuals 58
grmap Graph choropleth maps 64
spbalance Make panel data strongly balanced 65
spcompress Compress Stata-format shapefile 69
spdistance Calculator for distance between places 72
spgenerate Generate variables containing spatial lags 77
spivregress Spatial autoregressive models with endogenous covariates 80
spivregress postestimation Postestimation tools for spivregress 92
spmatrix Categorical guide to the spmatrix command 100
spmatrix copy Copy spatial weighting matrix stored in memory 101
spmatrix create Create standard weighting matrices 102
spmatrix drop List and delete weighting matrices stored in memory 109
spmatrix export Export weighting matrix to text file 112
spmatrix fromdata Create custom weighting matrix from data 115
spmatrix import Import weighting matrix from text file 117
spmatrix matafromsp Copy weighting matrix to Mata 119
spmatrix normalize Normalize weighting matrix 122
spmatrix note Put note on weighting matrix, or display it 124
spmatrix save Save spatial weighting matrix to file 125
spmatrix spfrommata Copy Mata matrix to Sp 127
spmatrix summarize Summarize weighting matrix stored in memory 131
spmatrix use Load spatial weighting matrix from file 134
spmatrix userdefined Create custom weighting matrix 135
spregress Spatial autoregressive models 141
spregress postestimation Postestimation tools for spregress 168
spset Declare data to be Sp spatial data 176
spshape2dta Translate shapefile to Stata format 188
spxtregress Spatial autoregressive models for panel data 190
spxtregress postestimation Postestimation tools for spxtregress 214
Glossary 221
Subject and author index 225

Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals, for example, [U] 27 Overview of Stata estimation commands; [R] regress; and [D] reshape. The first example is a reference to chapter 27, Overview of Stata estimation commands, in the User's Guide; the second is a reference to the regress entry in the Base Reference Manual; and the third is a reference to the reshape entry in the Data Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM]	Getting Started with Stata for Mac
[GSU]	Getting Started with Stata for Unix
[GSW]	Getting Started with Stata for Windows
[U]	Stata User's Guide
[R]	Stata Base Reference Manual
[ADAPT]	Stata Adaptive Designs: Group Sequential Trials Reference Manual
[BAYES]	Stata Bayesian Analysis Reference Manual
[BMA]	Stata Bayesian Model Averaging Reference Manual
[CAUSAL]	Stata Causal Inference and Treatment-Effects Estimation Reference Manual
[CM]	Stata Choice Models Reference Manual
[D]	Stata Data Management Reference Manual
[DSGE]	Stata Dynamic Stochastic General Equilibrium Models Reference Manual
[ERM]	Stata Extended Regression Models Reference Manual
[FMM]	Stata Finite Mixture Models Reference Manual
[FN]	Stata Functions Reference Manual
[G]	Stata Graphics Reference Manual
[IRT]	Stata Item Response Theory Reference Manual
[LASSO]	Stata Lasso Reference Manual
[XT]	Stata Longitudinal-Data/Panel-Data Reference Manual
[META]	Stata Meta-Analysis Reference Manual
[ME]	Stata Multilevel Mixed-Effects Reference Manual
[MI]	Stata Multiple-Imputation Reference Manual
[MV]	Stata Multivariate Statistics Reference Manual
[PSS]	Stata Power, Precision, and Sample-Size Reference Manual
[P]	Stata Programming Reference Manual
[RPT]	Stata Reporting Reference Manual
[SP]	Stata Spatial Autoregressive Models Reference Manual
[SEM]	Stata Structural Equation Modeling Reference Manual
[SVY]	Stata Survey Data Reference Manual
[ST]	Stata Survival Analysis Reference Manual
[TABLES]	Stata Customizable Tables and Collected Results Reference Manual
[TS]	Stata Time-Series Reference Manual
[I]	Stata Index
[M]	Mata Reference Manual

Title

Intro - Introduction to spatial data and SAR models

Description Remarks and examples Acknowledgments References

Description

The Sp commands manage data and fit regressions accounting for spatial relationships. Sp fits SAR models that include spatial lags of dependent and independent variables with spatial autoregressive errors on lattice and areal data, which includes nongeographic data such as social network nodes.

Different fields use different jargon for spatial concepts. SAR stands for (take your pick) spatial autoregressive or simultaneous autoregressive.

Eight short introductions will turn you into an expert on the Sp software. In these introductions, you will learn about spatial weighting matrices and how to create them as you prepare your data for analysis. You will learn about three estimation commands-spregress, spivregress, and spxtregress-for fitting SAR models. You will also find a worked example that includes data preparation, model fitting, and interpretation. Read the introductions first and read them sequentially.

The introductions and the commands of interest with spatial data are listed below, and each command is described in detail in its respective manual entry.

Learning the system

[SP] Intro 1	A brief introduction to SAR models
[SP] Intro 2	The W matrix
[SP] Intro 3	Preparing data for analysis
[SP] Intro 4	Preparing data: Data with shapefiles
[SP] Intro 5	Preparing data: Data containing locations (no shapefiles)
[SP] Intro 6	Preparing data: Data without shapefiles or locations
[SP] Intro 7	Example from start to finish
[SP] Intro 8	The Sp estimation commands

Preparing data

[D] zipfile Compress and uncompress files in zip archive format
[SP] spshape2dta Translate shapefile to Stata format
[SP] spset Declare data to be Sp spatial data
[SP] spbalance Make panel data strongly balanced
[SP] spcompress Compress Stata-format shapefile

Looking at data

[SP] grmap Graph choropleth maps
[SP] spdistance Calculator for distance between places

Setting the spatial weighting matrix

[SP] spmatrix Create, manipulate, and import/export weighting matrices
[SP] spgenerate Generate spatial lag $(\mathbf{W} \times \mathbf{x})$ variables

Fitting models
[SP] spregress
[SP] spivregress
[SP] spxtregress

Postestimation

[SP] estat moran
[SP] spregress postestimation
[SP] spivregress postestimation
[SP] spxtregress postestimation

Fit cross-sectional SAR models
Fit cross-sectional SAR models with endogenous covariates Fit panel-data SAR models

Moran's test after regress
Postestimation tools for spregress
Postestimation tools for spivregress
Postestimation tools for spxtregress

Remarks and examples

The sections below provide more information about SAR models.
References for learning SAR models
Technical references on the development and fitting of SAR models

References for learning SAR models

Spatial models have been applied in a variety of disciplines, such as criminology, demography, economics, epidemiology, political science, and public health. Cressie (1993), Darmofal (2015), LeSage and Pace (2009), and Waller and Gotway (2004) provide textbook introductions.

Darmofal (2015, chap. 2) gives an introduction to spatial weighting matrices.
LeSage and Pace (2009, sec. 2.7) define total, direct, and indirect impacts.
Anselin (1988) gives a classic introduction to the subject.

Technical references on the development and fitting of SAR models

SAR models date back to the work of Whittle (1954) and Cliff and Ord (1973, 1981).
The GS2SLS estimator was derived by Kelejian and Prucha (1998, 1999, 2010) and extended by Arraiz et al. (2010) and Drukker, Egger, and Prucha (2013).

The formulas for the GS2SLS without higher-order spatial weighting matrices were published in Drukker, Prucha, and Raciborski (2013a). For the higher-order models, spregress, gs2sls implements the estimator derived in Badinger and Egger (2011) and Prucha, Drukker, and Egger (2016).

The properties of the ML estimator were proven by Lee (2004), who also provides the formulas for the robust estimator of the VCE.

Kelejian and Prucha (2010) give a technical discussion of how normalizing spatial weighting matrices affects parameter definition.

Lee and Yu (2011) give formulas and theory for SAR panel models.

Acknowledgments

We thank Ingmar Prucha of the University of Maryland for his work with us on spatial methods and econometrics that led to the methods implemented here.

We also thank Irani Arraiz of the Inter-American Development Bank, Badi Baltagi of Syracuse University, Peter Egger of ETH Zurich, and Harry Kelejian of the University of Maryland for their helpful comments and guidance.

We are grateful to Maurizio Pisati of the Università degli Studi di Milano-Bicocca for allowing us to include grmap, a lightly adapted version of his spmap command (Pisati 2007), which was preceded by his tmap command (Pisati 2004).

We thank Stata users for their contributions on spatial data management and spatial analysis that were published in the Stata Journal. We thank Belotti, Hughes, and Piano Mortari for "Spatial paneldata models using Stata". We thank Brophy, Daniels, and Musundwa for "gpsbound: A command for importing and verifying geographical information from a user-provided shapefile". We thank Neumayer and Plümper for "Making spatial analysis operational: Commands for generating spatialeffect variables in monadic and dyadic data". We thank Müller for "Stata in space: Econometric analysis of spatially explicit raster data".

StataCorp's Sp commands are based on earlier versions published in Drukker, Prucha, and Raciborski (2013a, 2013b) and Drukker et al. (2013).

References

Anselin, L. 1988. Spatial Econometrics: Methods and Models. New York: Springer.
Arraiz, I., D. M. Drukker, H. H. Kelejian, and I. R. Prucha. 2010. A spatial Cliff-Ord-type model with heteroskedastic innovations: Small and large sample results. Journal of Regional Science 50: 592-614. https://doi.org/10.1111/j.14679787.2009.00618.x.

Badinger, H., and P. H. Egger. 2011. Estimation of higher-order spatial autoregressive cross-section models with heteroscedastic disturbances. Papers in Regional Science 90: 213-235. https://doi.org/10.1111/j.1435-5957.2010.00323.x.

Cliff, A. D., and J. K. Ord. 1973. Spatial Autocorrelation. London: Pion.
——. 1981. Spatial Processes: Models and Applications. London: Pion.
Cressie, N. 1993. Statistics for Spatial Data. Rev. ed. New York: Wiley.
Darmofal, D. 2015. Spatial Analysis for the Social Sciences. New York: Cambridge University Press.
Drukker, D. M., P. H. Egger, and I. R. Prucha. 2013. On two-step estimation of a spatial autoregressive model with autoregressive disturbances and endogenous regressors. Econometric Reviews 32: 686-733. https://doi.org/10.1080/07474938.2013.741020.

Drukker, D. M., H. Peng, I. R. Prucha, and R. Raciborski. 2013. Creating and managing spatial-weighting matrices with the spmat command. Stata Journal 13: 242-286.

Drukker, D. M., I. R. Prucha, and R. Raciborski. 2013a. Maximum likelihood and generalized spatial two-stage least-squares estimators for a spatial-autoregressive model with spatial-autoregressive disturbances. Stata Journal 13: 221-241.
——. 2013b. A command for estimating spatial-autoregressive models with spatial-autoregressive disturbances and additional endogenous variables. Stata Journal 13: 287-301.

Kelejian, H. H., and I. R. Prucha. 1998. A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. Journal of Real Estate Finance and Economics 17: 99-121. https://doi.org/10.1023/A:1007707430416.
-_. 1999. A generalized moments estimator for the autoregressive parameter in a spatial model. International Economic Review 40: 509-533. https://doi.org/10.1111/1468-2354.00027.
——. 2010. Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances. Journal of Econometrics 157: 53-67. https://doi.org/10.1016/j.jeconom.2009.10.025.

Lee, L.-F. 2004. Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models. Econometrica 72: 1899-1925. https://doi.org/10.1111/j.1468-0262.2004.00558.x.
Lee, L.-F., and J. Yu. 2011. Estimation of spatial panels. Foundations and Trends in Econometrics 4(1-2): 1-164. http://doi.org/10.1561/0800000015.

LeSage, J., and R. K. Pace. 2009. Introduction to Spatial Econometrics. Boca Raton, FL: Chapman and Hall/CRC.
Pisati, M. 2004. Simple thematic mapping. Stata Journal 4: 361-378.
__. 2007. spmap: Stata module to visualize spatial data. Statistical Software Components S456812, Department of Economics, Boston College. https://ideas.repec.org/c/boc/bocode/s456812.html.
Prucha, I. R., D. M. Drukker, and P. H. Egger. 2016. Simultaneous equations models with higher-order spatial or social network interactions. Working paper, Department of Economics, University of Maryland. http://econweb.umd. edu/~prucha/papers/WP_IRP_PHE_DMD_2016.pdf.
Spinelli, D. 2022. Fitting spatial autoregressive logit and probit models using Stata: The spatbinary command. Stata Journal 22: 293-318.

Waller, L. A., and C. A. Gotway. 2004. Applied Spatial Statistics for Public Health Data. Hoboken, NJ: Wiley.
Whittle, P. 1954. On stationary processes in the plane. Biometrika 434-449. https://doi.org/10.2307/2332724.

Title

Intro 1 - A brief introduction to SAR models

Description Remarks and examples Also see

Description

Sp can fit models with

1. spatial lags of dependent variables,
2. spatial lags of independent variables, and
3. spatially autoregressive errors.

The spatial features can be used in any combination.
This entry describes the above features and describes SAR models in general.
You may also be interested in introductions to other aspects of Sp . Below, we provide links to those other introductions.

Intro 2	The W matrix
Intro 3	Preparing data for analysis
Intro 4	Preparing data: Data with shapefiles
Intro 5	Preparing data: Data containing locations (no shapefiles)
Intro 6	Preparing data: Data without shapefiles or locations
Intro 7	Example from start to finish
Intro 8	The Sp estimation commands

Remarks and examples

SAR models are fit using datasets that contain observations on spatial units such as countries, districts, or even nongeographical units such as social network nodes. For simplicity, we refer to these spatial units as areas. Datasets contain at a minimum a continuous outcome variable, such as incidence of disease, output of farms, or crime rates, along with the other variables assumed to predict the chosen outcome. The dataset could be used to fit a linear regression of the form

$$
y_{i}=\beta_{0}+x_{i, 1} \beta_{1}+x_{i, 2} \beta_{2}+\cdots+x_{i, k} \beta_{k}+\epsilon_{i}
$$

This linear regression is provided as a starting point; it is not a SAR model. To give this starting point a spatial feel, we will call the observations areas. The variables contain characteristics of the areas. The notation we will use is

i	area (observation), numbered 1 to N
y_{i}	dependent (outcome) variable in area i
$x_{i, 1}$	1st independent variable in area i

The linear regression model can be written in column-vector notation:

$$
\mathbf{y}=\beta_{0}+\beta_{1} \mathbf{x}_{1}+\beta_{2} \mathbf{x}_{2}+\cdots+\beta_{k} \mathbf{x}_{k}+\boldsymbol{\epsilon}
$$

The boldfaced variables are each $N \times 1$ vectors.
You could fit the above model in Stata by typing
regress y x1 x2 ... xk
SAR models extend linear regression by allowing outcomes in one area to be affected by

1. outcomes in nearby areas,
2. covariates from nearby areas, and
3. errors from nearby areas.

Said in the spatial jargon, models can contain

1. spatial lags of the outcome variable,
2. spatial lags of covariates, and
3. spatially autoregressive errors.

These terms are borrowed from the time-series literature. In time series, an autoregressive $\operatorname{AR}(1)$ process is

$$
y_{t}=\gamma_{0}+\gamma_{1} y_{t-1}+\epsilon_{t}
$$

where y_{t-1} is called the lag of y. In vector notation, L. is the lag operator, and the above equation could be written as

$$
\mathbf{y}=\gamma_{0}+\gamma_{1} \mathrm{~L} \cdot \mathbf{y}+\boldsymbol{\epsilon}
$$

Sometimes, $\operatorname{AR}(1)$ models also include autoregressive errors:

$$
\mathbf{y}=\gamma_{0}+\gamma_{1} \mathrm{~L} \cdot \mathbf{y}+\mathbf{u}
$$

where $\mathbf{u}=\rho \mathrm{L} . \mathbf{u}+\boldsymbol{\epsilon}$. In that case, the equation becomes

$$
\mathbf{y}=\gamma_{0}+\gamma_{1} \mathrm{~L} \cdot \mathbf{y}+(\mathbf{I}-\rho \mathrm{L} .)^{-1} \boldsymbol{\epsilon}
$$

The parameter ρ measures the correlation in the errors and is a parameter to be estimated along with γ_{0} and γ_{1}.

The time-series notation and jargon can be translated to the spatial domain. The lag operator becomes an $N \times N$ matrix \mathbf{W}. What was L.y becomes $\mathbf{W y}$, which means matrix \mathbf{W} multiplied by vector \mathbf{y}. The SAR model corresponding to the above time-series equation is

$$
\mathbf{y}=\beta_{0}+\beta_{1} \mathbf{W} \mathbf{y}+\boldsymbol{\epsilon}
$$

The SAR model corresponding to the time-series equation with autoregressive errors is

$$
\mathbf{y}=\beta_{0}+\beta_{1} \mathbf{W} \mathbf{y}+(\mathbf{I}-\rho \mathbf{W})^{-1} \boldsymbol{\epsilon}
$$

\mathbf{W} is called the spatial weighting matrix. The values in the matrix characterize the spatial relationships between areas. \mathbf{W} is the spatial analog of L.y. Whereas L.y measures the potential spillover from time $t-1$ to t, elements $W_{i_{1}, i_{2}}$ specify how much potential spillover there is from area i_{2} to i_{1}. $W_{i_{1}, i_{2}}$ is zero if area i_{2} can have no effect on i_{1}. The more potential spillover there is, the larger $W_{i_{1}, i_{2}}$ is. The elements of \mathbf{W} are specified before the model is fit.

In the mathematics of SAR models:

- Wy is the spatial equivalent of L.y. Either way, it is the lag of the dependent variable.
- $\mathbf{W} \mathbf{x}_{j}$ is the spatial equivalent of L. \mathbf{x}_{j}. Either way, it is the lag of the j th independent variable.
- $(\mathbf{I}-\rho \mathbf{W})^{-1} \boldsymbol{\epsilon}$ is the spatial equivalent of $(1-\rho \mathbf{L} .)^{-1} \boldsymbol{\epsilon}$. Either way, it is an autoregressive error.

Any of the above could be included in a SAR model.
Recall that the linear regression model we started with was

$$
\mathbf{y}=\beta_{0}+\beta_{1} \mathbf{x}_{1}+\beta_{2} \mathbf{x}_{2}+\cdots+\beta_{k} \mathbf{x}_{k}+\boldsymbol{\epsilon}
$$

We will keep the first two explanatory variables and drop the rest. The equation becomes

$$
\mathbf{y}=\beta_{0}+\beta_{1} \mathbf{x}_{1}+\beta_{2} \mathbf{x}_{2}+\boldsymbol{\epsilon}
$$

We could fit the shortened model by typing
regress y x1 x2

We could add $\mathbf{W y}$ to the model:

$$
\mathbf{y}=\beta_{0}+\beta_{1} \mathbf{x}_{1}+\beta_{2} \mathbf{x}_{2}+\beta_{3} \mathbf{W} \mathbf{y}+\boldsymbol{\epsilon}
$$

We could fit this model by typing

```
spregress y x1 x2, gs2sls dvarlag(W)
```

The result would be that $\beta_{3} \mathbf{W}$ would measure the amount that outcomes are affected by nearby outcomes.

We could add $\mathbf{W} \mathbf{x}_{1}$ to the model:

$$
\mathbf{y}=\beta_{0}+\beta_{1} \mathbf{x}_{1}+\beta_{2} \mathbf{x}_{2}+\beta_{3} \mathbf{W} \mathbf{y}+\beta_{4} \mathbf{W} \mathbf{x}_{1}+\boldsymbol{\epsilon}
$$

To fit this model, we would type

```
spregress y x1 x2, gs2sls dvarlag(W) ivarlag(W:x1)
```

The result would be that we would estimate an extra coefficient β_{4} and that $\beta_{4} \mathbf{W}$ would measure the spillover of \mathbf{x}_{1}.

Spatial models can have more than one weighting matrix. If we had a second weighting matrix \mathbf{V} in addition to \mathbf{W}, we could fit the model

$$
\mathbf{y}=\beta_{0}+\beta_{1} \mathbf{x}_{1}+\beta_{2} \mathbf{x}_{2}+\beta_{3} \mathbf{W} \mathbf{y}+\beta_{4} \mathbf{W} \mathbf{x}_{1}+\beta_{5} \mathbf{V} \mathbf{x}_{1}+\boldsymbol{\epsilon}
$$

by typing

```
spregress y x1 x2, gs2sls dvarlag(W) ivarlag(W:x1) ivarlag(V:x1)
```

We might do this if we were uncertain how spillover from nearby areas affects outcomes. We might be reasonably certain that there are spillover effects from adjacent areas and even from areas adjacent to adjacent areas. Let's call the adjacent areas "first-order neighbors" and the areas adjacent to adjacent areas "second-order neighbors". If we thought half the amount spilled over from second-order neighbors as from first-order neighbors, we would define \mathbf{W} to constrain that by making $W_{i_{1}, i_{2}}$ for second-order neighbors half that of first-order neighbors. If we were uncertain about the one-half assumption, we could define \mathbf{W} to allow spillovers only from first-order neighbors and \mathbf{V} to allow spillovers only from second-order neighbors. The spillover effect from \mathbf{x}_{1} would be $\beta_{4} \mathbf{W}+\beta_{5} \mathbf{V}$. The ratio of second- to first-order spillovers would then be β_{5} / β_{4}.

Fitting models that estimate instead of imposing such second-order effects is asking a lot of the data. But if you have a sufficient amount of data that support this model, the approach works well.

To keep our model simple, we will remove the second-order lag so that the model reverts to

$$
\mathbf{y}=\beta_{0}+\beta_{1} \mathbf{x}_{1}+\beta_{2} \mathbf{x}_{2}+\beta_{3} \mathbf{W} \mathbf{y}+\beta_{4} \mathbf{W} \mathbf{x}_{1}+\boldsymbol{\epsilon}
$$

If we added the spatial lag of \mathbf{x}_{2} to the model, it would become

$$
\mathbf{y}=\beta_{0}+\beta_{1} \mathbf{x}_{1}+\beta_{2} \mathbf{x}_{2}+\beta_{3} \mathbf{W} \mathbf{y}+\beta_{4} \mathbf{W} \mathbf{x}_{1}+\beta_{5} \mathbf{W} \mathbf{x}_{2}+\boldsymbol{\epsilon}
$$

We could fit this model by typing

```
spregress y x1 x2, gs2sls dvarlag(W) ivarlag(W:x1 x2)
```

Whatever other lags we include in the model, we could specify autoregressive errors. The model becomes

$$
\mathbf{y}=\beta_{0}+\beta_{1} \mathbf{x}_{1}+\beta_{2} \mathbf{x}_{2}+\beta_{3} \mathbf{W} \mathbf{y}+\beta_{4} \mathbf{W} \mathbf{x}_{1}+\beta_{5} \mathbf{W} \mathbf{x}_{2}+(\mathbf{I}-\rho \mathbf{W})^{-1} \boldsymbol{\epsilon}
$$

To fit this model, we would type

```
spregress y x1 x2, gs2sls dvarlag(W) ivarlag(W:x1 x2) errorlag(W)
```

The parameters to be fit in the model are β_{0} though β_{5} and ρ, where ρ is the correlation parameter of the residuals.

This is another model that is asking a lot of the data. Distinguishing correlated residuals from lagged dependent variables is especially tricky.

The machinery underlying spregress is complex. The spregress command with the gs2sls estimator uses a generalized method of moments estimator, which allows higher-order dependent variable lags and higher-order autoregressive error terms to be fit. spregress has an ml option for fitting a maximum likelihood estimator should you wish to fit a model under the assumption of normally distributed errors. You can read Methods and formulas in [SP] spregress for more details if you are curious.

You can fit SAR models for panel data with spxtregress, and you can fit SAR models with endogenous covariates using spivregress. These commands also incorporate spatial features like the ones described here. For details, see Methods and formulas in [SP] spxtregress and Methods and formulas in [SP] spivregress

See [SP] Intro 8 for a brief tour of the Sp estimation commands.

Also see

[SP] Intro - Introduction to spatial data and SAR models
[SP] Intro 2 - The W matrix
[SP] Intro 7 - Example from start to finish
[SP] Intro 8 - The Sp estimation commands
[SP] spivregress - Spatial autoregressive models with endogenous covariates
[SP] spmatrix - Categorical guide to the spmatrix command
[SP] spregress - Spatial autoregressive models
[SP] spxtregress - Spatial autoregressive models for panel data

Title

Intro 2 - The W matrix
Description Remarks and examples Reference Also see

Description

Spatial lags and spatially autoregressive errors are defined by the spatial weighting matrix \mathbf{W}. This entry describes the weighting matrix.

You may also be interested in introductions to other aspects of Sp . Below, we provide links to those other introductions.

Intro 1	A brief introduction to SAR models
Intro 3	Preparing data for analysis
Intro 4	Preparing data: Data with shapefiles
Intro 5	Preparing data: Data containing locations (no shapefiles)
Intro 6	Preparing data: Data without shapefiles or locations
Intro 7	Example from start to finish
Intro 8	The Sp estimation commands

Remarks and examples

Remarks are presented under the following headings:
Understanding the W matrix
Missing values, dropped observations, and the W matrix

Understanding the W matrix

You will usually construct \mathbf{W} on the basis of shapefiles (maps) that you obtain over the web or from other sources. It is so easy to do that you might think you can ignore the details of \mathbf{W}. You cannot. You need to understand \mathbf{W} to interpret results from the models you fit. Moreover, those models are conditioned on \mathbf{W}, and the matrices you use are as much a part of your model as are the variables you include or intentionally exclude.

You use \mathbf{W} in your models in three ways:

1. You include $\lambda \mathbf{W} \mathbf{y}$ to allow nearby outcomes to affect outcomes.
2. You include $\gamma \mathbf{W} \mathbf{x}$ to allow nearby covariates to affect outcomes.
3. You include autoregressive errors $(\mathbf{I}-\rho \mathbf{W})^{-1} \boldsymbol{\epsilon}$ to allow nearby errors to affect outcomes.

You can think of \mathbf{W} as specifying the potential spillover as long as you realize that the actual spillovers are as follows:

1. The effect that y_{i} of area i has on nearby y 's from the term $\lambda \mathbf{W} \mathbf{y}$.
2. The effect that x_{i} has on nearby y 's, both from the term $\gamma \mathbf{W} \mathbf{x}$ and from the effect that x_{i} has on y_{i}, which in turn affects nearby y 's.
3. The effect of including an autoregressive error.

The weighting matrix \mathbf{W} is effectively a constraint placed on the individual spillovers formulated as part of the model specification.

For instance, if $W_{1,3}$ is 0 , then there will be no spillover from 3 to 1 contributing to the total. It is constrained to be 0 . If $W_{2,6}$ and $W_{4,7}$ are both 1 , then individual spillovers from 6 to 2 and from 7 to 4 will be constrained to be equal. If $W_{5,7}$ is 2 , then the spillover from 7 to 5 will be twice that of 7 to 4 .

To see how this works, we will consider the matrix for four fictional places:

- Mordor, a dark land in J. R. R. Tolkien's The Lord of the Rings.
- Bree, a village from the same story.
- Hogsmead, a village from J. K. Rowling's Harry Potter novels.
- Hogwarts, a school near Hogsmead in the Harry Potter novels.

Spatial weighting matrices have 0s down the diagonal:

Spatial weighting $\mathbf{~ W ~}$			
	Mordor	Bree	Hogsmead Hogwarts
Mordor	0		
Bree		0	
Hogsmead			0
Hogwarts			

The 0 s down the diagonal may surprise you. Perhaps you expected 1 s . $W_{i, j}$ is the spillover from j to i, so $W_{i, i}$ is the spillover from i onto itself. Surely, geographic area i affects itself. Your thinking is correct, but you forgot that the purpose of \mathbf{W} is to specify the effect of nearby areas. You will measure the effects of i on itself by adding other variables, such as \mathbf{x}, to your model:

$$
\mathbf{y}=\beta_{0}+\beta_{1} \mathbf{x}+\beta_{2} \mathbf{W} \mathbf{x}+\cdots
$$

In this model, β_{1} measures the effect of x_{i} on y_{i}, and $\beta_{2} \mathbf{W}$ measures the effect of $x_{i^{\prime}}$ from other areas $i^{\prime} \neq i$ on y_{i}. \mathbf{W} has 0 s down the diagonal so that \mathbf{W} serves its intended purpose.

A \mathbf{W} matrix could contain all 0 s:

Spatial weighting W

	Mordor	Bree	Hogsmead Hogwarts	
Mordor	0	0	0	0
Bree	0	0	0	0
Hogsmead	0	0	0	0
Hogwarts	0	0	0	0

If the matrix contains all 0 s, there are no spatial effects. The observations are independent, and you may as well use regress to fit the model.

You use Sp estimation commands when some elements of \mathbf{W} are nonzero. Zeros are nonetheless a reasonable value for many of the elements. For instance, Mordor and Bree are from one set of novels, while Hogsmead and Hogwarts are from another. It would be reasonable to assume (to constrain) that there are no spillover effects between them. We would have the following matrix:

Spatial weighting \mathbf{W}				
	Mordor	Bree	Hogsmead	Hogwarts
Mordor	0	$?$	0	0
Bree	$?$	0	0	0
Hogsmead	0	0	0	$?$
Hogwarts	0	0	$?$	0

In the above matrix, we are specifying that Mordor and Bree are independent of Hogsmead and Hogwarts, and vice versa. The question marks stand in for the values left to be filled in, which are

- $W_{1,2}$, the potential spillover of Bree on Mordor.
- $W_{2,1}$, the potential spillover of Mordor on Bree.
- $W_{3,4}$, the potential spillover of Hogwarts on Hogsmead.
- $W_{4,3}$, the potential spillover of Hogsmead on Hogwarts.

Nonzero values in \mathbf{W} must be positive. The larger the value in $W_{i_{1}, i_{2}}$, the more the potential spillover.

How shall we measure spillover? It turns out not to matter so long as we are consistent. Said differently, only ratios of elements in the matrix matter. Remember how spatial lags are used:

$$
\mathbf{y}=\beta_{0}+\beta_{1} \mathbf{x}+\beta_{2} \mathbf{W} \mathbf{x}+\cdots
$$

Fitted coefficient β_{2} measures the effect of the spatial lag. If we replaced \mathbf{W} with $2 \mathbf{W}$, the result would be to halve β_{2}, just as β_{1} would halve if we doubled \mathbf{x}.

We will set $W_{3,4}$, the potential spillover of Hogwarts on Hogsmead, to 1 , and in setting this first nonzero value, we have decided on the units. The units are Hogwarts on Hogsmead. If we set an element to 2, then we are setting the potential spillover to be twice that of Hogwarts on Hogsmead. If we set an element to $1 / 2$, then we are setting the potential spillover to be half that of Hogwarts on Hogsmead.

If we also set $W_{4,3}=1$, we will be constraining the potential spillover of Hogsmead on Hogwarts to be the same as Hogwarts on Hogsmead. Our matrix would be

Spatial weighting \mathbf{W}

	Mordor	Bree	Hogsmead Hogwarts	
Mordor	0	$?$	0	0
Bree	$?$	0	0	0
Hogsmead	0	0	0	1
Hogwarts	0	0	1	0

What should we make the spillovers of Bree on Mordor and of Mordor on Bree? In the Lord of the Rings story, Mordor is far from Bree, larger than Bree, and actively exporting evil at the speed of magic. Bree, meanwhile, is a speck that Mordor could brush away with little effort.

We will set $W_{2,1}$, the spillover of Mordor on Bree, to 4 and $W_{1,2}$, the spillover of Bree on Mordor, to 0.1. The spillover of Mordor on Bree will be four times that of Hogwarts on Hogsmead. Meanwhile, the spillover of Bree on Mordor will be one-tenth that of Hogwarts on Hogsmead.

You might well question the numbers we have chosen. Why is the spillover of Mordor on Bree 4 and not 5? Or 10? We have no satisfactory answer, and that is why in real problems researchers often set potential spillovers to 1 for adjacent areas and to 0 elsewhere, or set potential spillovers to the inverse of the distance between the locations. Both seem more defensible, although defending them can be problematic. Do second-order neighbors really have no effect? Or in the case of inverse distance, why not inverse distance squared? Sometimes theory can provide an answer. The spillover of a light bulb is inverse distance squared. In other cases, there are no satisfactory answers except that making partially justified assumptions and accounting for spillover effects is preferable to assuming that spillover effects are all 0 .

So we have

Spatial weighting W

	Mordor	Bree	Hogsmead Hogwarts	
Mordor	0	0.1	0	0
Bree	4	0	0	0
Hogsmead	0	0	0	1
Hogwarts	0	0	1	0

And the final \mathbf{W} matrix is

$$
\mathbf{W}=\left[\begin{array}{cccc}
0 & 0.1 & 0 & 0 \\
4 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

We could enter this matrix into Sp and proceed to estimation. It would be easy enough to do; see [SP] spmatrix userdefined, [SP] spmatrix fromdata, and [SP] spmatrix spfrommata.

Although we could do this, in reality you will not. You will have more than four geographical units-you might have 3,000 counties. To say nothing of the misery of entering a 3000×3000 matrix, you are not going to carefully consider and research all $8,997,000$ pairs of counties. You are going to assume that only adjacent counties affect each other-called "contiguity" in the literature-or that spillover effects are proportional to the inverse of distance between counties. You are going to do that because you can create such \mathbf{W} matrices by typing a single command such as

```
. spmatrix create contiguity Wc // contiguity
. spmatrix create idistance Widist // inverse distance
```

We told you that the units in which the weights are measured do not matter, but that is not exactly true. They do not matter if you only include spatially lagged covariates. If, however, you use the spatial weighting matrix to lag the dependent variable ($\lambda \mathbf{W} \mathbf{y}$) or for autoregressive errors $\left[(\mathbf{I}-\rho \mathbf{W})^{-1} \boldsymbol{\epsilon}\right]$, then $\widehat{\lambda}$ and $\widehat{\rho}$ will be easier to interpret if the matrix is scaled appropriately. In that case, $\widehat{\lambda}$ and $\hat{\rho}$ should be between -1 and 1 unless the solution is explosive.

Explosive solutions can arise in spatial analysis for the same reasons they arise in time-series analysis. If A affects B and B affects A, and if the coefficients are large enough, then feedback becomes amplified. A sends a large value to B, which B receives, amplifies, and sends back to A, whereupon the procedure repeats, and eventually, the process explodes in a mess of infinities.

To fit models, the Sp software virtually requires that you scale the matrices used to produce lags of the dependent variable or autoregressive errors, and you ought to scale the other matrices too. The software produces more accurate results when inputs are scaled.

Scaling is so important that when you type the commands

```
. spmatrix create contiguity Wc
. spmatrix create idistance Widist
```

scaling is performed automatically, and you have to go out of your way to prevent it, which you can do by typing
. spmatrix create contiguity Wc, normalize(none)
. spmatrix create idistance Widist, normalize (none)
By default, weighting matrices are scaled so that their largest eigenvalue is 1 . See [SP] spmatrix create and Choosing weighting matrices and their normalization in [SP] spregress for details about normalization.

Missing values, dropped observations, and the W matrix

Missing values sometimes appear in data. When fitting models with such data, the usual solution is to omit the observations from the estimation sample. That can be justified when observations are independent, but observations are not independent in SAR models.

Spatial models allow for spillover effects from nearby areas. In spatial data, observations are areas. Omitting some areas means that the spillovers from them are no longer being included in the fitted model. Consider two adjacent counties and assume that one of them is dropped from the estimation. Then, the spillover from the dropped county to its neighbor-a neighbor still in the data-becomes 0 even though there really is spillover. It is just unobserved spillover.

Thus, Sp estimation commands handle missing observations differently from Stata's other estimation commands. If an area is defined in a spatial weighting matrix and that area is not observed in the data, Sp refuses to fit the model unless you specify option force.

Imagine that you type

```
. spregress y x, gs2sls ivarlag(W: x)
```

and that observation 4 contains a missing value for x . Most Stata estimation commands would omit the observation from the estimation sample and proceed with estimation. spregress will issue an error and mention the force option.

```
. spregress y x, gs2sls ivarlag(W: x)
    (1412 observations)
    (1 observation excluded due to missing values)
    (1411 observations (places) used)
    (weighting matrix defines 1412 places)
weighting matrix defines places not in estimation sample
    Excluding observations excludes the spillovers from those observations to
    other observations which are not excluded. You must determine whether this
    is appropriate in this case and, if it is, specify option force.
r(459);
```

You would be on firm theoretical ground to specify the force option if the fourth column of W contained only 0 values, because in that case there are no spillovers from observation 4 to the other areas. Meanwhile, the fourth row does not have to be all 0s. The other areas might spillover to observation 4, but that will not bias results if observation 4 is omitted. It is the unobserved spillovers from observation 4 that cause bias.

You would be on muddy theoretical ground-which most applied researchers consider to be firm enough-if the fourth column of W contained only small values.

You would be sinking in a swamp if the fourth column of W contained any large values. We at StataCorp might go there, but if we did, we would afterward try replacing x [4] with various reasonable values to determine how sensitive our forced results would be to the missing observation.

Reference

Liu, D. 2017. How to create animated graphics to illustrate spatial spillover effects. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/2018/03/06/how-to-create-animated-graphics-to-illustrate-spatial-spillover-effects/.

Also see

[SP] Intro 3 - Preparing data for analysis
[SP] Intro 7 - Example from start to finish
[SP] spmatrix - Categorical guide to the spmatrix command

Title

Intro 3 - Preparing data for analysis

> Description Remarks and examples Also see

Description

Before you can use the Sp estimation commands-spregress, spivregress, and spxtregressto fit SAR models, you need to prepare your data. This entry describes the various types of Sp data and their characteristics.

You may also be interested in introductions to other aspects of Sp . Below, we provide links to those other introductions.

Intro 1	A brief introduction to SAR models
Intro 2	The \mathbf{W} matrix
Intro 4	Preparing data: Data with shapefiles
Intro 5	Preparing data: Data containing locations (no shapefiles)
Intro 6	Preparing data: Data without shapefiles or locations
Intro 7	Example from start to finish
Intro 8	The Sp estimation commands

Remarks and examples

Remarks are presented under the following headings:

```
Three types of Sp data
    Type 1: Data with shapefiles
    Type 2: Data without shapefiles but including location information
    Type 3: Data without shapefiles or location information
Sp can be used with cross-sectional data or panel data
ID variables for cross-sectional data
ID variables for panel data
```


Three types of Sp data

The Sp commands categorize the data that you use as being

- data with shapefiles,
- data without shapefiles but including location information, or
- data without shapefiles or location information.

Shapefiles are maps and are easily found on the web. One way that the Sp commands use shapefiles is to obtain (x, y) coordinates of places, which makes creating \mathbf{W} matrices easy.

Alternatively, your data could contain the (x, y) coordinates, and then you do not need shapefiles. However, you still might want them because then you can draw choropleth maps.

Finally, your data might not contain (x, y) coordinates at all. Your data might not be geographic. Whether your data are geographic or a social network, it is the \mathbf{W} matrix that defines the "spatial" relationships.

Type 1: Data with shapefiles

The first and best approach with geographic data is to use shapefiles. Shapefiles are easily found and downloaded from the web. Shapefiles make setting the \mathbf{W} matrix easy, and you can draw choropleth maps such as

Type 2: Data without shapefiles but including location information

If your data already contain the locations of the observations, you do not need shapefiles. You can proceed almost directly to analysis.

Setting the spatial weighting matrix is almost as easy as it is when you have a shapefile. You lose the easy construction of contiguity matrices-matrices in which only adjacent areas spill over to one another-but you can still set \mathbf{W} on the basis of distance.

Without shapefiles, you lose the ability to draw choropleth maps.

Type 3: Data without shapefiles or location information

When you do not have location information, you must construct and enter the spatial weighting matrix W manually, just as we did in [SP] Intro 2 with Mordor, Bree, Hogsmead, and Hogwarts.

SAR models can be fit to data that are not spatial, such as social networks. The elements of \mathbf{W} record spillover from j to i, whether that is place j to i, imaginary universe j to i, or network node j to i. In the case of networks, you may already have a \mathbf{W} from an official source. You can use spmatrix import to import it; see [SP] spmatrix import.

If your data are spatial, on the other hand, we strongly suggest finding a shapefile on the web or finding and entering each observation's location.

Sp can be used with cross-sectional data or panel data

Whether the data contain shapefiles, locations, or neither is one aspect of Sp data. The other is whether the data are cross-sectional or panel.

Cross-sectional data contain one observation per geographical unit, such as country, state, county, or zip code. A cross-sectional dataset might look like this:

area_id	area_name	v1	v2	\ldots
1	Brazos	\ldots		
2	Travis	\ldots		
3	Grimes	\ldots		
v1, v2, \ldots	contain values for each	area.		

Panel data contain multiple observations per geographical unit. Panel data look like this:

area_id	area_name	year	v1	v2	\ldots
1	Brazos	1990	\ldots		
1	Brazos	2000	\ldots		
1	Brazos	2014	\ldots		
2	Travis	1990	\ldots		
2	Travis	2000	\ldots		
2	Travis	2014	\ldots		
3	Grimes	1990	\ldots		
3	Grimes	2000	\ldots		
3	Grimes	2014	\ldots		
v1, v2, \ldots	contain values by year for each area.				

Detailed instructions for preparing cross-sectional and panel data will be provided in [SP] Intro 4, [SP] Intro 5, and [SP] Intro 6. First, we need to tell you about the numeric ID variables that Sp will need.

ID variables for cross-sectional data

Sp requires that cross-sectional data contain an ID variable that uniquely identifies the observations. Both area_id and area_name do that in the following data:

area_id	area_name	v1	v2	\ldots
1	Brazos	\ldots		
2	Travis	\ldots		
3	Grimes	\ldots		
v1, v2, \ldots	contain average values within area.			

Because Sp requires that the ID variable be numeric, area_id would be our ID variable. area_id contains $1,2, \ldots$, but that is not required. Another dataset might contain U.S. Census FIPS county codes:

fips	area_name	v1	v2	\ldots
48041	Brazos	\ldots		
48453	Travis	\ldots		
48185	Grimes	\ldots		

The ID variable then would be fips.
If the data do not contain a numeric ID but do contain a string ID variable, such as area_name, you can create a numeric ID from it by typing

```
. sort area_name
. generate id = _n
```

We sorted by area_name to align the names and code, but that is not necessary. If you had no identification variable whatsoever, you could type

```
. generate id = _n
```


ID variables for panel data

We have a lot more to say about ID variables in panel data, and there are substantive issues as well. To remind you, panel data look like this:

area_id	area_name	year	v1	v2	\ldots
1	Brazos	1990	\ldots		
1	Brazos	2000	\ldots		
1	Brazos	2014	\ldots		
2	Travis	1990	\ldots		
2	Travis	2000	\ldots		
2	Travis	2014	\ldots		
3	Grimes	1990	\ldots		
3	Grimes	2000	\ldots		
3	Grimes	2014	\ldots		
v1, v2, \ldots	contain average values within year for each area.				

Panel data have two identifiers. Generically, they are called the first- and second-level IDs. In these data, those IDs are

First-level ID	Second-level ID
area_id	year

area_name could be the first-level ID, but because Sp requires that ID variables be numeric, we put area_id in the table. If the data contained area_name but not area_id, we would create area_id by typing

```
. egen area_id = group(area_name)
```

The first-level ID corresponds to the ID in cross-sectional data. As with cross-sectional data, that first-level ID is not required to contain $1,2, \ldots$. It could contain FIPS codes or whatever else.

Sp assumes that the first-level ID corresponds to area.
Sp assumes that the second-level ID corresponds to time.

Concerning the second-level variable, we call it time because it usually is time. The spatial fixedand random-effects estimators that Sp provides are appropriate for use with panels over time. The estimators are appropriate in other cases, too, but not all other cases. Whether they are appropriate hinges on whether spatial lags have a meaningful interpretation.

Sp defines panel-data spatial lags as being across area at the same time or, equivalently, across first-level ID for the same values of the second-level ID:

Meaning of spatial lag, observation by observation			
1st-level ID	2nd-level ID area_id	Spatial lag means area_id for year	
1	1990	$*$	1990
1	2000	$*$	2000
1	2014	$*$	2014
	1990	$*$	1990
2	2000	$*$	2000
2	2014	$*$	2014
2	1990	$*$	1990
3	2000	$*$	2000
3	2014	$*$	2014

When the second-level identifier is time, defining spillovers as coming from nearby areas at the same time is just what you want. It is sometimes what you want when the second-level identifier is not time, too.

On the other hand, here is an example in which the second-level identifier is not time and the data are not appropriate for use with Sp . We have data on school districts in counties:

area_id	area_name	district	district_name	v1	v2
1	Brazos	1	BISD	\ldots	
1	Brazos	2	CSISD	\ldots	
1	Brazos	3	NISD	\ldots	
2	Travis	1	AISD	\ldots	
2	Travis	2	HISD	\ldots	
2	Travis	3	RRISD	\ldots	
3	Grimes	1	ASISD	\ldots	
3	Grimes	2	MISD	\ldots	
3	Grimes	3	RISD	\ldots	

v1, v2, ... contain average values within district for each area.
Spatial lags would be meaningless with these data because they would be calculated across area for equal values of district. Independent school districts run schools in subareas of counties. Those independent school districts have names like BISD and CSISD. ISD stands for Independent School District. BISD stands for Bryan ISD, and CSISD stands for College Station ISD. Bryan and College Station are two different areas of Brazos County.

Let's consider the meaning of a spatial lag for the first observation in the data. It would be calculated across area for district $=1$. Across area is just what we want, but matching BISD with AISD with ASISD is senseless.

Data on county-school type, however, could be meaningfully matched:

area_id	area_name	type	meaning	v1	v2	\ldots
1	Brazos	1	elementary	\ldots		
1	Brazos	2	middle	\ldots		
1	Brazos	3	high school	\ldots		
2	Travis	1	elementary	\ldots		
2	Travis	2	middle	\ldots		
2	Travis	3	high school	\ldots		
3	Grimes	1	elementary	\ldots		
3	Grimes	2	middle	\ldots		
3	Grimes	3	high school	\ldots		

$\mathrm{v} 1, \mathrm{v} 2, \ldots$ contain average values within type of school for each area.
In these data, a spatial lag would be nearby counties for schools of the same type.
In the rest of this manual, we will write as if all panel datasets are location-time datasets, but remember that time is not required to be time. If it is not time, however, you must ensure that the spatial comparisons are reasonable.

Because of the matching required in calculating spatial lags, Sp's fixed- and random-effects estimators require that the data be strongly balanced. Strongly balanced means that each panel has the same number of observations and that the panels record data for the same set of times. Later, we will tell you about the spbalance command. It will balance the data for you by dropping observations for times not defined in all panels. See [SP] spbalance.

Also see

[SP] Intro 7 - Example from start to finish
[SP] spbalance - Make panel data strongly balanced
[SP] spset - Declare data to be Sp spatial data

Title

Intro 4 - Preparing data: Data with shapefiles

Description Remarks and examples Also see

Description

To perform a spatial analysis, you do the following steps:

1. Prepare data for use by Sp .
2. Define weighting matrices.
3. Fit models using spregress, spivregress, or spxtregress.

Step-by-step instructions for step 1 are provided below. These instructions are for preparing data with shapefiles.

Shapefiles define maps. You obtain them over the web. After translation into Sp format, you merge the translated result with a .dta file or files you already have.

You may also be interested in introductions to other aspects of Sp . Below, we provide links to those other introductions.

Intro 1	A brief introduction to SAR models
Intro 2	The \mathbf{W} matrix
Intro 3	Preparing data for analysis
Intro 5	Preparing data: Data containing locations (no shapefiles)
Intro 6	Preparing data: Data without shapefiles or locations
Intro 7	Example from start to finish
Intro 8	The Sp estimation commands

Remarks and examples

Remarks are presented under the following headings:

[^0]
Overview

Shapefile is jargon for computer files that store a map. A shapefile might store the map for the 3,000-plus counties in the United States.

Shapefiles are optional. If you have one, Sp can determine which places (counties) are neighbors (share a border), and Sp will know the distances between the centroids of the places. You will be able to create spatial weighting matrices of first-order neighbors by typing
. spmatrix create contiguity Wc
and to create inverse-distance weighting matrices by typing
. spmatrix create idistance Wd
and to graph choropleth maps by typing
. grmap ue_rate
You find and download shapefiles on the web, and translate them to Stata format. For example,

1. You find and download tl_2016_us_county.zip for U.S. counties.
2. You convert tl_2016_us_county.zip to Stata format, creating two new datasets: tl_2016_us_county.dta and tl_2016_us_county_shp.dta.

For information on how to find tl_2016_us_county.zip on the web, see Finding a shapefile for Texas counties in [SP] Intro 7. You can download this file if you want to follow along with the commands in this introduction.

Let's suppose you have downloaded the U.S. counties file and unzipped it. You also have two county-data datasets, project_cs.dta and project_panel.dta, containing observations on the 3,000 -plus counties. These datasets are available by typing

```
. copy https://www.stata-press.com/data/r18/project_cs.dta .
. copy https://www.stata-press.com/data/r18/project_panel.dta .
```

They are standard Stata datasets. You could use them with regress or, in the case of project_panel.dta, which contains panel data, xtreg, but the datasets are not yet suitable for use with spregress or spxtregress.

To make the project datasets work with Sp , you merge each one with the Stata-format shapefiles. We will show you how to create these shape files in Creating Stata-format shapefiles. Merging your data with a shapefile will add three variables to your data: _ID, _CX, and _CY.
project_cs.dta is a cross-sectional dataset, so when the shapefile is prepared, you could type

```
. use project_cs, clear
. merge 1:1 fips using tl_2016_us_county
. keep if merge==3
. drop _merge
```

If all goes well, no observations from project_cs.dta will be dropped. You keep the matches because there are sometimes observations in the shapefile that are not in project_cs.dta.
project_panel.dta is a panel dataset, so you could type
. use project_panel, clear
. xtset fips time
. spbalance
. merge m:1 fips using tl_2016_us_county
. keep if _merge==3
. drop _merge

Merging panel data requires extra steps because 1) the data must be xtset and 2) Sp requires that the panels be strongly balanced. This was discussed in [SP] Intro 3.

How to find and download shapefiles on the web

Shapefiles contain more than a map. They sometimes contain data relevant to specific research problems. You can find shapefiles that contain climate or economic or epidemiological data. You might think that you need to find the shapefile relevant to your research problem, but you do not. You need to find shapefiles defining the geographic units that you will be analyzing, such as U.S. counties. In addition to the map, shapefiles include the names and standard codes for the geographic units. You will later use those variables to merge the shapefile with data you already have or that you obtain from other sources.

To find appropriate shapefiles, use your browser and search for them. You could search for

```
shapefiles
shapefiles europe
shapefiles deutschland
shapefiles deutschland bundesländer
shapefiles schweiz kantone
shapefiles uk
shapefiles uk county
shapefiles us
shapefiles us census
shapefiles us census county
shapefiles us census blocks
shapefiles us census tiger // TIGER/Line is especially popular
```

It is best to choose a shapefile from official sources. If such a shapefile is not available, choose one that is from a reputable source.

Find the appropriate shapefile and download it.

Standard-format shapefiles

The shapefile you just loaded is known as a standard-format shapefile. The word shapefile itself is confusing because a shapefile is actually a collection of related files. For example, a shapefile could be any of the following:

File	Contents
name.shp	shapes and locations of geographic units
name.dbf	other attributes of the geographic units
name.*	other information, not needed by Sp
name.zip	compressed file containing all the files above

name.zip is often called a shapefile even though it is a zip file containing the shapefiles.
name.shp really is a shapefile-it contains the map of the geographic units, which could be countries of the world, counties of the United States, etc.
name. dbf contains data (called attributes) about the geographic units. The . dbf stands for database file. It is a dataset containing variables and observations. Among the variables are usually variables for the names and numeric identification codes of the geographic units. The file sometimes contains other variables, such as temperature, rainfall, or unemployment. After translation to Sp format, you can use the variables, ignore them, or drop them.

In addition to name.shp and name.dbf, there are other files. Stata ignores them, and you can erase them if you wish. After translation, you can erase all the files that were in the original .zip file.

Stata-format shapefiles

You will translate the standard-format shapefiles to Stata format. It is easy to do:
. unzipfile name.zip
. spshape2dta name
This will create two Stata-format datasets, name.dta and name_shp.dta.

Stata-format file	Corresponding standard-format file
name.dta	name. dbf name_shp.dta name.shp

name. dta contains
Variable name
Contents

_ID	ID variable with values $1,2, \ldots, N$
_CX	x coordinate of centroid of geographic unit
_CY	y coordinate of centroid of geographic unit
other variables	attributes of the geographic units from name. dbf

Notes: 1. The dataset will have N observations, one for each geographic unit.
2. You will learn later that Sp data must be spset. spshape2dta handles that for you. name.dta is spset.
3. Variable _ID links observations in name.dta with the map stored in name_shp.dta.
4. You may rename, modify, or drop any of the variables except _ID, _CX, and _CY.
5. You merge your .dta files with name.dta to use them in Sp .
name_shp.dta contains
Variable name

Contents

_ID
other variables

ID variable with values $1,2, \ldots, N$
descriptions of the map

Notes: 1. This file has many more than N observations. Each observation describes a line segment that when combined draws the map.
2. You do not use or modify this dataset. Sp uses the dataset behind the scenes.
3. name.dta and name_shp.dta must be in the same directory.

Creating Stata-format shapefiles

There are six steps to preparing shapefiles for use:

1. Find and download a standard-format shapefile.
2. Translate the shapefile to Stata format.
3. Look at the translated data.
4. Create a common ID variable for use with other data.
5. Optionally, tell Sp to use the common ID variable.
6. Set the units of the coordinates, if necessary.

These steps are not independent; that is, you cannot jump ahead to, say, step 4.
Below, we start at step 1 , finding and downloading
tl_2016_us_county.zip
and finish with step 6 , having created
tl_2016_us_county.dta
tl_2016_us_county_shp.dta
These are the same files we used in Overview.
We discuss each step below. Here is a preview of the code for the steps:
Step 1: Find and download a standard-format shapefile

> . * do this on the web

Step 2: Translate the shapefile to Stata format

```
. copy ~/Downloads/tl_2016_us_county.zip .
. unzipfile tl_2016_us_county.zip
. spshape2dta tl_2016_us_county
```

Step 3: Look at the translated data

```
. use tl_2016_us_county, clear
. describe
. list in 1/5
```

Step 4: Create a common ID variable for use with other data

```
. generate long fips = real(STATEFP + COUNTYFP)
```

. bysort fips: assert _N==1
. assert fips != .

Step 5: Optionally, tell Sp to use the common ID variable

```
. spset fips, modify replace
```

Step 6: Set the units of the coordinates, if necessary

```
. spset, modify coordsys(latlong, miles)
. save, replace
```


Step 1: Find and download a shapefile

Use your browser. We did, and we found and downloaded tl_2016_us_county.zip as described in Finding a shapefile for Texas counties in [SP] Intro 7. Our browser stored the file in our Downloads directory, which is ~/Downloads/ on our computer. ~ is Stata syntax for home directory.

Step 2: Translate the shapefile to Stata format

We entered Stata and changed to the directory containing the project datasets. We typed

```
. copy ~/Downloads/tl_2016_us_county.zip .
. unzipfile tl_2016_us_county.zip
    inflating: tl_2016_us_county.cpg
    inflating: tl_2016_us_county.dbf
    inflating: tl_2016_us_county.prj
    inflating: tl_2016_us_county.shp
    inflating: tl_2016_us_county.shp.ea.iso.xml
    inflating: tl_2016_us_county.shp.iso.xml
    inflating: tl_2016_us_county.shp.xml
    inflating: tl_2016_us_county.shx
successfully unzipped tl_2016_us_county.zip to current directory
. spshape2dta tl_2016_us_county
    (importing .shp file)
    (importing .dbf file)
    (creating _ID spatial-unit id)
    (creating _CX coordinate)
    (creating _CY coordinate)
    file tl_2016_us_county_shp.dta created
file tl_2016_us_county.dta created
```

spshape2dta translated the files to Stata format. It did not load them into memory. You will never load the $*_{\text {_shp. }}$ dta file, but Sp will use it behind the scenes. The file is linked to tl_2016_us_county.dta, which you will directly use. Keep them both in the same directory.

Step 3: Look at the translated data

Look at the data you have just created. The data are already spset, but we can type spset to find out how:

```
. use tl_2016_us_county, clear
. spset
    Sp dataset: tl_2016_us_county.dta
Linked shapefile: tl_2016_us_county_shp.dta
            Data: Cross sectional
    Spatial-unit ID: _ID
    Coordinates: _CX, _CY (planar)
```

Look at the variables, too:

```
. describe
    (output omitted)
    list in 1/5
    (output omitted)
```

You need to understand the data and its variables. Some of them you will not need. You may drop them, but do not drop _ID, _CX, and _CY. They were created by spshape2dta, and you will need them later.

In the unlikely event that you find all the variables you need for your intended analysis, you can use tl_2016_us_county.dta as your analysis dataset. You are ready to go, except you might need to set the coordinate system. Skip to step 6, and stop after that.

Step 4: Create a common ID variable for use with other data

We continue with step 4 because we did not find the analysis variables we needed, nor did we expect to find them. We have project_cs.dta containing our analysis variables. The problem is that we will need to merge project_cs.dta with the Stata-format shapefiles, and to do that, they will need to have an ID variable in common. project_cs.dta has a variable named fips containing standard county codes. We hope to find the same variable in tl_2016_us_county.dta.

We looked but did not find the FIPS-code variable. We did discover the variable NAME containing county names. That variable could work for us. project_cs.dta also has a variable named countyname. If we rename NAME to countyname in tl_2016_us_county.dta, we could merge datasets.

However, we have had bad experiences merging on string variables. Names in the two datasets can differ for trivial reasons, such as capitalization. Before we resigned ourselves to the string-variable solution, we looked again. Numeric ID variables are better.

We discovered variables STATEFP and COUNTYFP. They were recorded as string variables, but appeared to contain two- and three-digit numeric codes. We read about FIPS codes on the web and learned there are two-digit state codes, three-digit county-within-state codes, and five-digit county codes, which are nothing more than the two- and three-digit codes run together. If STATEFP is 01 and COUNTYFP is 001, then the five-digit code is 01001.

We create the new numeric variable fips containing the run-together code by typing

```
. generate long fips = real(STATEFP + COUNTYFP)
```

The variable we created did not have to be numeric, but fips is numeric in project_cs.dta, and numeric is better for reasons to be explained in step 5.

In any case, we were pleased when we listed the value of variable NAME for fips $=1001$ and it was Autauga.

We also verify that new variable fips really does uniquely identify the observations in tl_2016_us_county.dta by typing
. bysort fips: assert _N==1
. assert fips != .

Step 5: Optionally, tell Sp to use the common ID variable

This step is optional but worth doing if you found or created a numeric ID variable in the previous step. Because we created fips in step 4, we will type

```
. spset fips, modify replace
    (_shp.dta file saved)
    (data in memory saved)
            Sp dataset: tl_2016_us_county.dta
Linked shapefile: tl_2016_us_county_shp.dta
            Data: Cross sectional
    Spatial-unit ID: _ID (equal to fips)
            Coordinates: _CX, _CY (planar)
```

The above resets _ID. spset verifies that fips is numeric and would make an appropriate ID code. If it does, spset copies fips to Sp's _ID variable, the variable that officially identifies the observations. Sp then reindexes both tl_2016_us_county.dta and tl_2016_us_county_shp.dta on the new _ID values.

You should do this step because, if _ID is a common code, the spatial weighting matrices you create will be sharable with other projects and researchers. The rows and columns of the matrices will be identified by the common code rather than the arbitrary code _ID previously contained.

Step 6: Set the units of the coordinates, if necessary

The coordinates recorded in shapefiles historically were required to be in planar units. These days, shapefiles are just as likely to contain latitude and longitude. Usage is running ahead of file-format standards, and so you must determine which coordinate system is being used.

When Sp converts a shapefile as we did in step 2 , it assumes coordinates are in planar units. If they are actually recorded in degrees latitude and longitude, you need to type

```
. spset, modify coordsys(latlong, miles)
```

or

```
. spset, modify coordsys(latlong, kilometers)
```

Whether you specify miles or kilometers is of little importance-that setting merely determines the units in which Sp will report distances. It is important, however, that you specify the coordinate system is latlong when it is latitude and longitude if distances are to be measured accurately.

The distributor of the shapefile may provide documentation that tells you whether the file uses planar units or latitude and longitude. If you are unable to find this information, you can do some detective work to figure it out.

Here is how to determine the units. Coordinates (centroids) are stored in variables _CX and _CY. We listed some of them and discovered that Brazos County, Texas, is recorded as being at

$$
_C X=-96.302386 \text { and } \quad \text { _CY }=30.6608
$$

We looked on the web and found that College Station, a city in Brazos County, is located at latitude 30.601389 and longitude -96.314444 . We checked two other cities and counties and found similar agreement. (Note that latitude is stored in _CY and longitude in _CX. It will always be that way.)

Thus, we type

```
. spset, modify coordsys(latlong, miles)
    Sp dataset: tl_2016_us_county.dta
Linked shapefile: tl_2016_us_county_shp.dta
            Data: Cross sectional
    Spatial-unit ID: _ID (equal to fips)
    Coordinates: _CY, _CX (latitude-and-longitude, miles)
```

We are finished preparing our shapefile, so we save tl_2016_us_county.dta.

```
. save, replace
file tl_2016_us_county.dta saved
```


Preparing your data

We now have

```
tl_2016_us_county.dta
tl_2016_us_county_shp.dta
```

These are the same datasets we used in Overview.
You should keep these two files around, just as they are. You can use them in the future whenever you have a county dataset that you want to use with Sp .

Step 7a: Merge your cross-sectional data with the Stata-format shapefiles

We showed you how to do this in the Overview, but we will do it again now that we have our Stata-format shapefiles so that you can see the output. To make the cross-sectional data in project_cs.dta work with Sp, type
. use project_cs, clear
. merge 1:1 fips using tl_2016_us_county
. keep if _merge==3
. drop _merge
. save, replace
The result is

```
. use project_cs, clear
(My cross-sectional data)
. merge 1:1 fips using tl_2016_us_county
    Result Number of obs
    Not matched 91
        from master 0
        from using 91 (_merge==2)
    Matched 3,142 (_merge==3)
```

```
. keep if _merge==3
(91 observations deleted)
. drop _merge
. save, replace
file project_cs.dta saved
```

Note that all observations from the master were matched. Had observations been dropped from the master, we would have found out why project_cs.dta contained counties not in tl_2016_us_county.dta.

We have not discussed the spset command, the other way to turn regular Stata datasets into Sp datasets. We will discuss spset in [SP] Intro 5 and [SP] Intro 6. Merging regular data (project_cs.dta) with spset data (tl_2016_us_county.dta, because it was created by spshape2dta) produces an spset result. project_cs.dta was not spset before the merge, but it is now:

```
. spset
    Sp dataset: project_cs.dta
Linked shapefile: tl_2016_us_county_shp.dta
            Data: Cross sectional
    Spatial-unit ID: _ID (equal to fips)
    Coordinates: _CY, _CX (latitude-and-longitude, miles)
```


Step 7b: Merge your panel data with the Stata-format shapefiles

Because project_panel.dta is panel data, you still merge with tl_2016_us_county.dta, but you go about it a little differently. You type

```
. use project_panel, clear
. xtset fips time
. spbalance
. merge m:1 fips using tl_2016_us_county
. keep if _merge==3
. drop _merge
. save, replace
```

The result is

```
. use project_panel, clear
(My panel data)
. xtset fips time
Panel variable: fips (strongly balanced)
    Time variable: time, 1 to 3
        Delta: 1 unit
. spbalance
    (data strongly balanced)
. merge m:1 fips using tl_2016_us_county
    Result Number of obs
        Not matched 91
            from master 0 (_merge==1)
            from using 91 (_merge==2)
        Matched 9,426 (_merge==3)
```

. keep if _merge==3
(91 observations deleted)

- drop _merge
. save, replace
file project_panel.dta saved

```
project_panel.dta is now spset:
    spset
    Sp dataset: project_panel.dta
    Linked shapefile: tl_2016_us_county_shp.dta
            Data: Panel
    Spatial-unit ID: _ID (equal to fips)
        Time ID: time (see xtset)
        Coordinates: _CY, _CX (latitude-and-longitude, miles)
```

The data are still xtset, but Sp modified the setting. The data were set on fips and time. They are now set on _ID and time:

```
. xtset
Panel variable: _ID (strongly balanced)
    Time variable: time, 1 to 3
        Delta: 1 unit
```

Sp changed the setting because spset and xtset must agree on the panel identifier.

Rules for working with Sp data, whether cross-sectional or panel

The data whether cross-sectional, as in project_cs.dta, or panel, as in project_panel.dta, are now Sp . It is a Stata dataset with one special feature: its observations are linked to the Stataformat shapefile tl_2016_us_shp.dta. Because of the linkage, there are rules for using either project_cs.dta or project_panel.dta.

Rule 1: Do not drop or modify variables _ID, _CX, or _CY.
You may drop other variables in the file.

Rule 2:

Cross-sectional data:

Do not add new observations.

Panel data:

Do not add new observations with new values of _ID.
The rule that handles both cross-sectional and panel data is that you may not add observations that have no corresponding definition in tl_2016_us_shp.dta.
For cross-sectional data, the rule reduces to "do not add new observations".
For panel data, the rule said positively is that you can add new observations, but only for new time periods within panels.
You may drop observations from cross-sectional data, and observations for entire panels from panel data. Dropping is allowed because unnecessary definitions in tl_2016_us_shp.dta are ignored.

Be careful when performing merges with other datasets. If you type

Cross-sectional data:

. merge 1:1 fips using anotherdataset

Panel data:

. merge 1:1 fips time using anotherdataset
or
. merge m:1 fips using anotherdataset
you must then either
. keep if _merge==3
or
. keep if _merge==1

Rule 3: Do not erase, modify, or rename file tl_2016_us_shp.dta.
Even if you rename project_cs.dta or project_panel.dta, do not rename tl_2016_us_shp.dta.

Rule 4: project_cs.dta or project_panel.dta and tl_2016_us_shp.dta must be stored in the same directory.

If you copy project_cs.dta or project_panel.dta to a different directory, copy tl_2016_us_shp.dta to the same directory.
That is the end of the prohibitions. The following rule need not be stated, because that which is not prohibited is allowed, but it is reassuring:

Rule 5: You may save copies of project_cs.dta or project_panel.dta under new names.
New files will inherit the linkage to tl_2016_us_shp.dta. For example, you could type
. copy project_cs.dta newname.dta
Afterward, if you wished, you could type
. erase project_cs.dta
Here is one way making copies can be useful:
. use project_cs
. keep if state=="Texas"
. save texas

Also see

[SP] Intro 7 - Example from start to finish
[SP] spset - Declare data to be Sp spatial data
[SP] spshape2dta - Translate shapefile to Stata format

Title

Intro 5 - Preparing data: Data containing locations (no shapefiles)

Description Remarks and examples Also see

Description

If you have data that already contain the coordinates of the geographical units, you are not required to use the shapefiles discussed in [SP] Intro 4. You may, however, want to use shapefiles. Without them, you cannot create contiguity weighting matrices (matrices in which spillovers occur only among adjacent places), nor can you draw choropleth maps.

This entry provides steps to prepare data with no shapefiles for use by Sp .
You may also be interested in introductions to other aspects of Sp . Below, we provide links to those other introductions.

Intro 1	A brief introduction to SAR models
Intro 2	The \mathbf{W} matrix
Intro 3	Preparing data for analysis
Intro 4	Preparing data: Data with shapefiles
Intro 6	Preparing data: Data without shapefiles or locations
Intro 7	Example from start to finish
Intro 8	The Sp estimation commands

Remarks and examples

Remarks are presented under the following headings:
Preparation of cross-sectional data
Preparation of panel data
There are no rules as there are with shapefiles

Preparation of cross-sectional data

We will assume that you have file project_cs2.dta, which is a cross-sectional dataset on U.S. counties over time, variable fips containing the standard county codes, and variables locx and locy identifying the location of each county.

To turn project_cs2.dta into Sp data, do the following:
Step 1: Load the dataset
use project_cs2, clear
Step 2: Verify that fips is an ID variable
. assert fips!=.
. bysort fips: assert _N==1

Step 3: spset the data

```
. spset fips, coord(locx locy)
```

Step 4: Set the coordinate units, if necessary

```
. spset, coordsys(latlong, miles)
```

Step 5: Save the data

```
. save, replace
```

That is all there is to it.
In step 3, we specified option coord (locx locy). spset will create new variables _ID, _CX, and _CY. It will copy fips into _ID, and locx and locy into _CX and _CY.

In step 4, we set the coordinate system to degrees latitude and longitude because that was necessary in this case. We discussed in [SP] Intro 4 how to determine the coordinate system.

In step 5, we saved project_cs2.dta over itself. The new dataset differs from the old in that it has three new variables and is spset. No changes or deletions were made to the data.

Preparation of panel data

This time, suppose project_panel2.dta is a panel dataset on U.S. counties over time. Perhaps it is already xtset on fips and time. The dataset also includes variables locx and locy identifying the location of each county.

To turn project_panel2.dta into Sp data, do the following:
Step 1: Load the dataset
. use project_panel2, clear
Step 2: Verify that fips and time jointly identify the observations
. assert fips!=.
. assert time!=.
. bysort fips time: assert _N==1
Step 2a: xtset the data and verify that locx and locy are constant within panel
. xtset, clear
. xtset fips time
. bysort fips (time): assert locx == locx[1]
. bysort fips (time) : assert locy == locy[1]
Step 3: Balance and spset the data

```
. spbalance
. spset fips, coord(locx locy)
```

Step 4: Set the coordinate units, if necessary

```
. spset, coordsys(latlong) // optional
```

Step 5: Save the data
. save, replace or save newfilename, replace

Concerning step 5, type save, replace only if step 3 did not involve dropping data.
In step 3 , we spset the data, but not before verifying that they are strongly balanced. If the data are not strongly balanced, spbalance will issue an error and suggest that you type
. spbalance, balance
If you type that, spbalance will balance the data.
Then we spset the data. This creates the new variables _ID, _CX, and _CY. spset copies fips into _ID and copies locx and locy into _CX and _CY.

In step 4, we set coordinate units to degrees latitude and longitude. We discussed how to determine coordinate units in [SP] Intro 4.

There are no rules as there are with shapefiles

There are no special rules for working with the data created here as there were when working with data and shapefiles. The rules in [SP] Intro 4 arose because of the linkage between the data file and its linked *_shp.dta file.

Also see

[SP] spbalance - Make panel data strongly balanced
[SP] spset - Declare data to be Sp spatial data

Title

Intro 6 - Preparing data: Data without shapefiles or locations

Description Remarks and examples Also see

Description

This entry outlines the preparation of data without shapefiles or locations. Such data arise when spillover effects are based not on physical proximity but on proximity in other metrics.

You may also be interested in introductions to other aspects of Sp . Below, we provide links to those other introductions.

Intro 1	A brief introduction to SAR models
Intro 2	The \mathbf{W} matrix
Intro 3	Preparing data for analysis
Intro 4	Preparing data: Data with shapefiles
Intro 5	Preparing data: Data containing locations (no shapefiles)
Intro 7	Example from start to finish
Intro 8	The Sp estimation commands

Remarks and examples

Remarks are presented under the following headings:

Nongeographic spatial data
Preparation of cross-sectional data
Preparation of panel data
There are no rules as there are with shapefiles

Nongeographic spatial data

Spatial analysis is about accounting for spillover effects. Consider an analysis of test scores of students. There may be spillover effects among friends for no other reason than friends share similar but relevant unmeasured characteristics. Or you might hypothesize more direct effects. Such data are known as social network data.

Consider the dollar value of trade between countries. Effects may spillover from one country to the next based on closeness measured by industry and the development level. Closeness might be based on the dissimilarity of industry (providing a reason to trade) and similarity of development level.

In these cases, the construction of the \mathbf{W} spatial weighting matrices is often a substantive research problem in and of itself. As a result, researchers share weighting matrices. If you are analyzing such data, see [SP] spmatrix import. If you create such matrices, see [SP] spmatrix userdefined, [SP] spmatrix fromdata, [SP] spmatrix spfrommata, and [SP] spmatrix export.

First, however, you must prepare the data for use by Sp .

Preparation of cross-sectional data

We will assume that you have a dataset named project_cs3.dta that contains observations on nodes with variable node_id containing the standard codes for them.

To turn project_cs3.dta into Sp data, do the following:
Step 1: Load the data
. use project_cs3, clear
Step 2: Verify that node_id is an ID variable
. assert node_id!=.
. bysort node_id: assert _N==1
Step 3: spset the data
. spset node_id
Step 4: Save the data

```
. save, replace
```

In step 3, when we spset the data, spset created the new variable _ID containing a copy of the values in node_id. Variables _CX and _CY will not be created as they were in [SP] Intro 4 and [SP] Intro 5, because these data do not contain location information.

In step 4, we save project_cs3.dta over itself. The new dataset differs from the old in that it has a new variable and it is spset. No changes or deletions were made to the data.

Preparation of panel data

We will now assume that you have project_panel3.dta, which is a panel dataset based on node_id and time.

To turn project_panel3.dta into Sp data, do the following:
Step 1: Load the dataset

```
    . use project_panel3, clear
```

Step 2: Verify that node_id and time are jointly an ID variable

```
. assert node_id!=.
```

. assert time!=.
. bysort node_id time: assert _N==1
Step 2a: xtset the data
. xtset, clear
. xtset node_id time
Step 3: Balance and spset the data
. spbalance
. spset node_id
Step 4: Save the data save, replace or save newfilename

Concerning step 4, type save, replace only if step 3 did not involve dropping data.

There are no rules as there are with shapefiles

There are no special rules for working with the data created here as there were when working with data and shapefiles. The rules in [SP] Intro 4 arose because of the linkage between the data file and its *_shp.dta file.

Also see

[SP] spbalance - Make panel data strongly balanced
[SP] spset - Declare data to be Sp spatial data

Title

Intro 7 - Example from start to finish

Description Remarks and examples Also see

Description

This entry comprises an example from start to finish.
You may also be interested in introductions to other aspects of Sp . Below, we provide links to those other introductions.

Intro 1	A brief introduction to SAR models
Intro 2	The \mathbf{W} matrix
Intro 3	Preparing data for analysis
Intro 4	Preparing data: Data with shapefiles
Intro 5	Preparing data: Data containing locations (no shapefiles)
Intro 6	Preparing data: Data without shapefiles or locations
Intro 8	The Sp estimation commands

Remarks and examples

Remarks are presented under the following headings:
Research plan
Finding and preparing data
Finding a shapefile for Texas counties
Creating the Stata-format shapefile
Merging our data with the Stata-format shapefile
Analyzing texas_ue.dta
Testing whether ordinary regression is adequate
spregress can reproduce regress results
Fitting models with a spatial lag of the dependent variable
Interpreting models with a spatial lag of the dependent variable
Fitting models with a spatial lag of independent variables
Interpreting models with a spatial lag of the independent variables
Fitting models with spatially autoregressive errors
Models can have all three kinds of spatial lag terms

Research plan

We are going to analyze unemployment in counties of Texas. We are going to use texas_ue.dta. The data contain unemployment rates and college graduation rates for Texas counties, but they do not include the locations of the counties or a map. The data can be used to fit models with regress, but they do not contain the information necessary to fit models with spregress that could account for spillover effects.

We will

1. find and download a U.S. counties shapefile,
2. translate the downloaded file to Stata format,
3. merge the translated file with our existing data, and
4. analyze the merged data.

Please keep in mind that this is just an example in a computer software manual. We will model the unemployment rate as a function of college graduation rate only, though we ought to include other explanatory variables. We analyze data for Texas only, though we should use the entire United States. We will draw conclusions that are unjustified, and we will not qualify them appropriately. We will, however, show you how to use spregress and interpret its output.

Finding and preparing data

We first find and download an appropriate shapefile from the web. Then, we will prepare it as described in [SP] Intro 4.

Finding a shapefile for Texas counties

We looked for a county shapefile for Texas but could not find one. We did find shapefiles for the entire United States, however. We used our browser to search for "shapefile U.S. counties census". From the results, we selected TIGER/Line Shapefile, 2016, nation, U.S., Current County and Equivalent National Shapefile. On the resulting page, we clicked to download the Shapefile Zip File from the Downloads \& Resources section. File tl_2016_us_county.zip was downloaded to the Downloads directory on our computer.

Creating the Stata-format shapefile

We found a standard-format shapefile, tl_2016_us_county.zip. We now follow the instructions in [SP] Intro 4 to create a Stata-format shapefile. Here is the result:

```
// -------------------------------------------------------------
// [SP] intro 4, step 2: Translate the shapefile
copy ~/Downloads/tl_2016_us_county.zip .
. unzipfile tl_2016_us_county.zip
    inflating: tl_2016_us_county.cpg
    inflating: tl_2016_us_county.dbf
    inflating: tl_2016_us_county.prj
    inflating: tl_2016_us_county.shp
    inflating: tl_2016_us_county.shp.ea.iso.xml
    inflating: tl_2016_us_county.shp.iso.xml
    inflating: tl_2016_us_county.shp.xml
    inflating: tl_2016_us_county.shx
successfully unzipped tl_2016_us_county.zip to current directory
total processed: 8
        skipped: 0
        extracted: 8
```

```
. spshape2dta tl_2016_us_county
    (importing .shp file)
    (importing .dbf file)
    (creating _ID spatial-unit id)
    (creating _CX coordinate)
    (creating _CY coordinate)
    file tl_2016_us_county_shp.dta created
    file tl_2016_us_county.dta created
    // ----------------------------------------
. use tl_2016_us_county, clear
. describe
Contains data from tl_2016_us_county.dta
    Observations: 3,233
        Variables: 20 9 Feb 2023 12:44
\begin{tabular}{|c|c|c|c|c|}
\hline Variable name & Storage type & Display format & \begin{tabular}{l}
Value \\
label
\end{tabular} & Variable label \\
\hline _ID & int & \% 12.0 g & & Spatial-unit ID \\
\hline _CX & double & \%10.0g & & x -coordinate of area centroid \\
\hline _CY & double & \%10.0g & & y -coordinate of area centroid \\
\hline STATEFP & str2 & \%9s & & STATEFP \\
\hline COUNTYFP & str3 & \%9s & & COUNTYFP \\
\hline COUNTYNS & str8 & \%9s & & COUNTYNS \\
\hline GEOID & str5 & \%9s & & GEOID \\
\hline NAME & str21 & \%21s & & NAME \\
\hline NAMELSAD & str33 & \%33s & & NAMELSAD \\
\hline LSAD & str2 & \%9s & & LSAD \\
\hline CLASSFP & str2 & \%9s & & CLASSFP \\
\hline MTFCC & str5 & \%9s & & MTFCC \\
\hline CSAFP & str3 & \%9s & & CSAFP \\
\hline CBSAFP & str5 & \%9s & & CBSAFP \\
\hline METDIVFP & str5 & \%9s & & METDIVFP \\
\hline FUNCSTAT & str1 & \%9s & & FUNCSTAT \\
\hline ALAND & double & \%14.0f & & ALAND \\
\hline AWATER & double & \(\% 14.0 f\) & & AWATER \\
\hline INTPTLAT & str11 & \%11s & & INTPTLAT \\
\hline INTPTLON & str12 & \%12s & & INTPTLON \\
\hline
\end{tabular}
```

Sorted by: _ID
. list in $1 / 2$

_ID 1	$\begin{array}{r} \text { _CX } \\ -96.7874 \end{array}$	$\begin{array}{r} \text { CY } \\ 41.916403 \end{array}$		STATEFP 31		$\begin{array}{r} \text { COUNTYFP } \\ 039 \end{array}$		$\begin{aligned} & \text { COUNTYNS } \\ & 00835841 \end{aligned}$		$\begin{aligned} & \text { GEOID } \\ & 31039 \end{aligned}$
NAME Cuming	NAMELSAD Cuming County			$\begin{array}{r} \text { LSAD } \\ 06 \end{array}$		$\begin{array}{r} \text { ASSFP } \\ \text { H1 } \end{array}$	MTF		CSAFP	CBSAFP
METDIVFP	FUNCSTAT A		$\begin{array}{r} \text { ALAND } \\ 1477895811 \end{array}$			$\begin{array}{r} \text { AWATER } \\ 10447360 \end{array}$			$\begin{array}{r} \text { INTPTLAT } \\ +41.9158651 \end{array}$	
$\begin{array}{r} \text { INTPTLON } \\ -096.7885168 \end{array}$										

2.

_ID 2 -123	$\begin{array}{r} -\mathrm{CX} \\ -123.43347 \end{array}$	46.	CY	STATEFP 53		$\begin{array}{r} \text { COUNTYFP } \\ 069 \end{array}$		$\begin{aligned} & \text { COUNTYNS } \\ & 01513275 \end{aligned}$	$\begin{aligned} & \text { GEOID } \\ & 53069 \end{aligned}$
NAME Wahkiakum	NAMELSAD Wahkiakum County			$\begin{array}{r} \text { LSAD } \\ 06 \end{array}$		ASSFP H1	$\begin{aligned} & \text { MTFCC } \\ & \text { G4020 } \end{aligned}$	CSAFP	CBSAFP
METDIVFP	FUNCSTAT A		$\begin{array}{r} \text { ALAND } \\ 680956787 \end{array}$			$\begin{array}{r} \text { AWATER } \\ 61588406 \end{array}$		$\begin{array}{r} \text { INTPTLAT } \\ +46.2946377 \end{array}$	
$\begin{array}{r} \text { INTPTLON } \\ -123.4244583 \end{array}$									

```
// --------------------------------------------------------------
```

// [SP] intro 4, step 4: Create standard ID variable

- generate long fips = real(STATEFP + COUNTYFP)
. bysort fips: assert _N==1
. assert fips != .
// ---1
// [SP] intro 4, step 5: Tell Sp to use standard ID variable
spset fips, modify replace
(_shp.dta file saved)
(data in memory saved)
Sp dataset: tl_2016_us_county.dta
Linked shapefile: tl_2016_us_county_shp.dta
Data: Cross sectional
Spatial-unit ID: _ID (equal to fips)
Coordinates: _CX, _CY (planar)

. // [SP] intro 4, step 6: Set coordinate units
. spset, modify coordsys(latlong, miles)
Sp dataset: tl_2016_us_county.dta
Linked shapefile: tl_2016_us_county_shp.dta
Data: Cross sectional
Spatial-unit ID: _ID (equal to fips)
Coordinates: _CY, _CX (latitude-and-longitude, miles)
. save, replace
file tl_2016_us_county.dta saved
. //

Merging our data with the Stata-format shapefile

Recall that we are going to use texas_ue.dta containing unemployment rates and college graduation rates for Texas counties. We follow the instructions in [SP] Intro 4, Step 7a to merge our existing data with the Stata-format shapefile.

```
. copy https://www.stata-press.com/data/r18/texas_ue.dta .
. use texas_ue, clear
. describe
Contains data from texas_ue.dta
    Observations: 254
        Variables: 4 10 Feb 2023 12:36
                                (_dta has notes)
\begin{tabular}{|c|c|c|c|c|}
\hline Variable name & Storage type & Display format & \begin{tabular}{l}
Value \\
label
\end{tabular} & Variable label \\
\hline fips & float & \%9.0g & & FIPS \\
\hline college & float & \%9.0g & & * Percent college degree \\
\hline income & long & \%12.0g & & Median household income \\
\hline unemployment & float & \(\% 9.0 \mathrm{~g}\) & & Unemployment rate \\
\hline \multicolumn{5}{|r|}{* indicated variables have notes} \\
\hline
\end{tabular}
```

```
Sorted by: fips
. merge 1:1 fips using tl_2016_us_county
. keep if _merge==3
(2,979 observations deleted)
. drop _merge
```

(variable fips was float, now double to accommodate using data's values)
Result Number of obs
Not matched $\quad 2,979$
from master 0 (_merge==1)
from using 2,979 (_merge==2)
Matched 254 (_merge==3)

At this point, we type describe again and discover that texas_ue.dta has lots of unnecessary, leftover variables from tl_2016_us_county.dta, so we drop them. There is another variable that we rather like-the names of the counties-and we rename it.

```
. rename NAME countyname
. drop STATEFP COUNTYFP COUNTYNS GEOID
. drop NAMELSAD LSAD CLASSFP MTFCC CSAFP
. drop CBSAFP METDIVFP FUNCSTAT
. drop ALAND AWATER INTPTLAT INTPTLON
. save, replace
file texas_ue.dta saved
```


Analyzing texas_ue.dta

File texas_ue.dta is our updated analysis dataset that can be used with Sp commands.

Contains data Observations: Variables:	from texa	$\begin{gathered} \text { s_ue.dta } \\ 254 \\ 8 \end{gathered}$	24 Mar 2023 21:54 (_dta has notes)	
Variable name	Storage type	Display format	Value label	Variable label
fips	double	\% 9.0 g		FIPS
college	float	\%9.0g		* Percent college degree
income	long	\% 12.0 g		Median household income
unemployment	float	\%9.0g		Unemployment rate
_ID	long	\%12.0g		Spatial-unit ID
_CX	double	\%10.0g		x -coordinate of area centroid
_CY	double	\%10.0g		y-coordinate of area centroid
countyname	str21	\%21s		NAME
				* indicated variables have notes

Sorted by:
Our example uses the unemployment rate. It varies between 1.5% and 12.4% across the counties of Texas:
. summarize unemployment

Variable	Obs	Mean	Std. dev.	Min	Max
unemployment	254	4.731102	1.716514	1.5	12.4

Because texas_ue.dta has been spset and has a shapefile, we can draw choropleth maps, such as this one of the unemployment rate:

```
. grmap unemployment
```


Unemployment appears to be clustered, which suggests that there are spillover effects between counties.

Testing whether ordinary regression is adequate

These data are suitable for both spatial and nonspatial analysis. (Spatial data always are.) We will fit a linear regression of the unemployment rate on the college graduation rate, mostly for illustrative purposes. After fitting the linear regression, we will use an Sp command to determine whether the residuals of the model are spatially correlated, and we find that they are.

Here is the regression:
. regress unemployment college

Source	SS	df	MS
Model	139.314746	1	139.314746
Residual	606.129539	252	2.40527595
Total	745.444285	253	2.9464201

Number of obs	$=$	254
$\mathrm{~F}(1,252)$	$=$	57.92
Prob $>\mathrm{F}$	$=$	0.0000
R-squared	$=$	0.1869
Adj R-squared	$=$	0.1837
Root MSE	$=$	1.5509

unemployment	Coefficient	Std. err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% conf. interval]	
college	-.1008791	.0132552	-7.61	0.000	-.1269842	-.0747741
_cons	6.542796	.2571722	25.44	0.000	6.036316	7.049277

The results of this oversimplified model indicate that the college graduation rate reduces unemployment markedly.

Are we done? If the residuals show no signs of being spatially clustered, then we are. We can perform a statistical test.

Sp provides the Moran test for determining whether the residuals of a model fit by regress are correlated with nearby residuals. To use it, we must define "nearby". We do that by defining a spatial weighting matrix, which is created by the spmatrix command. We will define a contiguity matrix.

```
. spmatrix create contiguity W
```

This contiguity matrix sets "nearby" to mean "shares a border".
spmatrix can create other types of weighting matrices. It even allows you to create custom matrices or to import matrices. See [SP] spmatrix.

We can now run the Moran test.

```
. estat moran, errorlag(W)
Moran test for spatial dependence
    HO: Error terms are i.i.d.
    Errorlags: W
    chi2(1) = 94.06
    Prob > chi2 = 0.0000
```

The test reports that we can reject that the residuals from the model above are independent and identically distributed (i.i.d.). In particular, the test considered the alternative hypothesis that residuals are correlated with nearby residuals as defined by \mathbf{W}.

spregress can reproduce regress results

spregress is the spatial autoregression command. spregress fits models in which the observations are not independent, as defined by the \mathbf{W} weighting matrix.

Above, we fit a model under the assumption that the counties are independent. We used regress, Stata's ordinary linear regression command. We typed

```
. regress unemployment college
```

We could have fit the same model and obtained the same results by using spregress. We would have typed

```
. spregress unemployment college, gs2sls
```

or

```
. spregress unemployment college, ml
```

spregress is seldom used for fitting models without spatial lags or autocorrelated errors, but when it is, it reports the same linear regression results that regress reports, although there are some differences. Standard errors are slightly different, and spregress reports Z and χ^{2} statistics instead of t and F statistics. spregress does not include the finite-sample adjustments that regress does because it does not expect to be used in situations where those adjustments would be appropriate.

Fitting models with a spatial lag of the dependent variable

We will use spregress to fit the same model we fit using regress but with the addition of a spatial lag of unemployment. The model we fit will be

$$
\mathbf{y}_{\mathrm{ue}}=\beta_{0}+\beta_{1} \mathbf{x}_{\mathrm{cr}}+\beta_{2} \mathbf{W} \mathbf{y}_{\mathrm{ue}}+\boldsymbol{\epsilon}
$$

\mathbf{y}_{ue} is the unemployment rate corresponding to variable unemployment in our data. $\mathbf{x}_{\text {cr }}$ is the college graduation rate corresponding to variable college.

The model we fit will include the term $\beta_{2} \mathbf{W} \mathbf{y}_{\text {ue }}$, meaning that we will assume the unemployment rate spills over from nearby counties. There is a real logic to such a model. One would expect workers in high unemployment counties to seek employment nearby.
spregress provides two ways of fitting models: generalized spatial two-stage least squares (gs2sls) and maximum likelihood (ml). To fit the above model, we could type

```
                . spregress unemployment college, gs2sls dvarlag(W)
```

or
. spregress unemployment college, ml dvarlag(W)
spregress, ml is statistically more efficient than gs 2 sls when the errors are normally distributed. Efficiency is desirable, so we should use ml , right? That same property said differently is that gs2sls is robust to violations of normality. Robustness is desirable, too. So now the choice between them hinges on whether we believe the normality assumption. That said, ml will provide standard errors that are also robust to violations of normality if we specify its vce (robust) option. Finally, ml takes longer to run, and that computation time increases as the number of observations increases. We will use gs2sls.

```
. spregress unemployment college, gs2sls dvarlag(W)
    (254 observations)
    (254 observations (places) used)
    (weighting matrix defines 254 places)
```

Spatial autoregressive model Number of obs = 254
GS2SLS estimates
Wald chi2(2) $=67.66$
Prob > chi2 $=0.0000$
Pseudo R2 $=0.1453$

unemployment	Coefficient	Std. err.	z	$P>\|z\|$	[95\% con	interval]
unemployment						
college	-. 0939834	. 0131033	-7.17	0.000	-. 1196653	-. 0683015
_cons	5.607379	. 5033813	11.14	0.000	4.620769	6.593988
W						
unemployment	. 2007728	. 0942205	2.13	0.033	. 016104	. 3854415

Results for β_{0} and β_{1} are similar to those reported by regress, but that is a fluke of this example. Usually, when spillover effects are significant, other parameters change. Meanwhile, we find that β_{2} (which multiplies $\mathbf{W} \mathbf{y}_{\text {ue }}$) is significant, but it is not sharply estimated. The $\mathbf{9 5 \%}$ confidence interval places β_{2} in the range $[0.02,0.39]$.

Interpreting models with a spatial lag of the dependent variable

You might be tempted to think of β_{1} as the direct effect of education and β_{2} as the spillover effect, but they are not. They are ingredients into a recursive calculation of those effects. The model we fit is

$$
\mathbf{y}_{\mathrm{ue}}=\beta_{0}+\beta_{1} \mathbf{x}_{\mathrm{cr}}+\beta_{2} \mathbf{W} \mathbf{y}_{\mathrm{ue}}+\boldsymbol{\epsilon}
$$

If $\mathbf{x}_{\text {cr }}$ increases, that reduces $\mathbf{y}_{\text {ue }}$ by β_{1}, and that reduction in $\mathbf{y}_{\text {ue }}$ spills over to produce a further reduction in $\mathbf{y}_{\text {ue }}$ of $\beta_{2} \mathbf{W}$, and that reduction spills over to produce yet another reduction in $\mathbf{y}_{\text {ue }}$, and so on.
estat impact reports the average effects from the recursive process.

progress : 100%						
Average impacts \quad Number of obs $=254$						
	dy/dx	$\begin{aligned} & \text { elta-Meth } \\ & \text { std. err. } \end{aligned}$	z	$P>\|z\|$	[95\% con	interval]
direct						
college	-. 0945245	. 0130576	-7.24	0.000	-. 120117	-. 0689321
indirect						
college	-. 0195459	. 010691	-1.83	0.068	-. 0405	. 0014081
total						
college	-. 1140705	. 0171995	-6.63	0.000	-. 1477808	-. 0803602

In these data, both the unemployment and the graduation rates are measured in percentage points. A change of 1 is a change of 1 percentage point. The table above reports derivatives, but we can be
forgiven for interpreting the results as if they were for a one-unit change. Everybody does it, and sometimes it is even justifiable, for example, if the model is linear in the variables as this one is. Even if the model were nonlinear, it would be a tolerable approximation to the truth as long as a one-unit change were small.

The table reports average changes for a 1-percentage-point increase in the college graduation rate. The direct effect is the effect of the change within the county, ignoring spillover effects. The own-county direct effect is to reduce the unemployment rate by 0.09 percentage points.

The indirect effect is the spillover effect. A 1-percentage-point increase in the college graduation rate reduces unemployment, and that reduction spills over to further reduce unemployment. The result is a 0.02 reduction in unemployment.

The total effect is the sum of the direct and indirect effects, which is $-0.09+-0.02=-0.11$.
You must use estat impact to interpret effects. Do not try to judge them from the coefficients that spregress reports because they can mislead you. For instance, if we multiplied variable unemployment by 100, that would not substantively change anything about the model, yet the effect on the coefficients that spregress estimates is surprising.

Summary of spregress results
Regression of unemployment and $100 *$ unemployment on college and $\mathrm{W} * u n e m p l o y m e n t$

	unemployment	100*unemployment
college	-0.094	-9.4
W*unemployment	0.201	0.201

Notes: Column 1 from spregress output above.
Column 2 from:
generate ue100 = 100*unemployment
spregress unemployment college, gs2sls dvarlag(W)
The effect of the change in units is to multiply the coefficient on college $\left(\beta_{1}\right)$ by 100 just as you would expect. Yet β_{2}, the coefficient on $\mathbf{W y}_{\text {ue }}$, is unchanged! Comparing these two models, you might mislead yourself into thinking that the ratio of the indirect-to-direct effects is smaller in the second model, but it is not. estat impact continues to report the same results as it did previously, multiplied by 100 :

progress : 100%						
Average impacts \quad Number of obs $=254$						
	dy/dx	elta-Meth std. err	z	$P>\|z\|$	[95\% con	interval]
direct						
indirect						
total college	-11.40705	1.719946	-6.63	0.000	-14.77808	-8.036016

Fitting models with a spatial lag of independent variables

We fit a model above with a spatial lag of the dependent variable:

$$
\mathbf{y}_{\mathrm{ue}}=\beta_{0}+\beta_{1} \mathbf{x}_{\mathrm{cr}}+\beta_{2} \mathbf{W} \mathbf{y}_{\mathrm{ue}}+\boldsymbol{\epsilon}
$$

We could instead fit a model with a spatial lag of the independent variable:

$$
\mathbf{y}_{\mathrm{ue}}=\beta_{0}+\beta_{1} \mathbf{x}_{\mathrm{cr}}+\beta_{2} \mathbf{W} \mathbf{x}_{\mathrm{cr}}+\boldsymbol{\epsilon}
$$

We do that by typing

```
. spregress unemployment college, gs2sls ivarlag(W:college)
    (254 observations)
    (254 observations (places) used)
    (weighting matrix defines 254 places)
```

Spatial autoregressive model Number of obs = 254
GS2SLS estimates Wald chi2(2) = 81.13
Prob > chi2 $=0.0000$
Pseudo R2 $=0.2421$

| unemployment | Coefficient | Std. err. | z | P>\|z| | [95\% conf. interval] | |
| :--- | :---: | :---: | :---: | :---: | :---: | ---: |
| unemployment
 college
 _cons | -.077997 | .0138127 | -5.65 | 0.000 | -.1050695 | -.0509245 |
| W | | | | | | |
| college | -.0823953 | .3212299 | 23.11 | 0.000 | 6.794854 | 8.054053 |

Interpreting models with a spatial lag of the independent variables

Just as with lags of the dependent variable, the easy way to obtain the direct and indirect effects of independent variables is to use estat impact.

progress : 100%						
Average impacts \quad Number of obs $=254$						
		elta-Method std. err	z	$P>\|z\|$	[95\% con	interval]
direct						
indirect						
total college	-. 1495243	. 0170417	-8.77	0.000	-. 1829255	-. 1161231

The table reports that the own-county direct effect of a 1-percentage-point increase in the college graduation rate is to reduce unemployment by 0.078 percentage points.

The across-county spillover effect of a 1-percentage-point increase in the college graduation rate is to reduce unemployment by 0.072 percentage points on average.

For those curious how the results were calculated, here are the details.

- The direct effect of college graduation rate is $\beta_{1} \mathbf{x}_{\mathrm{cr}}$.
- The indirect effect of college graduation rate is $\beta_{2} \mathbf{W} \mathbf{x}_{\text {cr }}$.
- The direct effect of increasing $\mathbf{x}_{\text {cr }}$ by 1 in all counties is

$$
\Delta \mathbf{y}_{\mathrm{ue}}=\beta_{1}\left(\mathbf{x}_{\mathrm{cr}}+\mathbf{1}\right)-\beta_{1} \mathbf{x}_{\mathrm{cr}}=\beta_{1} \mathbf{1}
$$

where $\mathbf{1}$ is an $N \times 1$ vector of 1 s .

- The direct effect is that $\mathbf{y}_{\text {ue }}$ increases by β_{1} in each county.
- The indirect effect follows the same logic:

$$
\Delta \mathbf{y}_{\mathrm{ue}}=\beta_{2} \mathbf{W}\left(\mathbf{x}_{\mathrm{cr}}+\mathbf{1}\right)-\beta_{2} \mathbf{W} \mathbf{x}_{\mathrm{cr}}=\beta_{2} \mathbf{W} \mathbf{1}
$$

This result states that $\mathbf{y}_{\text {ue }}$ increases by $\left(\beta_{2} \mathbf{W} \mathbf{1}\right)_{i}$ in county i. For different counties, there are different effects because each county is affected by its own neighbors. The average effect across counties is the average of $\beta_{2} \mathbf{W} 1$.

Fitting models with spatially autoregressive errors

We have fit models with a spatial lag of the dependent variable and with a spatial lag of the independent variable.

$$
\begin{aligned}
& \mathbf{y}_{\mathrm{ue}}=\beta_{0}+\beta_{1} \mathbf{x}_{\mathrm{cr}}+\beta_{2} \mathbf{W} \mathbf{y}_{\mathrm{ue}}+\boldsymbol{\epsilon} \\
& \mathbf{y}_{\mathrm{ue}}=\beta_{0}+\beta_{1} \mathbf{x}_{\mathrm{cr}}+\beta_{2} \mathbf{W} \mathbf{x}_{\mathrm{cr}}+\boldsymbol{\epsilon}
\end{aligned}
$$

We could instead fit a model with a spatial lag of the error:

$$
\mathbf{y}_{\mathrm{ue}}=\beta_{0}+\beta_{1} \mathbf{x}_{\mathrm{cr}}+(\mathbf{I}-\rho \mathbf{W})^{-1} \boldsymbol{\epsilon}
$$

We do that by typing

```
. spregress unemployment college, gs2sls errorlag(W)
    (254 observations)
    (254 observations (places) used)
    (weighting matrix defines 254 places)
```

Estimating rho using 2SLS residuals:
Initial: GMM criterion $=$. 71251706
Alternative: GMM criterion $=.04381608$
Rescale: GMM criterion $=.02453154$
Iteration 0: GMM criterion $=.02453154$
Iteration 1: GMM criterion $=$. 00420723
Iteration 2: GMM criterion $=$. 0002217
Iteration 3: GMM criterion $=.00021298$
Iteration 4: GMM criterion $=.00021298$
Estimating rho using GS2SLS residuals:
Iteration 0: GMM criterion $=.00566696$
Iteration 1: GMM criterion $=.00486118$
Iteration 2: GMM criterion $=$. 00486066
Iteration 3: GMM criterion $=$. 00486066
Spatial autoregressive model Number of obs $=254$
GS2SLS estimates

| Number of obs | $=254$ |
| :--- | ---: | ---: |
| Wald chi2(1) | $=37.76$ |
| Prob $>$ chi2 | $=0.0000$ |
| Pseudo R2 | $=0.1869$ |

unemployment	Coefficient	Std. err.	z	$P>\|z\|$	[95\% conf. interval]	
unemployment						
college	-. 0759125	. 0123532	-6.15	0.000	-. 1001243	-. 0517008
_cons	6.292997	. 2968272	21.20	0.000	5.711227	6.874768
W						
e. unemploy ${ }^{\sim}$ t	. 7697395	. 0690499	11.15	0.000	. 6344043	. 9050748

Wald test of spatial terms: $\quad \operatorname{chi2}(1)=124.27 \quad$ Prob $>$ chi2 $=0.0000$

The estimated value of the spatial autocorrelation parameter ρ is presented on the line above the Wald test: $\widehat{\rho}=0.77$. It is estimated to be large and significant.
ρ is called the autocorrelation parameter because it is not a correlation coefficient, although it does share some characteristics with correlation coefficients. It is theoretically bounded by -1 and 1 , and $\rho=0$ means that the autocorrelation is 0 .
estat impact does not report ρ :

progress : 100%						
Average impacts \quad Number of obs $=254$						
	dy/dx	lta-Meth std. err	z	$P>\|z\|$	[95\% con	interval]
direct						
indirect college $0 \quad$ (omitted)						
total college	-. 0759125	. 0123532	-6.15	0.000	-. 1001243	-. 0517008

The above output is an example of what estat impact produces when there are no lagged dependent or independent variables. There are no spillover effects. Spatially correlated errors do not induce spillover effects in the covariates.

Models can have all three kinds of spatial lag terms

We have shown models with each type of spatial lag term, but models can have more than one. Use estat impact to estimate the effects of covariates when you have lagged variables, whether dependent, independent, or both. If you include spatially correlated errors, check the size and significance of the estimated ρ.

Also see

[SP] Intro - Introduction to spatial data and SAR models
[SP] spregress - Spatial autoregressive models
[SP] spregress postestimation - Postestimation tools for spregress
[SP] spset - Declare data to be Sp spatial data

Title

Intro 8 - The Sp estimation commands

Description Remarks and examples Reference Also see

Description

There are three Sp estimation commands for spatial data:

- spregress-linear regression for cross-sectional data
- spivregress-instrumental-variables linear regression for cross-sectional data
- spxtregress-fixed- and random-effects linear regression models for panel data

This entry provides an overview of these estimation commands.
You may also be interested in introductions to other aspects of Sp . Below, we provide links to those other introductions.

Intro 1	A brief introduction to SAR models
Intro 2	The \mathbf{W} matrix
Intro 3	Preparing data for analysis
Intro 4	Preparing data: Data with shapefiles
Intro 5	Preparing data: Data containing locations (no shapefiles)
Intro 6	Preparing data: Data without shapefiles or locations
Intro 7	Example from start to finish

Remarks and examples

Remarks are presented under the following headings:

```
spregress, gs2sls
spregress, ml
spivregress
spxtregress
spxtregress, re
spxtregress, fe
```


spregress, gs2sls

spregress is the equivalent of regress for spatial data. You have two choices of estimator: gs2sls or ml.

The gs2sls estimator is a generalized method of moments estimator. With gs2sls, you can fit multiple spatial lags of the dependent variable (that is, multiple spatial weighting matrices), multiple spatial autoregressive error terms, and multiple spatial lags of covariates. To fit a model, you issue a command like

```
spregress y x1 x2, gs2sls dvarlag(W) errorlag(W) ivarlag(M: x1 x2)
```

where W and M are weighting matrices. See [SP] spregress.

To interpret your results after fitting the model, it is essential that you run estat impact. estat impact works after all the Sp estimation commands. Explanations and examples are given in [SP] Intro 7, example 1 of [SP] spregress, [SP] spivregress postestimation, [SP] spregress postestimation, and [SP] spxtregress postestimation.

The gs2sls estimator assumes that the errors are independent and identically distributed (i.i.d.) but does not require normality. The i.i.d. requirement is relaxed when you use the heteroskedastic option; only independence is required.

```
spregress y x1 x2, gs2sls heteroskedastic dvarlag(W) errorlag(W) ///
    ivarlag(M: x1 x2)
```

The heteroskedastic option uses different formulas for the spatial autoregressive error correlations and the standard errors. See Methods and formulas in [SP] spregress.

spregress, ml

The spregress, ml estimator is a maximum likelihood (ML) estimator. With ml, you can fit only one spatial lag of the dependent variable and only one spatial autoregressive error term, but you can fit multiple spatial lags of covariates. To fit a model, type

```
spregress y x1 x2, ml dvarlag(W) errorlag(W) ivarlag(W: x1 x2) ///
    ivarlag(M: x1 x2)
```

The ml estimator assumes that the errors are normal and i.i.d. The command spregress, ml is typically slower than spregress, gs2sls, but spregress, ml may be more efficient (smaller standard errors) when errors are normal.

The requirement of normality is removed if you use the vce (robust) option, just as it is for Stata's other ML estimators that allow this option:

```
spregress y x1 x2, ml vce(robust) dvarlag(W) errorlag(W) ///
```

 ivarlag(M: x1 x2)
 See Methods and formulas in [SP] spregress.

spivregress

spivregress is the equivalent of ivregress for spatial data. spivregress uses the same estimator as spregress, gs2sls, but it allows endogenous regressors. You can fit multiple spatial lags of the dependent variable, multiple spatial autoregressive error terms, and multiple spatial lags of included exogenous regressors. You cannot specify a spatial lag for the endogenous regressors or for the excluded exogenous regressors. See Remarks and examples in [SP] spivregress.

To fit a model using spivregress, you would issue a command like

```
spivregress y x1 x2 (z = x3), dvarlag(W) errorlag(W) ivarlag(M: x1 x2)
```

spivregress also has a heteroskedastic option that provides the same properties it does when used with spregress, gs2sls.

spxtregress

spxtregress is the Sp estimation command for panel data. It fits fixed-effects (fe) and randomeffects (re) models. spxtregress, fe and re are the spatial data equivalent of xtreg, fe and re. To use spxtregress, you must have strongly balanced data, and your data must be xtset. See [SP] Intro 3, [SP] Intro 7, and [SP] spbalance.

With spxtregress, fe and re, you can fit only one spatial lag of the dependent variable and only one spatial autoregressive error term. You can fit multiple spatial lags of covariates.

spxtregress, re

The random-effects model is fit using a maximum likelihood estimator. It assumes that the panellevel effects are normal i.i.d. across the panels and that the errors are normal i.i.d. across panels and time.

To fit this model, you issue a command like

```
spxtregress y x1 x2, re dvarlag(W) errorlag(W) ivarlag(M: x1 x2)
```

spxtregress, re has a sarpanel option that uses a different formulation of the random-effects estimator due to Kapoor, Kelejian, and Prucha (2007). The panel-level effects are considered a disturbance in the error equation, and the panel-level effects have the same autoregressive form as the time-level errors. To fit such models, you issue a command like

```
spxtregress y x1 x2, re sarpanel dvarlag(W) errorlag(W) ///
    ivarlag(M: x1 x2)
```


spxtregress, fe

The fixed-effects model also uses a maximum likelihood estimator. In this estimator, panel effects and effects that are constant within time are conditioned out of the likelihood. No distributional assumptions are made about the panel effects. Only covariates that vary across both panels and time can be fit with this estimator.

To fit this model, you issue a command like

```
spxtregress y x1 x2, fe dvarlag(W) errorlag(W) ivarlag(M: x1 x2)
```

See Methods and formulas in [SP] spxtregress.

Reference

Kapoor, M., H. H. Kelejian, and I. R. Prucha. 2007. Panel data models with spatially correlated error components. Journal of Econometrics 140: 97-130. https://doi.org/10.1016/j.jeconom.2006.09.004.

Also see

[SP] Intro - Introduction to spatial data and SAR models
[SP] spivregress - Spatial autoregressive models with endogenous covariates
[SP] spregress - Spatial autoregressive models
[SP] spxtregress - Spatial autoregressive models for panel data

Title

estat moran - Moran's test of residual correlation with nearby residuals

Description	Quick start	Menu for estat	Syntax
Option	Remarks and examples	Stored results	Methods and formulas
References	Also see		

Description

estat moran is a postestimation test that can be run after fitting a model using regress with spatial data. It performs the Moran test for spatial correlation among the residuals.

Quick start

Linear regression of y on x 1 and x 2 , then testing for spatial correlation among the residuals using the spatial weighting matrix W

```
regress y x1 x2
estat moran, errorlag(W)
```

After the same regress command, add another spatial weighting matrix
estat moran, errorlag(W) errorlag(M)
After regress with no independent variables

```
regress y
estat moran, errorlag(W)
```


Menu for estat

Statistics $>$ Postestimation

Syntax

estat moran, errorlag(spmatname) [errorlag(spmatname)...]
collect is allowed; see [U] 11.1.10 Prefix commands.

Option

errorlag (spmatname) specifies a spatial weighting matrix that defines the error spatial lag that will be tested. errorlag() is required. This option is repeatable to allow testing of higher-order error lags.

Remarks and examples

If you have not read [SP] Intro 1-[SP] Intro 8, you should do so before using estat moran.
To use estat moran, your data must be cross-sectional Sp data. See [SP] Intro 3 for instructions on how to prepare your data.

To specify the form of the spatial correlation to be tested, you will need to have one or more spatial weighting matrices. See [SP] Intro 2 and [SP] spmatrix for an explanation of the types of weighting matrices and how to create them.

Before fitting a spatial autoregressive (SAR) model with spregress, you may want to fit the model with regress and then run estat moran. If the Moran test is significant, you will likely want to fit the model with spregress. If the test is not significant, you may question the need to fit a SAR model.
regress can be used with a single variable before running estat moran. This is a test of the spatial correlation of the variable.

> Example 1: A test for spatial correlation

We have data on the homicide rate in counties in southern states of the U.S. homicide1990.dta contains hrate, the county-level homicide rate per year per 100,000 persons; ln_population, the logarithm of the county population; ln_pdensity, the logarithm of the population density; and gini, the Gini coefficient for the county, a measure of income inequality where larger values represent more inequality (Gini 1909). The data are an extract of the data originally used by Messner et al. (2000); see Britt (1994) for a literature review of the topic. This dataset is also used for the examples in [SP] spregress.

We used spshape2dta in the usual way to create the datasets homicide1990.dta and homicide1990_shp.dta. The latter file contains the boundary coordinates for U.S. southern counties. See [SP] Intro 4, [SP] Intro 7, [SP] spshape2dta, and [SP] spset.

Because the analysis dataset and the Stata-formatted shapefile must be in our working directory to spset the data, we first save both homicide1990.dta and homicide1990_shp.dta to our working directory by using the copy command. We then load the data and type spset to display the Sp attributes of the data.

```
. copy https://www.stata-press.com/data/r18/homicide1990.dta .
. copy https://www.stata-press.com/data/r18/homicide1990_shp.dta .
. use homicide1990
(S.Messner et al.(2000), U.S southern county homicide rates in 1990)
. spset
    Sp dataset: homicide1990.dta
Linked shapefile: homicide1990_shp.dta
            Data: Cross sectional
Spatial-unit ID: _ID
    Coordinates: _CX, _CY (planar)
```

We plot the homicide rate on a map of the counties by using the grmap command; see [SP] grmap. Figure 1 is the result.

```
. grmap hrate
```


Figure 1: Homicide rate in 1990 for southern U.S. counties
The homicide rate appears to be spatially dependent because the high homicide-rate counties appear to be clustered together.

To conduct the Moran test, we need a spatial weighting matrix. We will create a contiguity matrix and use the default spectral normalization for this matrix. See [SP] Intro 2 and [SP] spmatrix create for details. We type

```
. spmatrix create contiguity W
```

Now, we run regress and then estat moran:


```
. estat moran, errorlag(W)
Moran test for spatial dependence
    HO: Error terms are i.i.d.
    Errorlags: W
    chi2(1) = 265.84
    Prob > chi2 = 0.0000
```

The test reports that we can reject that the errors are i.i.d. This is not surprising based on our visual appraisal of the data.
estat moran can be used with more than one weighting matrix. In this case, it produces a joint test of whether any of the weighting matrices specify a spatial dependence.
. spmatrix create idistance M
. estat moran, errorlag(W) errorlag(M)
Moran test for spatial dependence
HO: Error terms are i.i.d.
Errorlags: W M
chi2(2) $=898.62$
Prob > chi2 $=0.0000$
We can also use estat moran after a linear regression with independent variables:
. regress hrate $1 n$ _population \ln _pdensity gini

Source	SS	df	MS	Number of obs	=	1,412
				$\mathrm{F}(3,1408)$	=	96.78
Model	11950.8309	3	3983.61032	Prob > F	=	0.0000
Residual	57957.7591	1,408	41.1631812	R -squared	=	0.1709
				Adj R-squared	=	0.1692
Total	69908.59	1,411	49.5454217	Root MSE	=	6.4159

hrate	Coefficient	Std. err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% conf. interval]	
ln_populat $\sim n$.5559273	.2574637	2.16	0.031	.0508736	1.060981
ln_pdensity	.8231517	.2304413	3.57	0.000	.3711065	1.275197
gini	84.33136	5.169489	16.31	0.000	74.19063	94.47209
_cons	-32.46353	2.891056	-11.23	0.000	-38.13477	-26.79229

```
. estat moran, errorlag(W)
Moran test for spatial dependence
    HO: Error terms are i.i.d.
    Errorlags: W
    chi2(1) = 186.72
    Prob > chi2 = 0.0000
```

The Moran test is significant. We fit a SAR model using spregress, gs2sls:

```
. spregress hrate ln_population ln_pdensity gini, gs2sls errorlag(W)
    (1412 observations)
    (1412 observations (places) used)
    (weighting matrix defines }1412\mathrm{ places)
    (output omitted)
Spatial autoregressive model Number of obs = 1,412
GS2SLS estimates Wald chi2(3) = 243.84
Prob > chi2 = 0.0000
Pseudo R2 = 0.1686
```

hrate	Coefficient	Std. err.	z	$P>\|z\|$	[95\% con	interval]
hrate						
ln_populat~n	. 3184462	. 2664379	1.20	0.232	-. 2037625	. 8406549
ln_pdensity	. 8156068	. 2469074	3.30	0.001	. 3316771	1.299537
gini	88.44808	5.925536	14.93	0.000	76.83425	100.0619
_cons	-31.81189	3.115188	-10.21	0.000	-37.91755	-25.70624
W						
e.hrate	. 5250879	. 0326974	16.06	0.000	. 4610021	. 5891736
Wald test of	atial terms:		i2(1)	257.89	Prob > ch	$2=0.0000$

See [SP] spregress.

Stored results

estat moran stores the following in $r()$:
Scalars
$r\left(\right.$ chi2) $\quad \chi^{2}$
$r(\mathrm{df}) \quad$ degrees of freedom of χ^{2}
$r(p) \quad p$-value for model test
Macros
r (elmat) weighting matrices used to specify error lag

Methods and formulas

Consider the model

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}
$$

where \mathbf{y} is the $n \times 1$ dependent-variable vector, \mathbf{X} is the $n \times K$ matrix of covariates, $\boldsymbol{\beta}$ is the $K \times 1$ vector of regression parameters, and \mathbf{u} is the $n \times 1$ vector of disturbances. We assume that u_{i} are identically distributed with $E\left(u_{i}\right)=0$ and $E\left(u_{i}^{2}\right)=\sigma^{2}$. We want to test the hypothesis that u_{i} are uncorrelated; that is, we want to test

$$
H_{0}: E\left(\mathbf{u u}^{\prime}\right)=\sigma^{2} \mathbf{I}
$$

Consider the case where the researcher believes that the spatial weighting matrix \mathbf{W}_{1} gives a proper representation of spatial links for the disturbances \mathbf{u}. In this case, the researcher could test H_{0} using the standard Moran I test statistic (Moran 1950),

$$
I=\frac{\widehat{\mathbf{u}}^{\prime} \mathbf{W}_{1} \widehat{\mathbf{u}}}{\widehat{\sigma}^{2}\left[\operatorname{tr}\left\{\left(\mathbf{W}_{1}^{\prime}+\mathbf{W}_{1}\right) \mathbf{W}_{1}\right\}\right]^{1 / 2}}
$$

where $\widehat{\mathbf{u}}=\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}}$ are the estimated residuals and $\widehat{\sigma}^{2}=\widehat{\mathbf{u}}^{\prime} \widehat{\mathbf{u}} / n$ is the corresponding estimator for σ^{2}. Under appropriate assumptions, it follows from Kelejian and Prucha (2001) that $I \sim N(0,1)$ and $I^{2} \sim \chi^{2}(1)$.

Next, consider the case where the researcher is not sure whether any of the weighting matrices $\mathbf{W}_{1}, \mathbf{W}_{2}, \ldots, \mathbf{W}_{q}$ properly model the spatial interdependence between u_{i}. In this case, the researcher can test H_{0} using the $I(q)^{2}$ test statistic:

$$
I(q)^{2}=\left[\begin{array}{c}
\widehat{\mathbf{u}}^{\prime} \mathbf{W}_{1} \widehat{\mathbf{u}} / \widehat{\sigma}^{2} \\
\vdots \\
\widehat{\mathbf{u}}^{\prime} \mathbf{W}_{q} \widehat{\mathbf{u}} / \widehat{\sigma}^{2}
\end{array}\right]^{\prime} \Phi^{-1}\left[\begin{array}{c}
\widehat{\mathbf{u}}^{\prime} \mathbf{W}_{1} \widehat{\mathbf{u}} / \widehat{\sigma}^{2} \\
\vdots \\
\widehat{\mathbf{u}}^{\prime} \mathbf{W}_{q} \widehat{\mathbf{u}} / \widehat{\sigma}^{2}
\end{array}\right]
$$

where $\Phi=\left(\phi_{r s}\right)$ and $r, s=1, \ldots, q$:

$$
\phi_{r s}=\frac{1}{2} \operatorname{tr}\left\{\left(\mathbf{W}_{r}+\mathbf{W}_{r}^{\prime}\right)\left(\mathbf{W}_{s}+\mathbf{W}_{s}^{\prime}\right)\right\}
$$

It follows from Kelejian and Prucha (2001) and Drukker and Prucha (2013) that $I(q)^{2} \sim \chi^{2}(q)$ under H_{0}.

References

Britt, C. L. 1994. Crime and unemployment among youths in the United States, 1958-1990: A time series analysis. American Journal of Economics and Sociology 53: 99-109. https://doi.org/10.1111/j.1536-7150.1994.tb02680.x.

Drukker, D. M., and I. R. Prucha. 2013. On the $I^{2}(q)$ test statistic for spatial dependence: Finite sample standardization and properties. Spatial Economic Analysis 8: 271-292. https://doi.org/10.1080/17421772.2013.804630.
Gini, C. 1909. Concentration and dependency ratios (in Italian). English translation in Rivista di Politica Economica 1997 87: 769-789.

Kelejian, H. H., and I. R. Prucha. 2001. On the asymptotic distribution of the Moran I test statistic with applications. Journal of Econometrics 104: 219-257. https://doi.org/10.1016/S0304-4076(01)00064-1.
Messner, S. F., L. Anselin, D. F. Hawkins, G. Deane, S. E. Tolnay, and R. D. Baller. 2000. An Atlas of the Spatial Patterning of County-Level Homicide, 1960-1990. Pittsburgh: National Consortium on Violence Research.

Moran, P. A. P. 1950. Notes on continuous stochastic phenomena. Biometrika 37: 17-23. https://doi.org/10.2307/2332142.

Also see

[SP] Intro - Introduction to spatial data and SAR models
[SP] spmatrix create - Create standard weighting matrices
[SP] spregress - Spatial autoregressive models
$[\mathrm{R}]$ regress - Linear regression

Title

grmap - Graph choropleth maps

Description	Quick start	Menu
Remarks and examples	References	Also see

Description

grmap draws choropleth maps. Choropleth maps are maps in which shading or coloring is used to indicate values of variables within areas.

Type help grmap for syntax.

Quick start

A choropleth map of x using spset data
grmap x

Menu

Statistics $>$ Spatial autoregressive models

Remarks and examples

grmap is lightly adapted from spmap, which was written by Maurizio Pisati (2007) of the Università degli Studi di Milano-Bicocca and which was preceded by his tmap command (2004). grmap differs from spmap in that it works with spset data. StataCorp expresses its gratitude to Maurizio for allowing us to use it.

References

Pisati, M. 2004. Simple thematic mapping. Stata Journal 4: 361-378.
. 2007. spmap: Stata module to visualize spatial data. Statistical Software Components S456812, Department of Economics, Boston College. https://ideas.repec.org/c/boc/bocode/s456812.html.

Also see

[SP] spcompress - Compress Stata-format shapefile

Title

spbalance - Make panel data strongly balanced

Description	Quick start	Menu	Syntax
Remarks and examples	Stored results	Also see	

Description

spbalance reports whether panel data are strongly balanced and, optionally, makes them balanced if they are not.

The data are required to be xtset.

Quick start

Determine whether data are strongly balanced

```
spbalance
```

Make data strongly balanced
spbalance, balance

Menu

Statistics $>$ Spatial autoregressive models

Syntax

Query whether data are strongly balanced
spbalance

Make data strongly balanced if they are not
spbalance, balance
collect is allowed; see [U] 11.1.10 Prefix commands.

Remarks and examples

Sp works with panel data but requires that they be strongly balanced. Panels are strongly balanced when each has the same number of observations and defines the same set of times. You can use spbalance before data are spset or after. Setting the data after is important because Sp data that were balanced can become unbalanced after merging additional data.

The data must be xtset before you can use spbalance:

```
. use https://www.stata-press.com/data/r18/counties
. spbalance
data not xtset
r(459);
. xtset fips time
Panel variable: fips (unbalanced)
    Time variable: time, 1 to 5, but with a gap
        Delta: 1 unit
. spbalance
    (data not strongly balanced)
        Type spbalance, balance to make the data strongly balanced by dropping
        observations.
```

Type spbalance, balance to make the data strongly balanced by dropping observations.

```
. spbalance, balance
    balancing data ...
        2,999 observations dropped. Dropped was time == 3. Data are now
        strongly balanced.
```

The dataset we started with contained data on five time periods for more than 3,000 U.S. counties. Evidently, some of the panels did not have an observation for time 3. Now, none of the panels have data on time 3. If some panels had no observations on time 4, then all observations for time 4 would have been dropped too.

Balancing by dropping spatial units

spbalance balances data by dropping observations for time periods that do not appear in all panels. spbalance does not consider the alternative of balancing by dropping spatial units, but you may want to. Here's an example.

We downloaded shapefiles for all U.S. counties in 2010. We use spshape2dta to create Stata Sp datasets:

```
. spshape2dta County_2010Census_DP1
    (importing .shp file)
    (importing .dbf file)
    (creating _ID spatial-unit id)
    (creating _CX coordinate)
    (creating _CY coordinate)
    file County_2010Census_DP1_shp.dta created
    file County_2010Census_DP1.dta created
```

Our analysis dataset is cbp05_14co.dta consisting of U.S. Census County Business Patterns data for the years 2005-2014. We load this dataset and merge into it the Sp dataset County_2010Census_DP1.dta created by spshape2dta.

```
. copy https://www.stata-press.com/data/r18/cbp05_14co.dta .
. use cbp05_14co, clear
```

```
. merge m:1 GEOID10 using County_2010Census_DP1
    Result Number of obs
    Not matched 444
        from master 327 (_merge==1)
        from using 117 (_merge==2)
    Matched 31,035 (_merge==3)
. keep if _merge == 3
(444 observations deleted)
. drop _merge
. save cbp05_14co_census
file cbp05_14co_census.dta saved
```

We xtset the data and check to see if it is balanced.

```
. xtset _ID year
Panel variable: _ID (unbalanced)
    Time variable: year, 2005 to 2014
                Delta: 1 unit
. spbalance
    (data not strongly balanced)
        Type spbalance, balance to make the data strongly balanced by dropping
        observations.
```

Both xtset and spbalance tell us the same thing: the data are unbalanced. We use spbalance, balance to balance it.

```
. spbalance, balance
    balancing data ...
    15,515 observations dropped. Dropped were year == 2005, 2006, 2007,
    2008, 2009. Data are now strongly balanced.
```

What? It dropped all the years 2005-2009.
Let's go back and see what was causing the data to be unbalanced.
. use cbp05_14co_census, clear
. bysort _ID: gen npanel = _N
. tabulate npanel

npanel	Freq.	Percent	Cum.
5	5	0.02	0.02
10	31,030	99.98	100.00
Total	31,035	100.00	

Every value of _ID has data for 10 years except one. The one exception has data for only 5 years. We list it.
. list _ID state countyname year npanel if npanel != 10, noobs

_ID	state	countyname	year	npanel
400	ND	Slope County	2010	5
400	ND	Slope County	2011	5
400	ND	Slope County	2012	5
400	ND	Slope County	2013	5
400	ND	Slope County	2014	5

Evidently, in the 2010 Census, North Dakota got a new county named Slope County. If we drop it, our data will be balanced.

```
. drop if _ID == 400
(5 observations deleted)
. xtset _ID year
Panel variable: _ID (strongly balanced)
    Time variable: year, 2005 to 2014
                            Delta: 1 unit
. spbalance
    (data strongly balanced)
```

There are consequences to this. We dropped a county in the years 2010-2014, and now there is a "hole" in the spatial map for 2010-2014. The county we dropped was part of a larger county before 2010. The spatial maps for this part of North Dakota do not match pre- and post-2010. We might not care about it and just go ahead with our analysis. Or, we might do more work to match up the spatial maps.

This is why spbalance always drops times. When it does that, the spatial maps are always the same for the remaining times.

Stored results

spbalance without the balance option stores the following in r() :
Scalars
r (balanced) $\quad 1$ if strongly balanced, 0 otherwise
spbalance, balance stores the following in $r()$:
Scalars
r (balanced) $\quad 1$
r (Ndropped) number of observations dropped
Matrices
$r(T) \quad 1 \times r($ Ndropped $)$ vector of the times dropped if r (Ndropped) >0

Also see

[SP] Intro - Introduction to spatial data and SAR models
[SP] spset - Declare data to be Sp spatial data
[SP] spregress - Spatial autoregressive models
[SP] spxtregress - Spatial autoregressive models for panel data
[XT] xtset - Declare data to be panel data

Title

spcompress - Compress Stata-format shapefile

Description	Quick start	Menu	Syntax
Option	Remarks and examples	Stored results	Also see

Description

spcompress creates a new Stata-format shapefile omitting places (geographical units) that do not appear in the Sp data in memory. The new shapefile will be named after the data in memory.

Quick start

Create new file new_shp.dta containing only cases identified by mysample from old_shp.dta use old keep if mysample save new spcompress

Menu

Statistics $>$ Spatial autoregressive models

Syntax

```
    spcompress [, force]
collect is allowed; see [U] 11.1.10 Prefix commands.
```


Option

force allows replacing an existing shapefile. force is the option name StataCorp uses when you should think twice before specifying it. In most cases, you want to create a new shapefile.

Remarks and examples

Remarks are presented under the following headings:

Introduction

In [SP] Intro 4 and [SP] Intro 7, we discussed how to find and prepare the analysis dataset, tl_2016_us_county.dta, and the shapefile dataset, tl_2016_us_county_shp.dta. We again use those datasets here.

You sometimes want to analyze a subset of the data. In those cases, you might type

```
. use tl_2016_us_county // use all the data
. keep if STATEFP == "48" // keep the subset of interest
. save texas // save under a different name
```

All will work fine. File texas.dta is linked to tl_2016_us_county_shp.dta, which contains a lot of unnecessary information, but that will cause Sp no difficulty.

Next, you can type
spcompress
Now, files tl_2016_us_county.dta and tl_2016_us_county_shp.dta remain unchanged, and file texas_shp.dta was created. texas.dta was resaved so that the copy on disk would reflect that it is now linked to texas_shp.dta instead of tl_2016_us_county_shp.dta.

Sp will run a little faster if we compress the shapefile. We say a little because only grmap will run faster.

Using the force option

Above, we showed an example. Here is what would have happened had we omitted the line save texas:

```
. use tl_2016_us_county
. keep if STATEFP == "48"
(2,979 observations deleted)
. * save texas // save texas intentionally commented out
. spcompress
file tl_2016_us_county_shp.dta already exists
r(602);
```

Whether you type save texas makes all the difference. Do you really want to replace tl_2016_us_county_shp.dta? If so, specify force.

The option is called force because Stata wonders whether you really meant to type

```
. use tl_2016_us_county, clear
. keep if STATEFP == "48"
(2,979 observations deleted)
. save texas
file texas.dta saved
. spcompress
    (texas_shp.dta created with 254 spatial units, 2,979 fewer than previously)
    (texas_shp.dta saved)
    (texas.dta saved)
```

Even if you intended to discard all but Texas from tl_2016_us_county.dta and tl_2016_us_county_shp.dta, we would recommend that you type
. use tl_2016_us_county
. keep if STATEFP == "48"
. save texas
. spcompress
. erase tl_2016_us_county.dta
. erase tl_2016_us_county_shp.dta

Stored results

spcompress stores the following in $r()$:
Scalars
r (num_drop_ids) \# of spatial units dropped
r(num_ids) \# of spatial units remaining

Also see

[SP] Intro - Introduction to spatial data and SAR models
[D] compress - Compress data in memory

Title

spdistance - Calculator for distance between places

Description	Quick start	Menu
Syntax	Remarks and examples	Stored results
Methods and formulas	Reference	Also see

Description

spdistance $\#_{1} \#_{2}$ reports the distance between the areas $_I D=\#_{1}$ and $_I D=\#_{2}$.
collect is allowed; see [U] 11.1.10 Prefix commands.

Quick start

Obtain distance between _ID $=48201$ and _ID $=48041$
spdistance 4820148041

Menu

Statistics $>$ Spatial autoregressive models

Syntax

spdistance $\#_{1} \#_{2}$
$\#_{1}$ and $\#_{2}$ are two _ID values.

Remarks and examples

Remarks are presented under the following headings:

```
Are coordinates really planar and not latitude and longitude?
Reverse engineering planar distances
More than you want to know about coordinates
    Planar coordinates
    Latitude and longitude coordinates
```


Are coordinates really planar and not latitude and longitude?

The purpose of spdistance is to help in understanding the units in which distances are measured when coordinates are recorded in planar units. Before turning to that issue, however, let us ask another question: Are the coordinates recorded in your data really planar? Sp assumes that they are. It is your responsibility to change a setting if they are in fact degrees latitude and longitude. You change the setting by typing

```
. spset, modify coordsys(latlong, kilometers)
```

or
. spset, modify coordsys(latlong, miles)
If coordinates are latitude and longitude, type one of those commands and then distances will be reported in kilometers or miles and you can dispense with spdistance for determining units.

Why does Sp assume that coordinates are planar when they might be latitude and longitude? How can you tell whether your data contain latitudes and longitudes?

Sp assumes that coordinates are planar because coordinates obtained from shapefiles are supposed to be planar. Usage is running ahead of standards, however, and these days many shapefile providers are providing latitude and longitude.

Before answering the second question, let us answer a third question you may be asking yourself: "Do I care? How bad would it be to treat degrees as if they were planar?" If all the locations in your data are near the equator, there is no reason you should care. But this is not likely to be the case, and because degrees longitude are not a fixed distance, your calculations will be incorrect if you treat degrees as if they were planar. See Latitude and longitude coordinates below for more details.

So how do you tell the units of measure? The documentation for your shapefile may tell you. If not, you can inspect the data. Sp datasets record the coordinates in variables _CX and _CY. You look at those variables and compare them with latitudes and longitudes for the same places or nearby places, which you can easily find on the web. If coordinates are latitude and longitude, then

- _CX will be the longitude value
- _CY will be the latitude value

Reverse engineering planar distances

Planar coordinates have no predetermined scale. Two places might be 5 apart. How far is that? One way to find out is to reverse engineer the scale. Take two places that you know the distance between, use spdistance to obtain the planar distance, and divide.

For instance, we have a city dataset in which Los Angeles and New York have _ID values 1 and 79. Using spdistance, we obtain the distance between them.

```
. spdistance 1 }7
    (data currently use planar coordinates)
        _ID (x, y) (planar)
\begin{tabular}{rl}
1 & \((0,0)\) \\
79 & \((4.97,1)\) \\
\hline distance & 5.0696053 planar units
\end{tabular}
```

The distance between the cities is roughly 2,400 miles, so we know that one planar unit equals $2400 / 5.07 \approx 473$ miles.

More than you want to know about coordinates

Planar coordinates

Planar coordinates, also known as rectangular coordinates, are coordinates on a plane. The formula for the distance between two places $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by the Euclidean distance formula:

$$
\text { distance }=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Distance will be measured in miles if x and y are measured in miles.

Latitude and longitude coordinates

Latitude and longitude are measured in degrees on a globe. The common illustration looks like this:

The vertical lines passing through the poles are lines of equal longitude. Longitude indicates which vertical line you are on. the vertical lines. It measures which vertical line you are on. Longitude is an east-west measure. Examples of longitude include 150° east and 96° west, with east and west referring to east and west of Greenwich, UK.

The horizontal rings are lines of equal latitude. Different horizontal lines are different latitudes. Latitude is a north-south measure. Examples of latitude include 30° north and 33° south, with north and south referring to north and south of the equator.

College Station, USA, and Sydney, Australia, are located at

City	Latitude	Longitude
College Station	$30^{\circ} 36^{\prime} 05^{\prime \prime} \mathrm{N}$	$96^{\circ} 18^{\prime} 52^{\prime \prime} \mathrm{W}$
Sydney, Australia	$33^{\circ} 51^{\prime} 54^{\prime \prime} \mathrm{S}$	$151^{\circ} 12^{\prime} 34^{\prime \prime} \mathrm{E}$

Computers use signed values to indicate direction and fractions of degrees instead of minutes and seconds. The above table can equivalently be written as

City	Latitude	Longitude
College Station	30.601	-96.314
Sydney, Australia	-33.865	151.209

If 1° equaled a fixed distance, we could use the Euclidean formula for calculating the distance between College Station and Sydney.

One degree of latitude does equal a fixed distance, namely, 69 miles, if the Earth were a sphere.
One degree of longitude, however, measures a distance that varies from 69 miles at the equator to 0 miles at the North and South Poles:

At latitude	1° longitude equals	
± 0	69 miles \quad (equator)	
± 10	68	
± 20	65	
± 30	60	
± 40	53	
± 50	44	
± 60	35	
± 70	24	
± 80	12	
± 89	1	
± 90	0	(N or S pole)

There are formulas for calculating distances from latitude and longitude, and Sp will use them if you tell it that the coordinates are degrees latitude and longitude. If you do not, Sp makes calculations using the Euclidean formula, and that will result in incorrect distances except at the equator. At the equator, 1° longitude equals 1° latitude equals 69 miles. The farther north or south you make the calculation, the more will be the error. East-west distances will be exaggerated relative to north-south distances, resulting in places being calculated as being farther apart than they really are.

The 48 contiguous states of the United States lies between 25° and 50° latitude, a region in which 1° longitude varies between 66 and 44 miles.

Europe lies between 35° and 70° latitude, a region in which 1° longitude varies between 56 and 24 miles.

Stored results

spdistance stores the following in $r()$:
Scalars
r (dist) distance between
Macros
r(coordsys) planar or latlong
r (dunits) miles or kilometers if r (coordsys) = latlong

Methods and formulas

If coordinates are planar, the distance between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{1}-y_{1}\right)^{2}}
$$

If coordinates are latitude and longitude, let $\left(t_{1}, n_{1}\right)$ and $\left(t_{2}, n_{2}\right)$ be the two coordinate pairs, where t represents latitude and n represents longitude converted from degrees to radians.

Let $\Delta t=\left(t_{2}-t_{1}\right)$ and $\Delta n=\left(n_{2}-n_{1}\right)$. Then the distance between the two points is

$$
d=r \operatorname{invhav}\left\{\operatorname{hav}(\Delta t)+\cos t_{1} \cos t_{2} \operatorname{hav}(\Delta n)\right\}
$$

where r is the radius of the Earth measured in the desired units (miles or kilometers) and

$$
\begin{aligned}
\operatorname{hav}(\theta) & =\frac{1-\cos \theta}{2} \\
\operatorname{invhav}(h) & =2 \operatorname{asin}(\sqrt{h})
\end{aligned}
$$

Reference

Weber, S., and M. Péclat. 2017. A simple command to calculate travel distance and travel time. Stata Journal 17: 962-971.

Also see

[SP] Intro - Introduction to spatial data and SAR models
[SP] spset - Declare data to be Sp spatial data

Title

spgenerate - Generate variables containing spatial lags
Description Quick start Menu Syntax

Remarks and examples
Also see

Description

spgenerate creates new variables containing $\mathbf{W x}$. These are the same spatial lag variables that you include in models that you fit with the Sp estimation commands.

Quick start

Create variable x _nearby equal to $\mathrm{Wc} * \mathrm{x}$, the spatial lag of x using spatial weighting matrix Wc spgenerate $x _n e a r b y=W c * x$

Menu

Statistics $>$ Spatial autoregressive models

Syntax

spgenerate $[$ type $]$ newvar $=$ spmatname $*$ varname $[$ if $][$ in $]$

Remarks and examples

Remarks are presented under the following headings:

Use with Sp data
Use with other datasets

Use with Sp data

The $\mathbf{W x}$ variables that spgenerate creates are literally the variables that the Sp estimation commands include in the models when \mathbf{x} is not the dependent variable. Nonetheless, do not type

```
. spmatrix create contiguity W
. spgenerate Wcollege = W*college
. spregress unemployment college Wcollege, gs2sls
```

Instead, type

```
. spmatrix create contiguity W
. spregress unemployment college, gs2sls ivarlag(W:college)
```

spregress will report the same result either way because college is an exogenous variable. But some postestimation commands will produce incorrect results because they will not know that Wcollege is $\mathrm{W} *$ college.

You can use Wcollege after fitting models, however, to better understand results.
In an example in Fitting models with a spatial lag of independent variables of [SP] Intro 7, we fit the model

```
. use texas_ue
. spmatrix create contiguity W
. spregress unemployment college, gs2sls ivarlag(W:college)
    (254 observations)
    (254 observations (places) used)
    (weighting matrix defines 254 places)
Spatial autoregressive model Number of obs = 254
GS2SLS estimates Wald chi2(2) = 81.13
Prob > chi2 = 0.0000
Pseudo R2 = 0.2421
\begin{tabular}{l|rlrlrr}
\hline unemployment & Coefficient & Std. err. & \(z\) & P>|z| & [95\% conf. interval] \\
\hline \begin{tabular}{r} 
unemployment \\
college \\
_cons
\end{tabular} & -.077997 & .0138127 & -5.65 & 0.000 & -.1050695 & -.0509245 \\
\hline W & 7.424453 & .3212299 & 23.11 & 0.000 & 6.794854 & 8.054053 \\
\hline college & -.0823959 & .0191586 & -4.30 & 0.000 & -.1199461 & -.0448458 \\
\hline
\end{tabular}
```

Matrix W is the contiguity matrix for first-order neighbors.
If $\mathrm{W} *$ college is something of a mystery to you, you can use spgenerate to create the variable and explore it. Type

```
. spgenerate Wcollege = W*college
```

In this example, variables college and Wcollege have similar summary statistics. They usually do.

| . summarize unemployment college Wcollege | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Variable | Obs | Mean | Std. dev. | Min | Max |
| unemployment | 254 | 4.731102 | 1.716514 | 1.5 | 12.4 |
| college | 254 | 17.95906 | 7.355919 | 2.6 | 49.4 |
| Wcollege | 254 | 15.68765 | 5.303385 | 1.279117 | 36.43961 |

It turns out that variables college and Wcollege have a surprisingly low correlation, which is not typical:

```
. correlate unemployment college Wcollege
(obs=254)
```

	unempl~t	college Wcollege	
unemployment	1.0000		
college	-0.4323	1.0000	
Wcollege	-0.3833	0.3852	1.0000

You can use Wcollege to assess practical significance. We know from the regression output that the coefficient on $\mathrm{W} *$ college is -0.0824 and statistically significant. Is -0.0824 practically significant? From the summarize output, we know that the mean of Wcollege is 15.69 . Thus at its average, $\mathrm{W} *$ college is contributing $-0.0824 \times 15.69=-1.29$ to unemployment, which itself has mean 4.73.

Use with other datasets

Consider another analysis that has nothing to do with the spatial analyses discussed in this manual. You are fitting a logistic regression model using outcome.dta. The dataset contains observations on thousands of people whom you call subjects. It has lots of variables, too, among which is fips, the county code in which each subject resides. You want to include the county unemployment rate as an exogenous variable in your model, but outcome.dta does not have that variable.

Obtaining unemployment would be easy enough if you had another dataset containing it, and you do. You have ue_texas.dta, the Sp dataset you used to fit the spatial model above. It is irrelevant that the dataset is spatial; you just want to borrow its county unemployment variable. You could type

```
. use texas_ue, clear
. keep fips unemployment
. save unemploymentvar
. use outcome, clear
. sort fips
. merge m:1 fips using unemploymentvar, keep(master)
. erase unemploymentvar.dta
. logistic outcome ... unemployment ...
```

You had to perform an m:1 merge because outcome.dta might contain multiple subjects living in the same county. You had to keep(master) because there might be some counties in which no one in the data lived. None of that bothers you-you just want the unemployment for the county in which each subject resides, and now you have it, and you fit your model.

What you may not know is that you can include spatial lags of unemployment as an exogenous variable in your logistic model and be on firm statistical ground. A spatial lag is W*unemployment, and W is fixed and unemployment is exogenous in your logistic model. To do that, you would type

```
. use texas_ue, clear
. spmatrix create contiguity W
. spgenerate Wunemployment = W*unemployment
. keep fips unemployment Wunemployment
. save unemploymentvar
. use outcome, clear
. sort fips
. merge m:1 fips using unemploymentvar, keep(master)
. erase unemploymentvar.dta
. logistic outcome ... unemployment Wunemployment ...
```


Also see
 [SP] Intro - Introduction to spatial data and SAR models
 [SP] spmatrix create - Create standard weighting matrices
 [SP] spregress - Spatial autoregressive models

Title

spivregress - Spatial autoregressive models with endogenous covariates

Description	Quick start	Menu	Syntax
Options	Remarks and examples	Stored results	Methods and formulas
References	Also see		

Description

spivregress is the equivalent of ivregress for spatial data. spivregress fits spatial autoregressive (SAR) models, also known as simultaneous autoregressive models, where the models may contain additional endogenous variables as well as exogenous variables. These models can be used to account for possible dependence between the outcome variable and the unobserved errors.

For models without endogenous regressors, see [SP] spregress.
If you have not read [SP] Intro 1-[SP] Intro 8, you should do so before using spivregress. Your data must be Sp data to use spivregress. See [SP] Intro 3 for instructions on how to prepare your data.

To specify spatial lags, you will need to have one or more spatial weighting matrices. See [SP] Intro 2 and [SP] spmatrix for an explanation of the types of weighting matrices and how to create them.

Quick start

Spatial autoregressive model of y1 regressed on $x 1$, $x 2$, endogenous regressor $y 2$, which uses $z 1$ as an instrument, and a spatial lag for y 1 specified by the weighting matrix W
spivregress y1 x1 x2 (y2 = z1), dvarlag(W)
Add an autoregressive error term with the lag given by M
spivregress y1 x1 x2 ($\mathrm{y} 2=\mathrm{z} 1$), dvarlag(W) errorlag(M)
Add a spatial lag for the exogenous variable x 1 based on W
spivregress y1 x1 x2 (y2 = z1), dvarlag(W) errorlag(M) ivarlag(W: x1)
Add a second spatial lag for the outcome variable based on the weighting matrix M

```
spivregress y1 x1 x2 (y2 = z1), dvarlag(W) errorlag(M)
    dvarlag(M) ivarlag(W: x1)
```

Add interaction between x 1 and x 2 and add categorical instrument z 2 using factor-variable notation

```
spivregress y1 x1 x2 c.x1#c.x2 (y2 = z1 i.z2), dvarlag(W)
                                    ///
    errorlag(M) dvarlag(M) ivarlag(W: x1 x2 c.x1#c.x2)
```


Menu

Statistics $>$ Spatial autoregressive models

Syntax

spivregress depvar $\left[\right.$ varlist $\left._{1}\right]\left(\right.$ varlist $_{2}=$ varlist $\left._{\mathrm{iv}}\right)$ [if] [in] [,options]
varlist $_{1}$ is the list of included exogenous regressors.
varlist $_{2}$ is the list of endogenous regressors.
$v^{\text {arlist }} \mathrm{i}_{\mathrm{iv}}$ is the list of excluded exogenous regressors used with varlist ${ }_{1}$ as instruments for varlist ${ }_{2}$.
options
Description
Model
dvarlag (spmatname)
errorlag (spmatname)
ivarlag(spmatname : varlist)
noconstant
heteroskedastic
force
impower(\#)
Reporting
level(\#)
display_options
spatially lagged dependent variable; repeatable
spatially lagged errors; repeatable
spatially lagged exogenous variables from varlist ${ }_{1}$; repeatable suppress constant term
treat errors as heteroskedastic
allow estimation when estimation sample is a subset of the sample used to create the spatial weighting matrix
order of instrumental-variable approximation
set confidence level; default is level (95)
control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling
control the optimization process; seldom used
display legend instead of statistics

Optimization
optimization_options
coeflegend
$\overline{\text { varlist }_{1}}$, varlist ${ }_{2}$, varlist ${ }_{\mathrm{iv}}$, and varlist specified in ivarlag() may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

$\underset{\text { dvarlag (spmatname) specifies a spatial weighting matrix that defines a spatial lag of the dependent }}{ } \sqrt{\text { Model }}$
dvarlag (spmatname) specifies a spatial weighting matrix that defines a spatial lag of the dependent variable. This option is repeatable to allow higher-order models. By default, no spatial lags of the dependent variable are included.
errorlag(spmatname) specifies a spatial weighting matrix that defines a spatially lagged error. This option is repeatable to allow higher-order models. By default, no spatially lagged errors are included.
ivarlag (spmatname : varlist) specifies a spatial weighting matrix and a list of exogenous variables that define spatial lags of the variables. The variables in varlist must be a subset of the exogenous variables in varlist $_{1}$. This option is repeatable to allow spatial lags created from different matrices. By default, no spatial lags of the exogenous variables are included.

noconstant; see [R] Estimation options.

heteroskedastic specifies that the estimator treat the errors as heteroskedastic instead of homoskedastic, which is the default; see Methods and formulas in [SP] spregress.
force requests that estimation be done when the estimation sample is a proper subset of the sample used to create the spatial weighting matrices. The default is to refuse to fit the model. Weighting matrices potentially connect all the spatial units. When the estimation sample is a subset of this space, the spatial connections differ and spillover effects can be altered. In addition, the normalization of the weighting matrix differs from what it would have been had the matrix been normalized over the estimation sample. The better alternative to force is first to understand the spatial space of the estimation sample and, if it is sensible, then create new weighting matrices for it. See [SP] spmatrix and Missing values, dropped observations, and the W matrix in [SP] Intro 2.
impower (\#) specifies the order of an instrumental-variable approximation used in fitting the model. The derivation of the estimator involves a product of \# matrices. Increasing \# may improve the precision of the estimation and will not cause harm, but will require more computer time. The default is impower(2). See Methods and formulas for additional details on impower (\#).

Reporting
level (\#); see [R] Estimation options.
display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabel, fvwrap (\#), fvwrapon(style), cformat (\%fmt), pformat (\%fmt), sformat (\% fint), and nolstretch; see [R] Estimation options.
$\sqrt{\text { Optimization }}$
optimization_options: iterate(\#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance (\#), ltolerance (\#), nrtolerance (\#), and nonrtolerance; see [M-5] optimize().

The following option is available with spivregress but is not shown in the dialog box: coeflegend; see [R] Estimation options.

Remarks and examples

See [SP] Intro for an overview of SAR models.
spivregress fits spatial autoregressive models that include endogenous regressors. The spivregress command is for use with cross-sectional data. It requires each observation to represent one unique spatial unit. See [SP] Intro 3 and the introductory sections that follow for instructions with examples on how to prepare your data for analysis with spivregress.
spivregress fits models like the following:

```
spivregress y1 x1 x2 (y2 y3 = z1 z2 z3), dvarlag(W) errorlag(M) ///
    ivarlag(W: x1)
```

dvarlag(W) specifies a spatial lag of the dependent variable $y 1$, with the formulation of the lag given by the spatial weighting matrix W . You can include multiple dvarlag() options, each with different weighting matrices, to model higher-order spatial lags of the dependent variable.
errorlag(M) specifies an autoregressive error term based on the weighting matrix M. You can include multiple errorlag() options.
ivarlag(W : x1) specifies a spatial lag of the exogenous variable x 1 . You cannot include in the model spatial lags of the endogenous regressors y2 and y3 or spatial lags of the excluded exogenous regressors $z 1, z 2$, and $z 3$.
spivregress uses a generalized method of moments estimator known as generalized spatial two-stage least squares (GS2SLS), the same estimator used by spregress, gs2sls. See Methods and formulas. Also see Choosing weighting matrices and their normalization in [SP] spregress for details about the GS2SLS estimator.

$>$ Example 1: SAR models with endogenous regressors

Suppose we want to know whether prohibiting alcohol sales in a county decreases the rate of arrests for driving under the influence (DUI). We use the artificial dataset dui_southern.dta, containing DUI rates in counties in southern states of the United States.

Because the analysis dataset and the Stata-formatted shapefile must be in our working directory to spset the data, we first save both dui_southern.dta and dui_southern_shp.dta to our working directory by using the copy command. We then load the data and type spset to see the Sp settings.

```
. copy https://www.stata-press.com/data/r18/dui_southern.dta .
. copy https://www.stata-press.com/data/r18/dui_southern_shp.dta .
. use dui_southern
. spset
    Sp dataset: dui_southern.dta
Linked shapefile: dui_southern_shp.dta
            Data: Cross sectional
Spatial-unit ID: _ID
    Coordinates: _CX, _CY (planar)
```

The outcome of interest is dui, which is the alcohol-related arrest rate per 100,000 daily vehicle miles traveled (DVMT). Explanatory variables include police, the number of sworn officers per 100,000 DVMT; nondui, the nonalcohol-related arrest rate per 100,000 DVMT; vehicles, the number of registered vehicles per 1,000 residents; and dry, a variable that indicates whether a county prohibits the sale of alcohol within its borders.

Because the size of the police force may be a function of dui and nondui arrest rates, we treat police as endogenous. We assume the variable election is a valid instrument, where election is 1 if the county government faces an election and is 0 otherwise.

We believe the DUI arrest rate to be spatially correlated, with the rate in a county affecting the rates in neighboring counties. Formally, the model we want to fit is

$$
\begin{aligned}
\text { dui } & =\beta_{0}+\beta_{1} \times \text { nondui }+\beta_{2} \times \text { dry }+\beta_{3} \times \text { vehicles }+\pi_{1} \times \text { police }+\lambda \mathbf{W} \times \text { dui }+\mathbf{u} \\
\mathbf{u} & =\rho \mathbf{W} \mathbf{u}+\boldsymbol{\epsilon}
\end{aligned}
$$

The term $\mathbf{W} \times$ dui defines a spatial lag of dui. See [SP] Intro 2 for an explanation of how spatial lags are defined by weighting matrices, and see Choosing weighting matrices and their normalization in [SP] spregress. The equation for \mathbf{u} gives the error an autoregressive form also specified by the weighting matrix \mathbf{W}. The variable police is endogenous and may be correlated with the error \mathbf{u}. We instrument it with the variable election. See Methods and formulas for how the endogeneity of police is handled by the estimator.

Before we can fit the model, we must create the weighting matrix \mathbf{W}. We will create one that puts the same positive weight on contiguous counties and a 0 weight on all other counties-a matrix known as a contiguity matrix. We will use the default spectral normalization for the matrix. See [SP] Intro 2 and [SP] spmatrix create for details. We type

```
spmatrix create contiguity W
```

We fit the model by typing

```
. spivregress dui nondui vehicles i.dry (police = elect), dvarlag(W) errorlag(W)
    (1422 observations)
    (1422 observations (places) used)
    (weighting matrix defines }1422\mathrm{ places)
Estimating rho using 2SLS residuals:
Initial: GMM criterion = . 00254902
Alternative: GMM criterion = . 00377532
Rescale: GMM criterion = . 00009468
Iteration 0: GMM criterion = . .00009468
Iteration 1: GMM criterion = .00001513
Iteration 2: GMM criterion = . }0000151
Estimating rho using GS2SLS residuals:
Iteration 0: GMM criterion = .00086665
Iteration 1: GMM criterion = . 00085487
Iteration 2: GMM criterion = . 00085486
Spatial autoregressive model Number of obs = 1,422
GS2SLS estimates Wald chi2(5) = 4393.21
Prob > chi2 = 0.0000
Pseudo R2 = 0.7378
```

dui	Coefficient	Std. err.	z	$P>\|z\|$	[95\% con	interval]
dui						
police	-1.283189	. 1138994	-11.27	0.000	-1.506428	-1.059951
nondui	-. 001833	. 0025467	-0.72	0.472	-. 0068245	. 0031585
vehicles	. 0906069	. 0045059	20.11	0.000	. 0817755	. 0994384
dry						
Yes	. 4631025	. 076754	6.03	0.000	. 3126674	. 6135377
_cons	8.714745	1.060428	8.22	0.000	6.636345	10.79315
W						
dui	. 3859225	. 0194397	19.85	0.000	. 3478214	. 4240235
e.dui	. 2169234	. 0496595	4.37	0.000	. 1195926	. 3142541
Wald test of spatial terms: Endogenous: police (W*dui) Exogenous: nondui vehicles		chi2(2) $=408.78$			Prob > chi2 $=0.0000$	
		1.dry election dui:_cons				

When a spatial lag of the dependent variable is included in the model, covariates have both direct and indirect effects. See example 1 of [SP] spregress for a discussion. To obtain the direct, indirect, and total effects of the covariates, we must use estat impact:

While it is running, estat impact prints percentages at the top of the output to indicate progress. Calculation of the standard errors of the effects can be intensive and take time, so it reports its progress as it does the computations.

The average direct, or own-county, effect of going from a wet county to a dry county on alcoholrelated arrest rates is positive. The average indirect, or spillover, effect of going from a wet county to a dry county on alcohol-related arrest rates is also positive. The total effects are the sum of the direct and indirect effects, so these are also positive.
> Example 2: SAR models with endogenous regressors and covariate lags
Continuing with example 1 , we found that dry, we now add a spatial lag of the covariate dry.

```
. spivregress dui nondui vehicles i.dry (police = elect), dvarlag(W)
> errorlag(W) ivarlag(W: i.dry)
    (1422 observations)
    (1422 observations (places) used)
    (weighting matrix defines 1422 places)
note: ex0g*W:0b.dry omitted because of collinearity.
    (output omitted)
Spatial autoregressive model Number of obs = 1,422
GS2SLS estimates
Wald chi2(6) = 4300.29
Prob > chi2 = 0.0000
Pseudo R2 = 0.7337
```


We use estat impact to see the effects:

progress Average impa	\% $40 \% \quad 60 \% \quad 80 \% \quad 100 \%$			Number of obs		1,422
	$d y / d x$	$\begin{gathered} \text { Delta-Metho } \\ \text { std. err. } \end{gathered}$	z	$P>\|z\|$	[95\% con	interval]
direct						
police	-1.332603	. 1217453	-10.95	0.000	-1.571219	-1.093986
nondui	-. 001917	. 0026364	-0.73	0.467	-. 0070844	. 0032503
vehicles	. 0935378	. 0049201	19.01	0.000	. 0838945	. 1031811
$\begin{aligned} & \text { dry } \\ & \text { Yes } \end{aligned}$. 5044067	. 0833742	6.05	0.000	. 3409963	. 667817
indirect						
police	-. 6601862	. 1089584	-6.06	0.000	-. 8737408	-. 4466316
nondui	-. 0009497	. 0013158	-0.72	0.470	-. 0035287	. 0016293
vehicles	. 0463396	. 0058501	7.92	0.000	. 0348737	. 0578055
$\begin{aligned} & \text { dry } \\ & \text { Yes } \end{aligned}$. 6165397	. 3004056	2.05	0.040	. 0277555	1.205324
total						
police	-1.992789	. 2303197	-8.65	0.000	-2.444207	-1.541371
nondui	-. 0028668	. 003951	-0.73	0.468	-. 0106106	. 0048771
vehicles	. 1398774	. 0107284	13.04	0.000	. 1188501	. 1609047
$\begin{aligned} & \text { dry } \\ & \text { Yes } \end{aligned}$	1.120946	. 3442805	3.26	0.001	. 446169	1.795724

The direct effect of dry is little changed when we added a lag of dry, going from 0.47 to 0.50 . But the indirect effects of dry go from 0.23 to 0.62 . In these fictional data, the indirect effects of dry become larger than the direct effects when there is a lag of dry in the model.

Note that spivregress does not allow the fitting of spatial lags for police, our endogenous regressor, nor for election, its instrument.

Example 3: SAR models with endogenous regressors and higher-order lags

In the previous models, we specified all the spatial lags with a single weighting matrix W , a contiguity weighting matrix with the default spectral normalization. Many researchers use a spatial weighting matrix whose (i, j) th element is the inverse of the distance between units i and j. With the GS2SLS estimator used by spivregress, we can include spatial lags using two spatial weighting matrices. This can be done to model a "higher-order" approximation to the true spatial process. We will now add lags specified by an inverse-distance matrix, using again a spectral normalization of the matrix.

We create the inverse-distance matrix M and use spmatrix dir to list our Sp matrices.
. spmatrix create idistance M
. spmatrix dir

| Weighting matrix name | $\mathrm{N} \times \mathrm{N}$ | Type | Normalization |
| ---: | ---: | ---: | ---: | ---: |
| M | 1422×1422 | idistance | spectral |
| W | 1422×1422 | contiguity | spectral |

We fit the model including both weighting matrices for all the lags:

```
. spivregress dui nondui vehicles i.dry (police = elect), dvarlag(W)
> errorlag(W) ivarlag(W: i.dry) dvarlag(M) errorlag(M) ivarlag(M: i.dry)
    (1422 observations)
    (1422 observations (places) used)
    (weighting matrices define 1422 places)
note: ex0g*W:0b.dry omitted because of collinearity.
note: exog*M:Ob.dry omitted because of collinearity.
    (output omitted)
```

Spatial autoregressive model Number of obs $=1,422$
GS2SLS estimates
Wald chi2(8) $=6448.00$
Prob > chi2 $=0.0000$
Pseudo R2 $=0.8059$

dui	Coefficient	Std. err.	z	$P>\|z\|$	[95\% con	interval]
dui						
police	-. 9761746	. 0782452	-12.48	0.000	-1.129532	-. 8228169
nondui	-. 0010539	. 0020929	-0.50	0.615	-. 0051559	. 0030481
vehicles	. 0786483	. 0031161	25.24	0.000	. 0725408	. 0847558
dry						
Yes	. 4207434	. 0631483	6.66	0.000	. 296975	. 5445118
_cons	6.06732	. 7489907	8.10	0.000	4.599325	7.535314
W						
dry						
Yes	. 2353942	. 2272206	1.04	0.300	-. 20995	. 6807383
dui	. 3335228	. 0134249	24.84	0.000	. 3072104	. 3598352
e.dui	. 2206914	. 0630466	3.50	0.000	. 0971223	. 3442605
M						
dry						
Yes	-. 0924698	2.708949	-0.03	0.973	-5.401911	5.216972
dui	. 0005209	. 0112673	0.05	0.963	-. 0215627	. 0226045
e.dui	-. 1069461	. 5910067	-0.18	0.856	-1.265298	1.051406
Wald test of spatial terms: chi2 (6) $=649.16$ Prob > chi2 $=0.0000$						
Endogenous: police (W*dui) (M*dui)						
Exogenous: n	nondui vehicles 1.dry election (W*Ob.dry) ($W * 1 . d r y$) ($\mathrm{M} * 0 \mathrm{Ob} . \mathrm{dry}$)					

All the spatial lags specified by the inverse-distance matrix M are nonsignificant. We conclude that there are no inverse-distance-type effects after we account for contiguity-type effects.

Stored results

spivregress stores the following in e():
Scalars

```
e(N)
e(k)
e(df_m)
e(df_c)
e(iterations)
e(iterations_2sls)
e(rank)
e(r2_p)
e(chi2)
e(chi2_c)
e(p)
e(p_c)
e(converged)
e(converged_2sls)
```

Macros
e(cmd)
e(cmdline)
e(depvar)
e (indeps)
e(idvar)
e(estimator)
e(title)
e(constant)
e(endog)
e(exog)
e(dlmat)
e(elmat)
e(het)
e(chi2type)
e(properties)
e(estat_cmd)
e(predict)
e(marginsok)
e(marginsnotok)
e(asbalanced)
e(asobserved)

Matrices

```
    e(b)
    e(delta_2sls)
    e(rho_2sls)
    e(V)
```

Functions

```
    e(sample) marks estimation sample
```


Methods and formulas

We consider a cross-sectional spatial autoregressive model with possible endogenous covariates and spatial autoregressive disturbances (SARAR), allowing for higher-order spatial dependence in the dependent variable, the exogenous variables, and the spatial errors. The model is

$$
\begin{align*}
& \mathbf{y}=\sum_{j=1}^{J} \pi_{j} \widetilde{\mathbf{y}}_{j}+\sum_{k=1}^{K} \beta_{k} \mathbf{x}_{k}+\sum_{p=1}^{P} \gamma_{p} \mathbf{W}_{p} \mathbf{x}_{p}+\sum_{r=1}^{R} \lambda_{r} \mathbf{W}_{r} \mathbf{y}+\mathbf{u} \tag{1}\\
& \mathbf{u}=\sum_{s=1}^{S} \rho_{s} \mathbf{M}_{s} \mathbf{u}+\boldsymbol{\epsilon}
\end{align*}
$$

where
\mathbf{y} is an $n \times 1$ vector of observations on the dependent variable;
$\widetilde{\mathbf{y}}_{j}$ is an $n \times 1$ vector of observations on the j th endogenous variable; π_{j} is the corresponding scalar parameter;
\mathbf{x}_{k} is an $n \times 1$ vector of observations on the k th exogenous variable; β_{k} is the corresponding scalar parameter;
$\mathbf{W}_{p}, \mathbf{W}_{r}$, and \mathbf{M}_{s} are $n \times n$ spatial weighting matrices;
$\mathbf{W}_{p} \mathbf{x}_{p}, \mathbf{W}_{r} \mathbf{y}$, and $\mathbf{M}_{s} \mathbf{u}$ are $n \times 1$ spatial lags for the exogenous variable, dependent variable, and error terms; γ_{p}, λ_{r}, and ρ_{s} are scalar parameters; and
$\boldsymbol{\epsilon}$ is an $n \times 1$ vector of innovations.
The J endogenous variables $\widetilde{\mathbf{y}}_{j}$ are correlated with the errors \mathbf{u}. To estimate the model parameters, we need Q instrumental variables $\mathbf{x}_{1}^{e}, \mathbf{x}_{2}^{e}, \ldots, \mathbf{x}_{Q}^{e}$ with $Q \geq J$ that are correlated with the endogenous variables in $\widetilde{\mathbf{y}}_{j}$ and uncorrelated with the errors \mathbf{u}.

The model in (1) is frequently referred to as a higher-order spatial autoregressive model with spatial autoregressive disturbances, or namely, a $\operatorname{SARAR}(R, S)$ model.

The innovations ϵ are assumed to be independent and identically distributed or independent but heteroskedastically distributed, where the heteroskedasticity is of unknown form. The generalized spatial two-stage least-squares (GS2SLS) estimator implemented in spivregress produces consistent estimates in both cases when the heteroskedastic option is specified.

For the first-order SARAR model, spivregress implements the GS2SLS estimator discussed in Arraiz et al. (2010) and Drukker, Egger, and Prucha (2013). This estimation strategy builds on Kelejian and Prucha $(1998,1999,2010)$ and references cited therein. For higher-order $\operatorname{SARAR}(R, S)$ models, spivregress implements an extension of GS2SLS in Badinger and Egger (2011) to allow endogenous covariates.

Let's first rewrite (1) in a compact form.

$$
\begin{align*}
& \mathbf{y}=\mathbf{Z} \delta+\mathbf{u} \\
& \mathbf{u}=\overline{\mathbf{U}} \rho+\varepsilon \tag{2}
\end{align*}
$$

where
\mathbf{Z} is the matrix of observations on all the variables in the equation for $\mathbf{y} ; \mathbf{Z}$ contains the endogenous covariates $\widetilde{\mathbf{y}}_{1}, \ldots, \widetilde{\mathbf{y}}_{J}$, the exogenous covariates $\mathbf{x}_{1}, \ldots, \mathbf{x}_{K}$, the spatially lagged exogenous covariates $\mathbf{W} \mathbf{x}_{1}, \ldots, \mathbf{W} \mathbf{x}_{P}$, and the spatially lagged dependent variables $\mathbf{W y}_{1}, \ldots, \mathbf{W y}_{R}$;
$\overline{\mathbf{U}}$ contains all the spatial lags of the errors \mathbf{u} that appear in (1); $\overline{\mathbf{U}}$ contains $\mathbf{M}_{1} \mathbf{u}, \ldots, \mathbf{M}_{S} \mathbf{u}$;
$\boldsymbol{\delta}=\left(\pi_{1}, \ldots \pi_{J}, \beta_{1}, \ldots, \beta_{K}, \gamma_{1}, \ldots, \gamma_{P}, \lambda_{1}, \ldots, \lambda_{R}\right)^{\prime}$ is a vector of all the coefficients on the variables in the equation for \mathbf{y}; and
$\boldsymbol{\rho}=\left(\rho_{1}, \ldots, \rho_{S}\right)$ is the vector of coefficients on the spatially lagged errors.
Given these definitions, the estimator implemented in spivregress is a simple extension to the GS2SLS estimator documented in the Methods and formulas of spregress.

Specifically, after adding the instrumental variables $\mathbf{x}_{1}^{e}, \mathbf{x}_{2}^{e}, \ldots, \mathbf{x}_{Q}^{e}$ to the list of exogenous variables \mathbf{X}_{f} used to create the matrix of instruments \mathbf{H}_{1} in spregress, the other formulas in spregress specify how the estimator implemented in spivregress works. See Methods and formulas in [SP] spregress for further details.

References

Arraiz, I., D. M. Drukker, H. H. Kelejian, and I. R. Prucha. 2010. A spatial Cliff-Ord-type model with heteroskedastic innovations: Small and large sample results. Journal of Regional Science 50:592-614. https://doi.org/10.1111/j.14679787.2009.00618.x.

Badinger, H., and P. H. Egger. 2011. Estimation of higher-order spatial autoregressive cross-section models with heteroscedastic disturbances. Papers in Regional Science 90: 213-235. https://doi.org/10.1111/j.1435-5957.2010.00323.x.

Drukker, D. M., P. H. Egger, and I. R. Prucha. 2013. On two-step estimation of a spatial autoregressive model with autoregressive disturbances and endogenous regressors. Econometric Reviews 32: 686-733. https://doi.org/10.1080/07474938.2013.741020.

Kelejian, H. H., and I. R. Prucha. 1998. A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. Journal of Real Estate Finance and Economics 17: 99-121. https://doi.org/10.1023/A:1007707430416.
-_ 1999. A generalized moments estimator for the autoregressive parameter in a spatial model. International Economic Review 40: 509-533. https://doi.org/10.1111/1468-2354.00027.
__. 2010. Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances. Journal of Econometrics 157: 53-67. https://doi.org/10.1016/j.jeconom.2009.10.025.

Also see

[SP] spivregress postestimation - Postestimation tools for spivregress
[SP] estat moran - Moran's test of residual correlation with nearby residuals
[SP] Intro - Introduction to spatial data and SAR models
[SP] spmatrix - Categorical guide to the spmatrix command
[SP] spregress - Spatial autoregressive models
[SP] spxtregress - Spatial autoregressive models for panel data
$[\mathrm{R}]$ ivregress - Single-equation instrumental-variables regression
[U] 20 Estimation and postestimation commands

Title

spivregress postestimation - Postestimation tools for spivregress

Postestimation commands	predict	margins	estat impact
Methods and formulas	References	Also see	

Postestimation commands

The following postestimation command is of special interest after spivregress:

Command	Description
estat impact	direct, indirect, and total impacts

The following standard postestimation commands are also available:

Command	Description
contrast	contrasts and ANOVA-style joint tests of estimates
estat summarize	summary statistics for the estimation sample
estat vce	variance-covariance matrix of the estimators (VCE) cataloging estimation results estimates etable
lincom	poble of estimation results coefficients, standard errors, testing, and inference for linear combinations of
margins	marginal means, predictive margins, marginal effects, and average marginal effects graph the results from margins (profile plots, interaction plots, etc.)
marginsplot	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients
nlcom	predictions, residuals, influence statistics, and other diagnostic measures predict
predictnl	pairwise comparisons of estimates
pwcompare	Wald tests of simple and composite linear hypotheses
test	Wald tests of nonlinear hypotheses

predict

Description for predict

predict creates a new variable containing predictions such as the reduced-form mean, the direct mean, the indirect mean, the limited-information mean, the full-information mean, the naïve-form prediction, the linear prediction, the residuals, or the uncorrelated residuals.

Menu for predict

Statistics $>$ Postestimation

Syntax for predict

$$
\text { predict }[\text { type }] \text { newvar }[\text { if }][\text { in }][\text {, statistic }]
$$

statistic Description

Main	
$\underline{\text { rform }}$	reduced-form mean; the default
direct	direct mean
indirect	indirect mean
$\underline{\text { limited }}$	limited-information mean
full	full-information mean
$\underline{\text { naive }}$	naïve-form prediction
xb	linear prediction
$\underline{\text { residuals }}$	residuals
$\underline{\text { ucresiduals }}$	uncorrelated residuals

These statistics are only available in a subset of the estimation sample.

Options for predict

\qquad Main
rform, the default, calculates the reduced-form mean. It is the predicted mean of the dependent variable conditional on the independent variables and any spatial lags of the independent variables. See Methods and formulas.
direct calculates the direct mean. It is a unit's predicted contribution to its own reduced-form mean. The direct and indirect means sum to the reduced-form mean.
indirect calculates the indirect mean. It is the predicted sum of the other units' contributions to a unit's reduced-form mean.
limited calculates the limited-information mean. It is the predicted mean of the dependent variable conditional on the independent variables, any spatial lags of the independent variables, and any spatial lags of the dependent variable. limited is not available when the heteroskedastic option is used with spivregress.
full calculates the full-information mean. It is the predicted mean of the dependent variable conditional on the independent variables, any spatial lags of the independent variables, and the other units' values of the dependent variable full is not available when the heteroskedastic option is used with spivregress.
naive calculates the naïve-form prediction. It is the predicted linear combination of the independent variables, any spatial lags of the independent variables, and any spatial lags of the dependent variable. It is not a consistent estimator of an expectation. See Methods and formulas.
xb calculates the predicted linear combination of the independent variables.
residuals calculates the residuals, including any autoregressive error term.
ucresiduals calculates the uncorrelated residuals, which are estimates of the uncorrelated error term.

margins

Description for margins

margins estimates margins of response for reduced-form mean, direct mean, indirect mean, and linear predictions.

Menu for margins

Statistics $>$ Postestimation

Syntax for margins

```
margins [marginlist] [, options]
margins [marginlist] , predict(statistic ...) [predict(statistic ...)...] [options]
```

statistic Description

rform	reduced-form mean; the default direct
indirect mean	
xb	indirect mean
limited	linear prediction
full	not allowed with margins
naive	not allowed with margins
$\underline{\text { residuals }}$	not allowed with margins
$\underline{\text { ucresiduals }}$	not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).
For the full syntax, see [R] margins.

Remarks for margins

The computations that margins must do to calculate standard errors can sometimes be time consuming. Time will depend on the complexity of the spatial model and the number of spatial units in the data. You may want to fit your model with a subsample of your data, run margins, and extrapolate to estimate the time required to run margins on the full sample. See [P] timer and [P$]$ rmsg.

estat impact

Description for estat impact

estat impact estimates the mean of the direct, indirect, and total impacts of independent variables on the reduced-form mean of the dependent variable.

Syntax for estat impact

estat impact [varlist] [if] [in] [, nolog vce(vcetype)]
varlist is a list of independent variables, including factor variables, taken from the fitted model. By default, all independent variables from the fitted model are used.
collect is allowed; see [U] 11.1.10 Prefix commands.

Options for estat impact

\qquad Main
nolog suppresses the calculation progress log that shows the percentage completed. By default, the \log is displayed.

VCE
vce (vcetype) specifies how the standard errors of the impacts are calculated.
vce (delta), the default, is the delta method and treats the independent variables as fixed.
vce(unconditional) specifies that standard errors account for sampling variance in the independent variables. This option is not available when if or in is specified with estat impact.

Remarks for estat impact

estat impact is essential for interpreting the output of spivregress. See [SP] Intro 7 and example 1 of [SP] spregress for explanations and examples.

Stored results for estat impact

estat impact stores the following in $r()$:
Scalars
$r(N) \quad$ number of observations
Macros
r(vce)
r (xvars)
Matrices
r (b_direct) vector of estimated direct impacts
r (Jacobian_direct) Jacobian matrix for direct impacts
r(V_direct)
r(b_indirect)
r(Jacobian_indirect)
r (V_indirect)
r(b_total)
r(Jacobian_total)
r(V_total)
vcetype specified in vce() names of independent variables vector of estimated direct impacts
Jacobian matrix for direct impacts estimated variance-covariance matrix of direct impacts vector of estimated indirect impacts Jacobian matrix for indirect impacts estimated variance-covariance matrix of indirect impacts vector of estimated total impacts
Jacobian matrix for total impacts estimated variance-covariance matrix of total impacts

Methods and formulas

Methods and formulas are presented under the following headings:
Predictions
Reduced-form mean
Direct and indirect means
Limited-information mean
Full-information mean
Naïve-form predictor
Linear predictor
Residuals
Uncorrelated residuals
Impacts

Predictions

To motivate the predictions, consider the vector form of a spatial autoregressive model

$$
\begin{equation*}
\mathbf{y}=\lambda \mathbf{W} \mathbf{y}+\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon} \tag{1}
\end{equation*}
$$

where
\mathbf{y} is the vector containing each unit's dependent-variable observation,
$\mathbf{W} \mathbf{y}$ is a spatial lag of \mathbf{y},
\mathbf{X} is the matrix of independent-variable observations,
$\boldsymbol{\epsilon}$ is a vector of errors, and
λ and $\boldsymbol{\beta}$ are the coefficients.
Any spatial lags of the independent variables are assumed to be in \mathbf{X}. Spatial lags of the error do not affect the reduced-form, direct, or indirect means, so they are not included in (1) for simplicity.

Reduced-form mean

Equation (1) represents the spatial autoregressive model as a system of equations. The solution

$$
\begin{equation*}
\mathbf{y}=(\mathbf{I}-\lambda \mathbf{W})^{-1}(\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}) \tag{2}
\end{equation*}
$$

implies that the mean of \mathbf{y} given the independent variables and the spatial weighting matrix is

$$
\begin{equation*}
E(\mathbf{y} \mid \mathbf{X}, \mathbf{W})=(\mathbf{I}-\lambda \mathbf{W})^{-1}(\mathbf{X} \boldsymbol{\beta}) \tag{3}
\end{equation*}
$$

This is known as the reduced-form mean because the solution in (2) is known as the reduced form of the model. The predicted reduced-form mean substitutes estimates of λ and $\boldsymbol{\beta}$ into (3).

Direct and indirect means

To define the direct mean and the indirect mean, let

$$
\mathbf{S}=(\mathbf{I}-\lambda \mathbf{W})^{-1}
$$

and let \mathbf{S}_{d} be a matrix with diagonal elements of \mathbf{S} on its diagonal and with off-diagonal elements set to 0 .

The direct means are

$$
\mathbf{S}_{d} \mathbf{X} \boldsymbol{\beta}
$$

which capture the contributions of each unit's independent variables on its own reduced-form mean. Substituting estimates of λ and $\boldsymbol{\beta}$ produces the predictions.

The indirect means capture the contributions of the other units' independent variables on a unit's reduced-form prediction, and they are

$$
\left\{(\mathbf{I}-\lambda \mathbf{W})^{-1}-\mathbf{S}_{d}\right\} \mathbf{X} \boldsymbol{\beta}
$$

Limited-information mean

Instead of solving for the reduced form, the limited-information mean conditions on the spatial lag of y for observation i, which we denote by $(\mathbf{W} \mathbf{y})_{i}$, which yields

$$
\begin{equation*}
E\left\{y_{i} \mid \mathbf{X}, \mathbf{W},(\mathbf{W} \mathbf{y})_{i}\right\}=\mathbf{x}_{i} \boldsymbol{\beta}+\lambda(\mathbf{W} \mathbf{y})_{i}+u_{i} \tag{4}
\end{equation*}
$$

where u_{i} is the predictable part of the error term given $(\mathbf{W} \mathbf{y})_{i}$. See Kelejian and Prucha (2007) and Drukker, Prucha, and Raciborski (2013).

Full-information mean

The full-information mean conditions on the dependent-variable values of all the other units instead of conditioning on the spatial lag of the dependent variable, as does the limited-information mean. The additional information produces a better prediction of the error term when a spatial lag of the errors is in the model. See Kelejian and Prucha (2007).

Naïve-form predictor

The naïve-form predictor sets u_{i} to 0 in (4). It is not consistent for $E\left\{y_{i} \mid \mathbf{X}, \mathbf{W},(\mathbf{W} \mathbf{y})_{i}\right\}$ because it ignores u_{i}.

Linear predictor

The linear predictor is $\mathbf{X} \beta$.

Residuals

The residuals are u_{i} from (4).

Uncorrelated residuals

The uncorrelated residuals are

$$
\widehat{\boldsymbol{\epsilon}}=(\mathbf{I}-\widehat{\rho} \mathbf{M})^{-1} \mathbf{u}
$$

where \mathbf{u} is the vector of u_{i} 's, \mathbf{M} is the spatial weighting matrix for the autoregressive error term, and $\widehat{\rho}$ is the estimated correlation of \mathbf{u}.

Impacts

The total impact of an independent variable \mathbf{x} is the average of the marginal effects it has on the reduced-form mean,

$$
\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial E\left(\mathbf{y}_{i} \mid \mathbf{X}, \mathbf{W}\right)}{\partial x_{j}}
$$

where $E\left(\mathbf{y}_{i} \mid \mathbf{X}, \mathbf{W}\right)$ is the i th element of the vector $E(\mathbf{y} \mid \mathbf{X}, \mathbf{W})$, whose formula is given in (2), and x_{j} is the j th unit's value for \mathbf{x}.

The direct impact of an independent variable \mathbf{x} is the average of the direct, or own, marginal effects

$$
\frac{1}{n} \sum_{i=1}^{n} \frac{\partial E\left(\mathbf{y}_{i} \mid \mathbf{X}, \mathbf{W}\right)}{\partial x_{i}}
$$

The indirect impact of an independent variable \mathbf{x} is the average of the indirect, or spillover, marginal effects.

$$
\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \frac{\partial E\left(\mathbf{y}_{i} \mid \mathbf{X}, \mathbf{W}\right)}{\partial x_{j}}
$$

LeSage and Pace (2009, 36-37) call the average direct impact the "average total direct impact", and they call the average indirect impact the "average total indirect impact".
estat impact with the default vce (delta) uses the delta method to calculate the estimated variance of the impacts. This variance is conditional on the values of the independent variables in the model.
estat impact with vce(unconditional) uses the generalized method of moments estimation strategy to estimate the unconditional variance of the impacts. It accounts for sampling variance of the independent variables in the model.

References

Drukker, D. M., I. R. Prucha, and R. Raciborski. 2013. Maximum likelihood and generalized spatial two-stage least-squares estimators for a spatial-autoregressive model with spatial-autoregressive disturbances. Stata Journal 13: 221-241.

Kelejian, H. H., and I. R. Prucha. 2007. The relative efficiencies of various predictors in spatial econometric models containing spatial lags. Regional Science and Urban Economics 37: 363-374. https://doi.org/10.1016/j.regsciurbeco.2006.11.005.
LeSage, J., and R. K. Pace. 2009. Introduction to Spatial Econometrics. Boca Raton, FL: Chapman and Hall/CRC.
Liu, D. 2017. How to create animated graphics to illustrate spatial spillover effects. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/2018/03/06/how-to-create-animated-graphics-to-illustrate-spatial-spillover-effects/.

Also see

[SP] spivregress - Spatial autoregressive models with endogenous covariates
[U] 20 Estimation and postestimation commands

Title

spmatrix - Categorical guide to the spmatrix command

Description

The spmatrix command creates, imports, manipulates, and exports \mathbf{W} spatial weighting matrices. Listed below are the sections describing the spmatrix command.

Creating standard weighting matrices

spmatrix create
Create standard matrix
spdistance
Calculator for distance between places
Creating custom weighting matrices
spmatrix userdefined
spmatrix fromdata
spmatrix spfrommata
spmatrix matafromsp
spmatrix normalize
Custom creation using a user-defined function
Custom creation based on variables in the dataset
Get weighting matrix from Mata
Copy weighting matrix to Mata
Normalize matrix

Manipulating weighting matrices

spmatrix dir
spmatrix summarize
spmatrix drop
spmatrix copy
spmatrix save
spmatrix use
spmatrix note
spmatrix clear

> List names of weighting matrices in memory Details of weighting matrix stored in memory Drop weighting matrix from memory Copy weighting matrix to new name Save spatial weighting matrix to file Load spatial weighting matrix from file Set or list note
> Drop all weighting matrices from memory

Importing and exporting weighting matrices

spmatrix export
spmatrix import

Export weighting matrix in standard format Import weighting matrix in standard format

Reference

Baum, C. F., and S. Hurn. 2021. Environmental Econometrics Using Stata. College Station, TX: Stata Press.

Also see

[SP] Intro - Introduction to spatial data and SAR models

Title

spmatrix copy - Copy spatial weighting matrix stored in memory

Description

spmatrix copy copies weighting matrices stored in memory to new names, also stored in memory.

Quick start

Copy existing matrix Wd to Wdistance
spmatrix copy Wd Wdistance

Menu

Statistics $>$ Spatial autoregressive models

Syntax

spmatrix copy spmatname spmatname $_{2}$
spmatname $_{1}$ is the name of an existing weighting matrix.
spmatname $_{2}$ is a name of a weighting matrix that does not exist.

Also see

[SP] spmatrix - Categorical guide to the spmatrix command
[SP] Intro - Introduction to spatial data and SAR models

Title

spmatrix create - Create standard weighting matrices

Description
Menu
Options for spmatrix create contiguity
Options for both contiguity and idistance Also see

Quick start

Syntax
Option for spmatrix create idistance
Remarks and examples

Description

spmatrix create creates standard-format spatial weighting matrices.

Quick start

Create contiguity spatial weighting matrix M with default spectral normalization spmatrix create contiguity M

Same as above
spmatrix create contiguity M, normalize (spectral)
Create row-standardized contiguity spatial weighting matrix M
spmatrix create contiguity M, normalize(row)
Create contiguity spatial weighting matrix M without normalization
spmatrix create contiguity M, normalize (none)
Create spectral-normalized inverse-distance spatial weighting matrix W
spmatrix create idistance W

Menu

Statistics $>$ Spatial autoregressive models

Syntax

spmatrix create contiguity spmatname $[$ if $][$ in] [, contoptions stdoptions $]$
spmatrix create $\underline{\text { idistance spmatname }[i f][i n][, i d i s t o p t i o n ~ s t d o p t i o n s] ~}$
spmatname is a weighting matrix name.
contoptions Description

rook	share a border and not just a vertex
first	first-order neighbors
second $[(\#)]$	second-order neighbors

idistoption Description
vtruncate (\#) \quad set (i, j) element to 0 if $1 /$ distance $\leq \#$
stdoptions Description
normalize(normalize) type of normalization; default is normalize(spectral)
replace
replace existing weighting matrix

Options for spmatrix create contiguity

rook specifies that areas that share just a vertex not be treated as neighbors. For instance, consider the following map:

If rook is not specified, A and C are neighbors because they have a vertex (corner) in common. If rook is specified, A and C are not neighbors. Regardless of whether rook is specified, A and B are neighbors and B and C are neighbors because they share a border (line segment).
first specifies that first-order neighbors be assigned 1 . If areas i and j are neighbors, then spmatname $_{i, j}=$ spmatname $_{j, i}=1$. first is the default unless second or second(\#) is specified. second $[(\#)]$ specifies that the second-order neighbors-neighbors of neighbors-be assigned a nonzero value. second specifies that they be assigned 1 . second(\#) specifies that they be assigned \#.

If you also specify option first, then the matrix created will set first-order neighbors to contain 1. For instance, if you specify first second, both kinds of neighbors will be set to 1 . If you specify first second(.5), first-order neighbors are set to 1 and second-order neighbors are set to 0.5 .

Option for spmatrix create idistance

vtruncate(\#) specifies that areas farther apart than \# be set to 0 . Type spset without arguments to determine the units in which \# is specified. The Coordinates line of spset's output will be one of the following:

```
Coordinates: _CX, _CY (planar)
Coordinates: _CY, _CX (latitude and longitude, kilometers)
Coordinates: _CY, _CX (latitude and longitude, miles)
```

Units of \# will be planar, kilometers, or miles. If planar, see [SP] spdistance for advice on determining the units.
If spset reports
Coordinates: none
then you cannot use spmatrix create.

Options for both contiguity and idistance

normalize (normalize) specifies how the resulting matrix is to be scaled.
normalize (spectral) is the default. The matrix will be normalized so that its largest eigenvalue is 1 .
normalize (minmax) specifies that the matrix elements be divided by the smaller of the largest row or column sum of absolute values. The min-max calculation is much quicker than the spectral calculation and in most cases gives similar results as the spectral normalization.
normalize (row) specifies that each row of the matrix be divided by the row's sum (not absolute values). This adjustment can be performed even more quickly than the min-max adjustment.
normalize(none) specifies that the matrix not be rescaled. This option has one use: To store the matrix in unadjusted form so that you can fetch it later, make changes to it while the matrix is still in its original units, and then repost the matrix, at which point it will be rescaled. See Choosing weighting matrices and their normalization in [SP] spregress for details about normalization.
replace specifies that matrix spmatname may be replaced if it already exists.

Remarks and examples

See [SP] Intro 1 about the role spatial weighting matrices play in SAR models and see [SP] Intro 2 for a thorough discussion of the matrices. To remind you, the (i, j) element of a weighting matrix specifies the potential spillover from area j to i.

Remarks are presented under the following headings:

[^1]
Creating contiguity matrices

spmatrix create contiguity is mostly used to create matrices with elements equal to 1 or 0 (before normalization). spmatname $e_{i, j}$ is 1 when areas i and j are neighbors. The matrix is symmetric.

Creation of contiguity matrices requires that the Sp data in memory be linked to a shapefile. The data must look like this:

```
. spset
    Sp dataset: irrelevant
Linked shapefile: irrelevant
            Data: Cross sectional or Panel
    Spatial-unit ID: _ID
        Coordinates: _CY, _CX (latitude and longitude, miles)
```

Determining whether places are neighbors requires a linked shapefile. Knowing their locations is not sufficient.

To create a contiguity matrix named F of first-order neighbors, type

- spmatrix create contiguity F

The contiguity matrix F is automatically normalized using the spectral normalization; see Choosing weighting matrices and their normalization in [SP] spregress for details about normalization.

In [SP] Intro 1, we discussed a spatial weighting matrix containing 1s for first-order neighbors and 0.5 s for second-order neighbors. Such a matrix could be created by typing

```
. spmatrix create contiguity W, first second(0.5)
```

Also in the introduction, we considered making two weighting matrices, W for first-order neighbors and V for second. To create W and V , type

```
. spmatrix create contiguity W
. spmatrix create contiguity V, second
```

The syntax of the spmatrix create contiguity command is as follows:

Command	Meaning
1. spmatrix create contiguity	1st-order neighbors
2. spmatrix create contiguity, first	same as command 1
3. spmatrix create contiguity, second	2nd-order neighbors
4. spmatrix create contiguity, second(1)	same as command 3
5. spmatrix create contiguity, first second	1st- and 2nd-order neighbors
6. spmatrix create contiguity, first second(1)	same as command 5
7. spmatrix create contiguity, first second(0.5)	1st- and 2nd-order neighbors,
	1st set to 1, 2nd set to 0.5

Creating inverse-distance matrices

spmatrix create idistance creates matrices with elements equal to the reciprocal of distance between places (before normalization). The matrix is symmetric.

Creation of inverse-distance matrices requires that the Sp data have coordinates, but a shapefile is not required. The data must look like this:

```
. spset
    Sp dataset: irrelevant
Linked shapefile: irrelevant
            Data: Cross sectional or Panel
    Spatial-unit ID: _ID
    Coordinates: _CY, _CX (latitude and longitude, miles)
```

Coordinates must be defined, although they are not required to be latitude and longitude. If they are latitude and longitude, however, Sp needs to know; see [SP] Intro 4. Whether units are miles or kilometers is irrelevant.

To create an inverse-distance matrix named Idist, type

```
. spmatrix create idistance Idist
```

The inverse-distance matrix Idist is automatically normalized using the spectral normalization; see Choosing weighting matrices and their normalization in [SP] spregress for details about normalization.
spmatrix create idistance allows option vtruncate(\#), which sets spillovers less than or equal to \# to 0 . To create an inverse-distance matrix IO with places more than 100 apart, you could type

```
spmatrix create idistance IO, vtruncate(.01)
```

Note that you specify $\#=1 /$ distance.
See the description of the vtruncate() option above for the meaning of how far apart 100 means.

Creating inverse-distance contiguity matrices

An inverse-distance contiguity matrix is a weighting matrix that contains inverse distance for neighbors and 0 otherwise. Here is how you create such a matrix:

1. Create the inverse-distance and contiguity matrices separately.
2. Multiply them element by element in Mata. The result is a matrix containing inverse distance for neighbors because the contiguity matrix contains 1 s and 0 s .
3. Store the Mata result as an Sp spatial weighting matrix.

We do that below to create an inverse-distance first-order neighbor matrix named CN.

```
// --------------------------- create the matrices separately ---
spmatrix create idistance N, normalize(none) // note 1
spmatrix create contiguity C, first normalize(none) // note 2
// -------------------------------------- load them into Mata ---
spmatrix matafromsp Wn v = N
spmatrix matafromsp Wc v = C
// ------------------------- multiply them element by element ---
mata: Wcn = Wc :* Wn // note 3
```

```
// ----------------------------------- save the result in Sp ---
spmatrix spfrommata CN = Wcn v // note 4
// -------------------------------------------------------
mata: mata drop Wcn Wc Wn // note 5
spmatrix drop C
spmatrix drop N
// ----------------------------------------------
spmatrix dir
```

Weighting matrix name	N x N	Type	Normalization
CN	254×254	custom	spectral

Notes:

1. We specify normalize (none) when we create the matrices separately for speed, not because it is necessary. Normalization amounts to multiplying the matrices by a constant, and that will not matter. Calculating the constant, however, takes considerable time.
2. We created C to be first-order neighbors. We could have included second-order neighbors as well by adding option second to the command.
3. Colon-asterisk $(: *)$ is Mata's element-by-element matrix multiplication operator. It is called colon-multiply.
4. spmatrix spfrommata allows the normalize() option and defaults to normalize (spectral), just as spmatrix create does. Thus, the matrix stored in Sp is normalized.
5. Do not skip the clean-up step. Spatial weighting matrices are $N \times N$ and can consume considerable amounts of memory.
It is also important that we cleared the Mata matrices by dropping them and not by typing clear mata. Sp stores the matrices you create in Mata and, if you cleared Mata, the new weighting matrix CN would also be dropped!

See [SP] spmatrix matafromsp and [SP] spmatrix spfrommata.

The normalize() option

We have hardly mentioned the normalize() option so far, because spmatrix create normalizes matrices by default. Normalization is important. All the Sp commands that create spatial weighting matrices normalize by default and include the normalize() option for cases in which you want to modify how or whether it is done.

Sp provides three normalizations:

normalize(spectral)	the default
normalize(minmax)	min-max
normalize(row)	row

normalize() provides a fourth setting to skip normalization altogether:
normalize(none) do not perform normalization

The Sp commands are so determined you do not forget to normalize spatial weighting matrices at the last step that you must not forget to specify normalize (none) when you are building a custom matrix from ingredients. The spectral and min-max normalizations merely change the scale of the matrix.
normalize (row), however, is a normalization of a different ilk from the others. The others merely change the scale of the matrix. Changing a matrix's scale is performed by dividing the elements by a constant. normalize (row) divides each row by a different constant. Doing this transformation on the matrix changes the model specification.

See [SP] spmatrix normalize and Choosing weighting matrices and their normalization in [SP] spregress for details.

Panel data

If you have panel data and want to create a weighting matrix, you must use an if statement with spmatrix create to restrict the data to a single time value.

Here is an example. We load an Sp panel dataset and type spset to see the Sp settings:

```
. copy https://www.stata-press.com/data/r18/homicide_1960_1990.dta .
. copy https://www.stata-press.com/data/r18/homicide_1960_1990_shp.dta .
. use homicide_1960_1990
(S.Messner et al.(2000), U.S southern county homicide rate in 1960-1990)
. xtset _ID year
Panel variable: _ID (strongly balanced)
    Time variable: year, 1960 to 1990, but with gaps
        Delta: 1 unit
. spset
```

 Sp dataset: homicide_1960_1990.dta
 Linked shapefile: homicide_1960_1990_shp.dta
Data: Panel
Spatial-unit ID: _ID
Time ID: year (see xtset)
Coordinates: _CX, _CY (planar)

If we tried to create a weighting matrix the usual way, we would not be successful:

```
. spmatrix create contiguity W
variable _ID does not uniquely identify observations in the master data
r(459);
```

We get an error message because spmatrix create needs to know which observations to use. We must restrict spmatrix create to one observation per panel, which is easy to do using an if statement:

```
. spmatrix create contiguity W if year == 1990
```

Do not misinterpret the purpose of if year $==1990$. The matrix created will be appropriate for creating spatial lags for any year, because if two spatial units share a border in 1990, they will share it in the other years too. The map does not change.

[^2]
Title

spmatrix drop - List and delete weighting matrices stored in memory

Description	Quick start	Menu	Syntax
Remarks and examples	Stored results	Also see	

Description

spmatrix dir lists the Sp weighting matrices stored in memory. spmatrix drop deletes a single Sp matrix from memory. spmatrix clear deletes all Sp matrices from memory.

Quick start

List weighting matrices stored in memory
spmatrix dir
Drop weighting matrix Wd
spmatrix drop Wd
Drop all weighting matrices
spmatrix clear

Menu

Statistics $>$ Spatial autoregressive models

Syntax

List the $S p$ weighting matrices stored in memory
spmatrix dir

Drop an Sp matrix from memory spmatrix drop spmatname

Drop all weighting matrices from memory spmatrix clear
spmatname is the name of an Sp weighting matrix stored in memory.
collect is allowed with spmatrix dir; see [U] 11.1.10 Prefix commands.

Remarks and examples

Remarks are presented under the following headings:
spmatrix dir
Save and drop matrices you are not using

spmatrix dir

The spatial weighting matrices that you create are stored in memory. You create them with the following commands:

```
spmatrix create
spmatrix import
spmatrix fromdata
spmatrix userdefined
spmatrix spfrommata
```

spmatrix dir lists spatial weighting matrices names:
. spmatrix dir

Weighting matrix name	N x N	Type	Normalization
Wc	254×254	contiguity	spectral
Wd	254×254	idistance	spectral

When spmatrix dir reports that a matrix is a contiguity matrix, as it does with Wc, contiguity is used in its ex post sense. See [SP] spmatrix summarize or the [SP] Glossary for the definition of ex post contiguity matrices.

Save and drop matrices you are not using

Spatial weighting matrices are stored in memory, and they can consume a lot of it. The ones above consume a mere $254 \times 254=517128$ bytes each. Had the matrices been 3000×3000, they would have consumed 69 megabytes each.

Spatial weighting matrices can be saved on disk. Any that you are not currently using, you can save to disk and drop from memory:

```
. spmatrix save Wc using wc
(matrix Wc saved in file wc.stswm)
. spmatrix drop Wc
```

All spatial weighting matrices are dropped when you type

```
. spmatrix clear
```

or

```
. clear mata
```

or

```
. clear all
```

The clear mata command also clears any Mata functions or objects in memory. The clear all command also clears any data in memory.

Stored results

spmatrix dir stores the following in $r()$:
Macros
r (names) space-separated list of matrix names

Also see

[SP] spmatrix - Categorical guide to the spmatrix command
[SP] spmatrix summarize - Summarize weighting matrix stored in memory
[SP] Intro - Introduction to spatial data and SAR models
[D] clear - Clear memory
Mata Reference Manual

Title

spmatrix export - Export weighting matrix to text file

Description	Quick start	Menu	Syntax
Option	Remarks and examples	Also see	

Description

spmatrix export saves one weighting matrix in a text file that you can use for sending to other researchers.

Stata users can import text files created by spmatrix export; see [SP] spmatrix import.

Quick start

Create file wmat.txt containing weighting matrix Wme
spmatrix export Wme using wmat.txt

Menu

Statistics $>$ Spatial autoregressive models

Syntax

spmatrix export spmatname using filename [, replace]
spmatname is the name of a weighting matrix stored in memory.
filename is the name of a file with or without the default .txt suffix.

Option

replace specifies that filename may be overwritten if it already exists.

Remarks and examples

Remarks are presented under the following headings:
Using spmatrix export
The spmatrix export text-file format

Using spmatrix export

spmatrix export creates files containing spatial weighting matrices that you can send to other users who are not using Stata. If you want to send to Stata users, it is easier and better if you send Stata .stswm files created using spmatrix save. spmatrix export produces a text-based format that is easy for non-Stata users to read.

To send a contiguity matrix, for instance, you could type

```
. spmatrix create contiguity Wc
. spmatrix export Wc using contig.txt
    (matrix Wc saved in file contig.txt)
```

You could then email the file contig.txt.

The spmatrix export text-file format

An spmatrix export file contains values of the matrix and the _ID values to which the matrix's rows and columns correspond.

A small sample file is shown below. It corresponds to a 4×4 weighting matrix for U.S. counties 3137, 960,298 , and 707. If others are to be able to interpret this information, the counties need to be a standard code. We are using the standard FIPS code because, before creating spatial weighting matrices in [SP] Intro 4, we used spset, modify id(fips).

To create the file listed below, we typed

```
. spmatrix create idistance Idist
. spmatrix export Idist using small.txt
    (matrix Idist saved in file small.txt)
```

We did this after keeping four observations so that we would have a small file to show you.
The resulting file is

```
. type small.txt
4
20029 0 . 225898983673981 . 259698923068494 . 746562405514367
33003 . 225898983673981 0 . 123515701241913 . 187089086384635
41021 . 259698923068494 . 123515701241913 0 . 264715523882705
48227 .746562405514367 . 187089086384635 . 264715523882705 0
```

The file records a 4×4 spatial weighting matrix. Real examples would record much larger matrices. $N \times N$ matrices are recorded in $N+1$ lines.

The first line states that $N=4$. The matrix is 4×4.
The second and subsequent lines each record $N+1$ values with spaces between them. The first value, 20029, is the _ID (FIPS) value corresponding to the first row of the weighting matrix. The remaining N values on the line are the first row of the matrix.

The remaining lines are repeats for the second row, third row, and so on. The first value is an _ID value and the rest are that _ID's row of the matrix.

It is a simple and easy-to-read file.

Also see

[SP] spmatrix - Categorical guide to the spmatrix command
[SP] spmatrix import - Import weighting matrix from text file
[SP] Intro - Introduction to spatial data and SAR models

Title

spmatrix fromdata - Create custom weighting matrix from data

Description	Quick start	Menu	Syntax
Options	Remarks and examples	Also see	

Description

spmatrix fromdata creates custom spatial weighting matrices from Sp data.
There are two other ways to create custom weighting matrices: spmatrix userdefined and spmatrix spfrommata. Those ways may require less work, but they require knowledge of Mata.

Quick start

Create spectral-normalized spatial weighting matrix Wnew from the $N \times N$ "matrix" stored in variables $\mathrm{x} 1, \mathrm{x} 2, \ldots$, xn
spmatrix fromdata Wnew $=\mathrm{x} 1-\mathrm{xn}$

Menu

Statistics $>$ Spatial autoregressive models

Syntax

spmatrix fromdata spmatname $=$ varlist $[$, options $]$
spmatname is the name of the spatial weighting matrix to be created.
options
Description
idistance normalize(normalize) replace store reciprocal of elements type of normalization; default is normalized (spectral) replace existing weighting matrix

Options

idistance converts distance to inverse distance by storing the reciprocal of the elements. normalize (normalize) specifies how the resulting matrix is to be scaled. normalize (spectral) is the default. normalize(minmax), normalize (row), and normalize(none) are also allowed. See [SP] spmatrix create for full details of the option and Choosing weighting matrices and their normalization in [SP] spregress for details about normalization.
replace specifies that matrix spmatname be overwritten if it already exists.

Remarks and examples

The fromdata in spmatrix fromdata means that the matrix itself is stored as variables in the data. Some researchers are used to working this way, and if you are among them, spmatrix fromdata is for you.

If the matrix is stored with the variables because you created it using the data, you may want to consider using spmatrix userdefined and spmatrix spfrommata instead. Both require knowledge of Mata, so that is a disadvantage if you do not already know Mata. On the other hand, spmatrix userdefined does not require much knowledge and handles the creation of most custom weighting matrices simply and elegantly. spmatrix spfrommata requires more extensive knowledge of Mata, but it will handle problems that no other method can.

The problem with spmatrix fromdata is not that the matrix is stored in the data but that filling in the matrix is more work than it needs to be. Stata draws a distinction between rows and columns. Rows are observations and columns are variables. Stata is perfectly willing to sweep down observations, but few Stata commands will sweep across variables. Mata, being a matrix language, draws no such distinction.

Also see

[SP] spmatrix - Categorical guide to the spmatrix command
[SP] spmatrix spfrommata - Copy Mata matrix to Sp
[SP] spmatrix userdefined - Create custom weighting matrix
[SP] Intro - Introduction to spatial data and SAR models
Mata Reference Manual

Title

spmatrix import - Import weighting matrix from text file

Description	Quick start	Menu	Syntax
Option	Remarks and examples	Also see	

Description

spmatrix import reads files created by spmatrix export.

Quick start

Create spatial weighting matrix Wme by importing file wmat.txt spmatrix import Wme using wmat.txt

Menu

Statistics $>$ Spatial autoregressive models

Syntax

spmatrix import spmatname using filename [, replace]
spmatname will be the name of the weighting matrix that is created.
filename is the name of a file with or without the default .txt suffix.

Option

replace specifies that weighting matrix spmatname in memory be overwritten if it already exists.

Remarks and examples

spmatrix import reads files written in a particular text-file format. The format is described in [SP] spmatrix export. Such a file might be named contig.txt. To read the file and store the matrix in Sp spatial weighting matrix Wcontig, type

```
. spmatrix import Wcontig using contig.txt
```

or
. spmatrix import Wcontig using contig
The file extension .txt is assumed.

The file is read and stored as is. Presumably, the user who created the matrix normalized it, but if not, you can normalize it by typing
. spmatrix normalize Wcontig
By default, spmatrix normalize uses spectral normalization, but you can specify a different normalization using the normalize() option. See [SP] spmatrix normalize.

Also see

[SP] spmatrix - Categorical guide to the spmatrix command [SP] spmatrix export - Export weighting matrix to text file
[SP] spmatrix normalize - Normalize weighting matrix
[SP] Intro - Introduction to spatial data and SAR models

Title

spmatrix matafromsp - Copy weighting matrix to Mata

Description	Quick start	Menu	Syntax
Remarks and examples	Also see		

Description

spmatrix matafromsp copies weighting matrix spmatname from Sp to Mata. Weighting matrix spmatname remains unchanged.

Quick start

Create weighting matrix W and ID vector id in Mata from spatial weighting matrix C
spmatrix matafromsp W id $=\mathrm{C}$

Menu

Statistics $>$ Spatial autoregressive models

Syntax

spmatrix matafromsp matamatrix matavec $=$ spmatname

Remarks and examples

Remarks are presented under the following headings:
Getting W and id
Using W without involving the data in memory Using W involving the data in memory

Getting W and id

The command
. spmatrix matafromsp W id = C
copies spatial weighting matrix C to a Mata matrix named W and copies C's _ID vector to a Mata vector named id.

What is id? When a spatial weighting matrix such as C is created, stored along with it are the _ID values. Those _ID values identify the meaning of the rows and columns.

Consider a spatial weighting matrix created by spmatrix create. We use the datasets downloaded in [SP] estat moran.

```
. use homicide1990
(S.Messner et al.(2000), U.S southern county homicide rates in 1990)
. spset
    (output omitted)
. spmatrix create contiguity C
```

What is the meaning of element $c_{1,2}$? It is the spillover from _ID[2] to _ID[1]. If the data were currently spset on fips, _ID [1] might equal 48507 and _ID[2] might equal 48003, and thus it would be the spillover from Andrews to Zavala county in Texas. Sp keeps a copy of the _ID vector so that later, when the data are in a different order, $c\{1,2\}$ will still mean the spillover from Andrews to Zavala county.

You need not concern yourself with id if you plan on doing something with W that does not involve the data in memory. If what you need to do involves the data in memory, you will need to address the problem that the order of the data in memory now is not the same as it was when W was created.

Using W without involving the data in memory

Say that you wish to fetch C from Sp just so you can change values greater than or equal to 0.8 to 0.5 . Doing that does not involve the data in memory. You type

```
. spmatrix matafromsp W id = C
. mata:
```

 mata (type end to exit)
    ```
: for (i=1; i<=rows(W); i++) {
> for (j=1; j<=cols(W); j++) {
        if (W[i,j] >= 0.8) W[i,j] = 0.5
        }
> }
: end
```

You might now store the W back into C by typing

```
. spmatrix spfrommata C = W id, replace
```

You specify the same id vector you received because you have not changed the ordering of the rows or columns of the matrix.

Using W involving the data in memory

If you intend to use W and the data in memory together, you need to align the data and W . The instructions presented here work with cross-sectional data but not panel data.

First, check whether the data and W are conformable:

```
. mata:
: ID = st_data(., "_ID")
: assert( sort(ID, 1) == sort(id, 1) )
: end
```

If Mata reports that the assertion is false, then the data and W are not conformable. This has nothing to do with observations and rows and columns being in different order. Not conformable means that one, the other, or both are missing _ID values that the other one has.

Let's imagine that Mata responds with silence to the assertion. Thus, the data are conformable. If they are also in the same order, you can use the data and W together, so find out if they are.

```
. mata:
m_ mata (type end to exit) -___
: assert( ID == id )
: end
```

If they are in the same order, row/column 1 of the matrix corresponds to observation 1 of the data, row/column 2 of the matrix corresponds to observation 2 of the data, and so on.

If Mata reports that the assertion is false, you have to put the data in the same order. Here is how:

```
. mata:
```

\longrightarrow mata (type ond to exit) - -
: p = order (id, 1)
: $\mathrm{W}=\mathrm{W}[\mathrm{p}, \mathrm{p}] \quad / / \mathrm{put} \mathrm{W}$ in ascending order of id
: id = id[p] // put id in ascending order of id
: end
. sort _ID // put the data in ascending order of _ID

You can now do whatever with W and the data. Row/column 1 of W corresponds to observation 1 of the data, row/column 2 of W corresponds to observation 2 of the data, and so on.

Perhaps whatever you will do involves, as a last step, posting the matrix back to Sp . In that case, use the id variable you updated:

```
. spmatrix spfrommata C = W id, replace
```


Also see

[SP] spmatrix - Categorical guide to the spmatrix command
[SP] spmatrix spfrommata - Copy Mata matrix to Sp
[SP] Intro - Introduction to spatial data and SAR models
Mata Reference Manual

Title

spmatrix normalize - Normalize weighting matrix

| Description | Quick start | Menu | Syntax |
| :--- | :--- | :--- | :--- |
| Option | Remarks and examples | Also see | |

Description

spmatrix normalize normalizes a spatial weighting matrix. It is mostly used after spmatrix import.

Quick start

Normalize spatial weighting matrix W using the default spectral normalization spmatrix normalize W

Menu

Statistics $>$ Spatial autoregressive models

Syntax

spmatrix normalize spmatname [, normalize(normalize)]
spmatname is the name of an existing spatial weighting matrix stored in memory.
normalize Description

| spectral
 minmax | spectral; the default
 row |
| :--- | :--- |
| mon-max | |\quad row \quad do not normalize; leave matrix as is

Option

normalize (normalize) specifies how the resulting matrix is to be scaled. normalize (spectral) is the default. normalize(minmax), normalize(row), and normalize(none) are also allowed. See [SP] spmatrix create for full details of the option and Choosing weighting matrices and their normalization in [SP] spregress for details about normalization.

Remarks and examples

Remarks are presented under the following headings:
Using spmatrix normalize after spmatrix import Using spmatrix normalize after other commands Using spmatrix normalize to change normalization

Using spmatrix normalize after spmatrix import

With one exception, the commands that create spatial weighting matrices provide a normalize() option and default to normalize(spectral). spmatrix import is the exception. You can use spmatrix normalize after importing; see [SP] spmatrix import.

Using spmatrix normalize after other commands

If you create a matrix using normalize (none), you can use spmatrix normalize to normalize the matrix subsequently. For instance,
. spmatrix create contiguity Wc, normalize (none)
. spmatrix normalize Wc

Using spmatrix normalize to change normalization

Sp provides three normalizations:

| normalize(spectral) | the default |
| :--- | :--- |
| normalize(minmax) | min-max |
| normalize(row) | row |

Concerning the first two, you can use spmatrix normalize to change the normalization.

1. If W is normalized spectrally, no matter how you created it, normalizing it again spectrally leaves the matrix unchanged.
2. The same applies to the min-max normalization. If W is normalized using min-max, normalizing it again leaves the matrix unchanged.
3. If W is normalized spectrally and you renormalize using min-max, the result is the same as you would have obtained had W been normalized using min-max at the outset.
4. The same applies if the roles of min-max and spectral are reversed. If W is normalized using min-max and you renormalize it spectrally, the result is the same as if you had normalized it spectrally at the outset.
Row normalization, meanwhile, is unique. You can apply row normalization repeatedly to an already row-normalized matrix and obtain the same results, but you cannot change normalizations.

See Choosing weighting matrices and their normalization in [SP] spregress for details about normalization.

[^3]
Title

spmatrix note - Put note on weighting matrix, or display it

| Description | Quick start | Menu | Syntax |
| :--- | :--- | :--- | :--- |
| Remarks and examples | Also see | | |

Description

spmatrix note spmatname: text puts or replaces the note on weighting matrix spmatname stored in memory.
spmatrix note spmatname displays the note.

Quick start

Place or replace note on spatial weighting matrix W
spmatrix note W : inverse-distance 1st-order contiguity matrix
Display note on spatial weighting matrix W

```
spmatrix note W
```

Clear note on spatial weighting matrix W
spmatrix note W :

Menu

Statistics $>$ Spatial autoregressive models

Syntax

spmatrix note spmatname : text spmatrix note spmatname
spmatname is the name of an existing weighting matrix.

Remarks and examples

See [SP] spmatrix save for an example using spmatrix note.

[^4]
Title

spmatrix save - Save spatial weighting matrix to file

| Description | Quick start | Menu | Syntax |
| :--- | :--- | :--- | :--- |
| Option | Remarks and examples | Also see | |

Description

spmatrix save saves the specified spatial weighting matrix to disk. You can later load the matrix using spmatrix use.
spmatname is saved to disk but is not dropped from memory. If you wish to eliminate the matrix from memory, see [SP] spmatrix drop.

Quick start

Save spatial weighting matrix W in file w.stswm spmatrix save W using w.stswm

Menu

Statistics $>$ Spatial autoregressive models

Syntax

spmatrix save spmatname using filename [, replace]
spmatname is the name of an existing weighting matrix.
filename is the name of a file with or without the .stswm suffix.

Option

replace specifies that filename be overwritten if it already exists.

Remarks and examples

Saving spatial weighting matrices in files allows you to use them from one session to the next.
It is easy to lose track of which files contain which matrices. It can be useful to set the weighting matrix's note as a reminder:

```
. spmatrix note Wme: inverse-distance first-order contiguity matrix
. spmatrix save Wme using wme
    (matrix Wme saved in file wme.stswm)
```

spmatrix use will display the note when it loads the file:
. spmatrix use W1 using wme
(inverse-distance first-order contiguity matrix)
The name you specify when you use the matrix is not required to match the name you used when you saved it.

Also see

[SP] spmatrix - Categorical guide to the spmatrix command [SP] spmatrix export - Export weighting matrix to text file [SP] spmatrix use - Load spatial weighting matrix from file [SP] Intro - Introduction to spatial data and SAR models

Title

spmatrix spfrommata - Copy Mata matrix to Sp

| Description | Quick start | Menu | Syntax |
| :--- | :--- | :--- | :--- |
| Options | Remarks and examples | References | Also see |

Description

spmatrix spfrommata copies a weighting matrix and an ID vector from Mata to an Sp spatial weighting matrix.

Quick start

Create Sp spatial weighting matrix Wnew from Mata matrix W and vector v with the default spectral normalization

```
spmatrix spfrommata Wnew = W v
```


Menu

Statistics $>$ Spatial autoregressive models

Syntax

spmatrix spfrommata spmatname $=$ matamatrix matavec $[$, options $]$
options
Description
normalize(normalize) type of normalization; default is normalize(spectral)
replace replace existing weighting matrix

Options

normalize (normalize) specifies how the resulting matrix is to be scaled. normalize (spectral) is the default. normalize(minmax), normalize (row), and normalize(none) are also allowed. See $[\mathrm{SP}]$ spmatrix create for full details of the option and Choosing weighting matrices and their normalization in [SP] spregress for details about normalization.
replace specifies that matrix spmatname be overwritten if it already exists.

Remarks and examples

Remarks are presented under the following headings:

[^5]
W and v

Two components are required to set an Sp spatial weighting matrix: the spatial weighting matrix itself and its vector of _ID values. Let's call them W and v , respectively. v states that the first row and column of W correspond to $_I D==\mathrm{v}[1]$, the second row and column correspond to $_I D==\mathrm{v}[2]$, and so on. The purpose of v and how it works is explained in [SP] spmatrix matafromsp.

Examples of spmatrix spfrommata can be found in [SP] spmatrix create and [SP] spmatrix matafromsp.

Simple use

We are going to show you how Mata can be used to construct complicated spatial weighting matrices. However, we will start with a simple case in which the values of the weighting matrix $W_{i, j}$ are a function of variables in observations i and j of the data in memory. Inverse-distance matrices are an example of this. The distance between i and j is a function of the values of Stata variables _CX and _CY in observations i and j.

We start by loading the Sp data into memory:

```
. use your_sp_data
```

The Mata solution is

```
. mata:
: id = st_data(., "_ID")
: location = st_data(., ("_CX", "_CY"))
: N = st_nobs()
: W = J (N, N, 0)
: for (i=1; i<=N; i++) {
> for (j=1; j<i; j++) {
> delta = location[i,.] - location[j,.]
> W[i,j] = W[j,i] = 1/sqrt(delta*delta')
> }
> }
: end
```

. spmatrix spfrommata myIdist $=$ W id

We just created an inverse-distance matrix. If you wanted to create such matrices, it would obviously be easier to type

```
. spmatrix create idistance myIdist
```

The Mata solution has the advantage that you can substitute different inverse-distance functions, such as inverse-distance squared. There is an easier solution for that case too, namely, the one outlined in [SP] spmatrix userdefined.

Now that you know how Mata and spmatrix spfrommata work in simple cases, we can show you an example that could be done no other way than by direct use of Mata.

Advanced use

You have export.dta, a cross-sectional Sp dataset on countries and their characteristics. Its _ID variable contains standard country codes. You need to construct a spatial weighting matrix to use with it.
export.dta does not itself contain sufficient information to construct the matrix you want to use. Instead, you have a second dataset, which is not Sp . It contains

Sorted by:
The data record exports from one country to another for all 196 countries of the world. We say exports, but we can just as well interpret the data as imports by reversing the roles of variables from and to.

To simplify the problem, we are going to assume the country codes recorded in variables from and to are $1,2, \ldots, 196$ and that the same codes are recorded in variable _ID of exports.dta. If the true country codes were not $1,2, \ldots, 196$, you could easily construct such country codes.

We are going to create a spatial weighting matrix from these data. Potential spillover from j to i will be

$$
W_{i, j}=\frac{(\text { exports from } i \text { to } j)+(\text { exports from } j \text { to } i)}{i \text { 's GDP }}
$$

This weighting matrix is a near cousin to one developed by Badinger and Egger (2008).
\mathbf{W} would be easy to calculate if we had a matrix \mathbf{E} recording exports and a vector \mathbf{g} recording GDP. $E_{i, j}$ would be the exports from i to j, and g_{i} would record GDP of country i. The formula for $W_{i, j}$ would then be

$$
W_{i, j}=\left(E_{i, j}+E_{j, i}\right) / g_{i}
$$

\mathbf{E} and \mathbf{g} can be easily created in Mata:

```
. tomata from to export gdp
. mata:
g = J (196, 1, 0)
: E = J (196, 196, 0)
: for (k=1; k<=length(exports); k++) {
> i = from[k]
> j = to[k]
> g[i] = gdp[k]
> E[i,j] = exports[k]
> }
: end
```

tomata (Gould 2006) is a community-contributed command that makes it easy to create Mata matrix views of individual Stata variables. Type search tomata for details. The matrices will have the same names as the variables.

We can now calculate the weighting matrix:

```
. mata:
: W = (E + E') :/ g
: end
```

Finally, we post the result to Sp . We create column vector id containing 1, 2, ..., 196 because row/column 1 of W corresponds to country code 1 , row/column 2 of W corresponds to country code 2 , and so on.

```
. mata:
_ mata (type end to exit) _
: id = 1::196
: end
```

. spmatrix spfrommata $\mathrm{Wt}=\mathrm{W}$ id

We could now use exports.dta and fit a model using Wt to create spatial lags.

References

Badinger, H., and P. H. Egger. 2008. Intra- and inter-industry productivity spillovers in OECD manufacturing: A spatial econometric perspective. Working paper 2181, CESifo Group, Munich, Germany. http://www.cesifo-group.de/DocDL/cesifo1_wp2181.pdf.

Gould, W. W. 2006. Stata tip 35: Detecting whether data have changed. Stata Journal 6: 428-429.

[^6]
Title

spmatrix summarize - Summarize weighting matrix stored in memory

| Description | Quick start | Menu | Syntax |
| :--- | :--- | :--- | :--- |
| Option | Remarks and examples | Stored results | Also see |

Description

spmatrix summarize reports the summary values of the elements of a weighting matrix.

Quick start

Display summary statistics for spatial weighting matrix Wd spmatrix summarize Wd

Menu

Statistics $>$ Spatial autoregressive models

Syntax

spmatrix summarize spmatname [, generate(newvar)]
spmatname is the name of a weighting matrix.
collect is allowed; see [U] 11.1.10 Prefix commands.

Option

generate (newvar) adds new variable newvar to the data. It contains the number of neighbors for each observation. generate() may be specified only when spmatrix summarize or spmatrix dir report that the matrix is a contiguity matrix. See [SP] Glossary for a definition of ex post contiguity matrices.

Remarks and examples

We will again use the data from [SP] Intro 7. spmatrix summarize produces output such as

```
. use tl_2016_us_county
. keep if STATEFP=="48"
    (output omitted)
. spmatrix create idistance Wd
. spmatrix create contiguity Wc
. spmatrix summarize Wd
Weighting matrix Wd
```

| Type | idistance |
| ---: | ---: |
| Normalization | spectral |
| Dimension | 254×254 |
| Elements | |
| minimum | 0 |
| minimum >0 | .0008812 |
| mean | .0038122 |
| max | .0512134 |

. spmatrix summarize Wc
Weighting matrix Wc

| Type
 Normalization
 Dimension | contiguity
 spectral |
| :---: | ---: |
| Elements
 minimum
 minimum >0 | 254×254 |
| mean | 0 |
| max | .1522758 |
| Neighbors | |
| minimum | .0034177 |
| mean | .1522758 |
| maximum | 5.700787 |

When a matrix is a contiguity matrix, a summary of the number of neighbors is added to the output. By contiguity matrix, we mean a contiguity matrix in the sense we describe below. A matrix created by spmatrix create contiguity does not necessarily qualify, and matrices created by other commands sometimes do.

We call this definition ex post contiguity. Such matrices 1) are symmetric and 2) have all elements equal to one of two values: 0 or c. In this case, c happens to be 0.1522758 , but that is not important. What is important is that there are two values, one zero and the other nonzero. Spatial weighting matrices do not have a scale. If there are only two values, the matrix can be fully described as containing values such that "there is spillover" or "there is no spillover". Those with spillover are what we call neighbors.

Matrices created by spmatrix create contiguity are not necessarily ex post contiguity matrices. For instance, typing

```
. spmatrix create contiguity W2, first second(.5)
```

would create a matrix containing three values- $0,0.05$, and 1 -before normalization and different values after normalization. If we wanted to count neighbors, we would need to count first- and second-order neighbors separately. Meanwhile, typing
and

```
. spmatrix create contiguity W12, first second
```

would produce ex post contiguity matrices.
spmatrix dir uses the word contiguity in the same way as spmatrix summarize, namely, ex post contiguity:
. spmatrix dir

| Weighting matrix name | N x N | Type | Normalization |
| ---: | :---: | :---: | :---: |
| Wc | 254×254 | contiguity | spectral |
| Wd | 254×254 | idistance | spectral |

Matrix Wc is an ex post contiguity matrix regardless of how it was created.
Normalization does not interfere with ex post contiguity. Normalization is performed on a spatial weighting matrix by dividing its elements by a constant, and thus a matrix that starts out with two distinct values still has two distinct values after normalization. Row normalization-normalize (row) -works differently. Each row is divided by potentially a different constant and thus does not satisfy the definition of ex post contiguity.

Stored results

spmatrix summarize stores the following in $r()$:
Scalars
$r(n) \quad$ number of rows (columns)
$r(\min) \quad$ elements: minimum value
r (mean) elements: mean value
$r(\min 0) \quad$ elements: minimum of elements >0
$r(\max) \quad$ elements: maximum value
Macros
r (type) type of matrix: contiguity, idistance, or custom
r (normalization) type of normalization
If r (type) $=$ contiguity, also stored are
Scalars
r (n_min) neighbors: minimum value
r (n_mean) neighbors: mean value
r ($n _$max) neighbors: maximum values

Also see

[SP] spmatrix - Categorical guide to the spmatrix command
[SP] Intro - Introduction to spatial data and SAR models

Title

spmatrix use - Load spatial weighting matrix from file

Description

spmatrix use loads the spatial weighting matrix previously saved using spmatrix save.

Quick start

Use spatial weighting matrix W stored in file wme.stswm spmatrix use W using wme.stswm

Menu

Statistics $>$ Spatial autoregressive models

Syntax

spmatrix use spmatname using filename [, replace]
spmatname is a weighting matrix name.
filename is the name of a file with or without the .stswm suffix.

Option

replace specifies that weighting matrix spmatname be overwritten if it already exists.

Remarks and examples

See [SP] spmatrix save for an example of spmatrix use.

Also see

[SP] spmatrix - Categorical guide to the spmatrix command
[SP] spmatrix import - Import weighting matrix from text file
[SP] spmatrix save - Save spatial weighting matrix to file
[SP] Intro - Introduction to spatial data and SAR models

Title

spmatrix userdefined - Create custom weighting matrix

| Description | Quick start | Menu | Syntax |
| :--- | :--- | :--- | :--- |
| Options | Remarks and examples | Also see | |

Description

spmatrix userdefined is one way of creating custom spatial weighting matrices. The function you write need not be based on coordinate locations.

Quick start

Having written the Mata function $\operatorname{SinvD}()$, create new spatial weighting matrix C with default spectral normalization

```
spmatrix userdefined C = SinvD(_CX _CY)
```


Menu

Statistics $>$ Spatial autoregressive models

Syntax

spmatrix userdefined Wmatname $=$ fcnname (varlist) $[$ if $][$ in $][$, options $]$
Wmatname is a weighting matrix name, such as W.
fcnname is the name of a Mata function you have written, such as SinvD or Awind.

1. fcnname must start with the letter S or A , which indicates whether the function produces a symmetric or an asymmetric result.
2. fcnname receives two row-vector arguments and returns a scalar result. For example,
```
function SinvD(v1, v2)
{
    return(1/sqrt((v1-v2)*(v1-v2)'))
}
```

Function $\operatorname{SinvD}()$ starts with S because for all x and $y, \operatorname{SinvD}(x, y)=\operatorname{SinvD}(y, x)$.
options Description
normalize(normalize) type of normalization; default is normalize(spectral)
replace replace existing weighting matrix

Options

normalize (normalize) specifies how the resulting matrix is to be scaled. normalize (spectral) is the default. normalize(minmax), normalize (row), and normalize(none) are also allowed. See $[\mathrm{SP}]$ spmatrix create for full details of the option and Choosing weighting matrices and their normalization in [SP] spregress for details about normalization.
replace specifies to overwrite matrix spmatname if it already exists.

Remarks and examples

Sp provides five ways to create spatial weighting matrices:

1. [SP] spmatrix create creates standard weighting matrices. No programming and little effort is required.
2. [SP] spmatrix import imports weighting matrices produced by others.
3. [SP] spmatrix fromdata lets you create custom weighting matrices without Mata programming.
4. [SP] spmatrix userdefined lets you create custom weighting matrices. Some Mata programming is required.
5. [SP] spmatrix spfrommata leaves it to you to create matrices from start to finish, which you can do in Mata with or without programs. Once created, you use spmatrix spfrommata to store it.

This manual entry concerns method 4. Remarks are presented under the following headings:

```
Overview
Sfcnname() versus Afcnname()
Programming style
Advanced programs
Mixed approaches
```


Overview

Consider a cross-sectional spatial dataset of N observations. Each observation contains data on a place. We say place, but it need not be a physical place such as census block 060670011011085 , zip code 77845, city College Station, county Brazos, state Texas, or country United States. It could be a network node or anything else.

A weighting matrix \mathbf{W} is $N \times N$. Its elements $W_{i, j}$ record the potential spillover from place j to i. For simplicity and without loss of generality, we will assume that places i and j correspond to observations i and j.
spmatrix userdefined handles situations when $W_{i, j}$ is a function of \mathbf{v}_{i} and \mathbf{v}_{j}, where \mathbf{v} is a vector. $W_{i, j}$ could be a function of all the variables in observations i and j, but probably it is a function of a subset of them. For instance, if the spatial weighting matrix were based on locations, $W_{i, j}$ would be a function of variables _CX and _CY in the two observations. Or if the weighting were based on industry output, it might be a function of variables $f 1, f 2, \ldots, f 12$ in observations i and j. The variables might contain the fraction of output within industrial group and so sum to 1 , or they might record total dollar output.

Whatever the relevant variables are, let's just call them varlist. Then
$\mathbf{v}_{i}=$ row vector of values of varlist in observation i
$\mathbf{v}_{j}=$ row vector of values of varlist in observation j
The formula for the elements of a spatial weighting matrix is

$$
\begin{array}{ll}
W_{i, j}=0 & \text { if } i=j \\
f\left(v_{i}, v_{j}\right) & \text { otherwise }
\end{array}
$$

spmatrix userdefined handles this problem when you type
spmatrix userdefined Wmatname $=$ fcnname $($ varlist $)$
The mapping from the command's syntax to the mathematics is

| Syntax element | Corresponding mathematical element |
| :--- | :--- |
| Wmatname | \mathbf{W} |
| fcnname () | $f(\cdot)$ |
| varlist | $\mathbf{v}_{i}, \mathbf{v}_{j}$ |

Here is an example:

```
. mata:
: function SinvD(vi, vj)
> {
> return (1/sqrt( (vi-vj)*(vi-vj)' ) )
> }
: end
```

```
. spmatrix userdefined W = SinvD(_CX _CY)
```

The above produces the matrix that could also be created by typing

```
spmatrix create idistance W
```

Here is an example that spmatrix create cannot duplicate:

```
. mata:
                                    mata (type end to exit)
: function Sdistance(vi, vj)
> {
> return ( sqrt( (vi-vj)*(vi-vj)' ) )
> }
: end
```

. spmatrix userdefined $W=$ Sdistance(f*)

The above code calculates the distance between the $\mathrm{f} *$ variables for all i and j. The "farther" apart industrial output shares are, the greater is the incentive for places i and j to engage in trade.

Sfcnname() versus Afcnname()

The Mata functions you write start with the letter S when
$\operatorname{Sfcnname}\left(v_{-} i, v_{-} j\right)==\operatorname{Sfcnname}\left(v_{-} j, v_{-} i\right)$
Commutative functions produce symmetric matrices. spmatrix userdefined runs faster in this case because when it calls the function to calculate $W_{i, j}$, it also stores the result in $W_{j, i}$.

If the function is not commutative, it produces asymmetric matrices. Name such functions Afcnname (). Then, the function will be called separately to calculate $W_{i, j}$ and $W_{j, i}$.

Programming style

We wrote inverse distance as

```
. mata:
: program SinvD(vi, vj)
> {
> return( 1/sqrt( (vi-vj)*(vi-vj)' ) )
> }
: end
```

There are other programming styles we could have used. The above used vector and matrix notation. Here is the same calculation written even more densely:

```
program SinvD(vi, vj)
{
> delta = vi - vj
> return( 1/sqrt( delta*delta' ) )
> }
: end
```

And here is the calculation again in more traditional scalar notation:

```
. mata:
program SinvD(vi, vj)
{
> delta_x = vi[1] - vj[1]
> delta_y = vi[2] - vj[2]
> return( 1/sqrt(delta_x^2 + delta_y^2) )
> }
: end
```

You can write code in whichever style you find easiest.

Advanced programs

The Mata program you write is not required to be simple. If you were an epidemiologist, you could write a program that accounted for prevailing wind direction so that communicable diseases were more likely to spillover when location j is west of i and j 's prevailing winds are out of the west. The program would look something like this:

```
mata
program Awind(vi, vj)
{
    locj = (vj[1], vj[2])
    loci = (vi[1], vi[2])
    windfromi = vi[3] // 1=N, 2=E, 3=S, 4=W
    j_rel_i = ... // 1 if j N of i,
        // 2 if j E of i,
        // ..
    if (j_rel_i == windfrom) c = 1.5
    else c=0.5
    return(SinvD(loci, locj)*c)
}
end
```

We omitted lines, and if we were going to use this approach, we would further complicate the program by considering the directions N, NE, E, SE, S, SW, W, and NW.

However complicated the code might be, the weighting matrix would be calculated by typing

```
. spmatrix userdefined Wadj = Awind(_CX _CY winddir)
```

Wadj would contain a wind-adjusted distance matrix, which will also be spectral normalized.
And then, we would be tempted to convert Wadj to be a wind-adjusted distance matrix for areas that bordered on each other. Let us show you how.

Mixed approaches

You do not have to calculate everything in your program. Let's imagine that in the above example, the researcher only wants to use the wind-adjusted calculation when i and j are first-order neighbors. Otherwise, the spillover is to be 0 . We can use the same approach explained in more detail in [SP] spmatrix create:

1. Create the wind-adjusted matrix as shown above, but do not normalize it.
2. Create the first-order neighbor matrix using spmatrix create contiguity, also unnormalized.
3. Multiply the matrices element by element in Mata.
4. Store the Mata result in Sp.

The code is

```
. // --------------------------- create the matrices separately ---
spmatrix userdefined Wadj = Awind(_CX _CY winddir), normalize(none)
spmatrix create contiguity C, first normalize(none)
// ------------------------------------ load them into Mata ---
spmatrix matafromsp W1 v = Wadj
. spmatrix matafromsp W2 v = C
. // --------------------------multiply them element by element ---
. mata: W3 = W1 :* W2
```

```
// -------------------------------------save the result in Sp ---
spmatrix spfrommata Wfinal = W3 v
// ---------------------------------------------------------
mata: mata drop W1 W2 W3
spmatrix drop Wadj
spmatrix drop C
// -----------------------------------------------------
spmatrix dir
\begin{tabular}{rrrc}
\hline Weighting matrix name & N x N & Type & Normalization \\
\hline Wfinal & \(254 \times 254\) & custom & spectral \\
\hline
\end{tabular}
```

In the above, : * (colon-asterisk) is Mata's element-by-element multiply function. See [SP] spmatrix create for more explanation.

Also see

[SP] spmatrix - Categorical guide to the spmatrix command
[SP] spmatrix spfrommata - Copy Mata matrix to Sp
[SP] Intro - Introduction to spatial data and SAR models
Mata Reference Manual

Title

spregress - Spatial autoregressive models

Description

Syntax
Remarks and examples
References

Quick start

Options for spregress, gs2sls
Stored results
Also see

Menu

Options for spregress, ml Methods and formulas

Description

spregress is the equivalent of regress for spatial data. spregress fits spatial autoregressive (SAR) models, also known as simultaneous autoregressive models. If you have not read [SP] Intro 1[SP] Intro 8, you should do so before using spregress.

To use spregress, your data must be Sp data. See [SP] Intro 3 for instructions on how to prepare your data.

To specify spatial lags, you will need to have one or more spatial weighting matrices. See [SP] Intro 2 and [SP] spmatrix for an explanation of the types of weighting matrices and how to create them.

Quick start

Spatial autoregressive model of y on x 1 and x 2 with a spatial lag of y specified by the spatial weighting matrix W using the GS2SLS estimator
spregress y x1 x2, gs2sls dvarlag(W)
Add a spatially lagged error term also specified by W
spregress y x1 x2, gs2sls dvarlag(W) errorlag(W)
Add spatial lags of covariates x 1 and x 2
spregress y x1 x2, gs2sls dvarlag(W) errorlag(W) ivarlag(W: x1 x2)
Add a higher-order spatial lag of y specified by another weighting matrix M
spregress y x1 x2, gs2sls dvarlag(W) errorlag(W) ivarlag(W: x1 x2) /// dvarlag(M)

Use the ML estimator and include spatial lags of y, $x 1$, $x 2$ and the error term specified by W
spregress y x1 x2, ml dvarlag(W) errorlag(W) ivarlag(W: x1 x2)
Add an additional spatial lag of the covariates specified by the matrix M
spregress y x1 x2, ml dvarlag(W) errorlag(W) ivarlag(W: x1 x2) /// ivarlag(M: x1 x2)

Same model fit by GS2SLS
spregress y x1 x2, gs2sls dvarlag(W) errorlag(W) ivarlag(W: x1 x2) /// ivarlag(M: x1 x2)

Model fit by GS2SLS with spatial lags of y and of the error term and treating the errors as heteroskedastic spregress y x1 x2, gs2sls heteroskedastic dvarlag(W) errorlag(W)

Menu

Statistics $>$ Spatial autoregressive models

Syntax

Generalized spatial two-stage least squares

```
spregress depvar [indepvars] [if] [in], gs2sls [gs2sls_options]
```

Maximum likelihood
spregress depvar [indepvars] [if] [in], ml [ml_options]
gs2sls_options
Description

Model
*gs2sls
dvarlag (spmatname)
errorlag (spmatname)
ivarlag(spmatname : varlist) noconstant
heteroskedastic
force
impower (\#)
Reporting
level (\#)
display_options

Optimization

optimization_options
coeflegend
use generalized spatial two-stage least-squares estimator spatially lagged dependent variable; repeatable spatially lagged errors; repeatable
spatially lagged independent variables; repeatable suppress constant term treat errors as heteroskedastic allow estimation when estimation sample is a subset of the sample used to create the spatial weighting matrix order of instrumental-variable approximation
set confidence level; default is level (95)
control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling
control the optimization process; seldom used
display legend instead of statistics
ml_options

Model

*ml
dvarlag (spmatname)
errorlag (spmatname)
ivarlag (spmatname : varlist)
noconstant
constraints (constraints)
force
gridsearch (\#)
SE/Robust
vce (vcetype)
Reporting
level(\#)
nocnsreport
display_options
use maximum likelihood estimator
spatially lagged dependent variable; not repeatable
spatially lagged errors; not repeatable
spatially lagged independent variables; repeatable
suppress constant term
apply specified linear constraints
allow estimation when estimation sample is a subset of the sample used to create the spatial weighting matrix resolution of the initial-value search grid; seldom used
vcetype may be oim or robust
set confidence level; default is level (95)
do not display constraints
control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling
control the maximization process; seldom used
display legend instead of statistics

* You must specify either gs2sls or ml.
indepvars and varlist specified in ivarlag() may contain factor variables; see [U] 11.4.3 Factor variables. collect is allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options for spregress, gs2sls

Abstract

gs2sls requests that the generalized spatial two-stage least-squares estimator be used. dvarlag (spmatname) specifies a spatial weighting matrix that defines a spatial lag of the dependent variable. This option is repeatable to allow higher-order models. By default, no spatial lags of the dependent variable are included. errorlag(spmatname) specifies a spatial weighting matrix that defines a spatially lagged error. This option is repeatable to allow higher-order models. By default, no spatially lagged errors are included. ivarlag (spmatname : varlist) specifies a spatial weighting matrix and a list of independent variables that define spatial lags of the variables. This option is repeatable to allow spatial lags created from different matrices. By default, no spatial lags of the independent variables are included.

[^7]heteroskedastic specifies that the estimator treat the errors as heteroskedastic instead of homoskedastic, which is the default; see Methods and formulas.
force requests that estimation be done when the estimation sample is a proper subset of the sample used to create the spatial weighting matrices. The default is to refuse to fit the model. Weighting matrices potentially connect all the spatial units. When the estimation sample is a subset of this space, the spatial connections differ and spillover effects can be altered. In addition, the normalization of the weighting matrix differs from what it would have been had the matrix been normalized over the estimation sample. The better alternative to force is first to understand the spatial space of the estimation sample and, if it is sensible, then create new weighting matrices for it. See [SP] spmatrix and Missing values, dropped observations, and the W matrix in [SP] Intro 2. impower (\#) specifies the order of an instrumental-variable approximation used in fitting the model. The derivation of the estimator involves a product of \# matrices. Increasing \# may improve the precision of the estimation and will not cause harm, but will require more computer time. The default is impower(2). See Methods and formulas for additional details on impower(\#).

Reporting
level(\#); see [R] Estimation options.
display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabel, fvwrap (\#), fvwrapon(style), cformat (\%fmt), pformat (\%fmt), sformat (\% fint), and nolstretch; see [R] Estimation options.

Optimization
optimization_options: iterate(\#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(\#), ltolerance(\#), nrtolerance(\#), and nonrtolerance; see [M-5] optimize().

The following option is available with spregress, gs2sls but is not shown in the dialog box: coeflegend; see [R] Estimation options.

Options for spregress, ml

\qquad Model
ml requests that the maximum likelihood estimator be used.
dvarlag (spmatname) specifies a spatial weighting matrix that defines a spatial lag of the dependent variable. Only one dvarlag() option may be specified. By default, no spatial lags of the dependent variable are included.
errorlag (spmatname) specifies a spatial weighting matrix that defines a spatially lagged error. Only one errorlag() option may be specified. By default, no spatially lagged errors are included.
ivarlag (spmatname : varlist) specifies a spatial weighting matrix and a list of independent variables that define spatial lags of the variables. This option is repeatable to allow spatial lags created from different matrices. By default, no spatial lags of the independent variables are included.
noconstant, constraints (constraints); see [R] Estimation options.
force requests that estimation be done when the estimation sample is a proper subset of the sample used to create the spatial weighting matrices. The default is to refuse to fit the model. This is the same force option described for use with spregress, gs2sls.
gridsearch(\#) specifies the resolution of the initial-value search grid. The default is gridsearch(0.1). You may specify any number between 0.001 and 0.1 inclusive.

SE/Robust
vce (vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (oim) and that are robust to nonnormal independent and identically distributed (i.i.d.) disturbance (robust). See [R] vce_option.

Reporting

level(\#), nocnsreport; see [R] Estimation options.
display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabel, fvwrap(\#), fvwrapon(style), cformat (\%fmt), pformat (\%fmt), sformat (\% fmt), and nolstretch; see [R] Estimation options.

Maximization
maximize_options: difficult, technique (algorithm_spec), iterate(\#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(\#), ltolerance(\#), nrtolerance(\#), and nonrtolerance; see [R] Maximize.

The following option is available with spregress, ml but is not shown in the dialog box: coeflegend; see [R] Estimation options.

Remarks and examples

Remarks are presented under the following headings:

Introduction
Choosing weighting matrices and their normalization Weighting matrices Normalization of weighting matrices Direct and indirect effects and normalization
Examples

Introduction

See [SP] Intro 1-[SP] Intro 8 for an overview of SAR models. The introductions also describe, in detail and with examples, how to prepare your data for analysis with spregress and the other Sp estimation commands.

Datasets for SAR models contain observations on geographical areas or other units; all that is required is that there be some measure of distance that distinguishes which units are close to each other. The spregress command models cross-sectional data. It requires each observation to represent one unique spatial unit. For data with multiple observations on each unit-namely, panel data-see [SP] spxtregress.

To fit models with endogenous regressors for cross-sectional data, see [SP] spivregress.
spregress, gs2sls uses a generalized method of moments estimator known as generalized spatial two-stage least squares (GS2SLS). spregress, ml uses a maximum likelihood (ML) estimator. For normally distributed data, ml is theoretically more efficient than gs2sls, but when data are i.i.d., spregress, gs2sls produces results that are not appreciably different from those of spregress, ml . See Methods and formulas.

The vce(robust) variance estimator can be used with spregress, ml to produce standard errors that are robust to nonnormal i.i.d. errors; see [R] vce_option. spregress, ml can produce inconsistent estimates with data that are not identically distributed.
spregress, gs2sls has a heteroskedastic option that relaxes the assumption that errors are i.i.d. With the heteroskedastic option, errors only need to be independent; see example 2 .

Choosing weighting matrices and their normalization

Weighting matrices

It is important to understand that the choice of weighting matrices is part of your SAR model specification.

The choice of weighting matrix should be based on the formulation of your research question. Does it make sense to define spatial lags based on only neighboring areas? Or do you want to model effects across distances that decrease with increasing distance? Or do you want to model spatial lags based on some measure in your data, for example, the value of imports and exports between countries?

The Sp system has the spmatrix create command, which can create contiguity matrices and inverse-distance matrices. For instance, typing

```
spmatrix create contiguity W
```

creates a symmetric weighting matrix, W , that has the same positive weight for contiguous spatial units and, by default, a zero weight for all other units, with an option to include nonzero weights for second-order neighbors (neighbors of neighbors). There are also Sp commands for creating custom weighting matrices. See [SP] Intro 2 and [SP] spmatrix for details.

Both spregress, gs2sls and spregress, ml can fit models with multiple spatial lags of the independent variables. You can specify multiple ivarlag() options with different spatial weighting matrices for the same or different variables.

With the gs2sls estimator, you can also include dependent-variable spatial lags and autoregressive error terms specified by two or more spatial weighting matrices. You do this by specifying multiple dvarlag() options or multiple errorlag() options. Multiple weighting matrices can be viewed as providing a "higher-order" approximation to the true dependent variable or error spatial dependence, and they allow testing of the formulation of the spatial lag.

With the ml estimator, you can include only one dvarlag() and one errorlag(), but each can have its own, possibly different, spatial weighting matrix.

Normalization of weighting matrices

spmatrix create by default normalizes the weighting matrix it creates by dividing the entries by the absolute value of the largest eigenvalue of the matrix; this is the normalize (spectral) option. The normalize (minmax) option scales the matrix using either the maximum of column sums or the maximum of the row sums, whichever is smaller. The normalize(row) option scales each row of the matrix by its row sum, so that each row sums to one.

You may have also created your own weighting matrix with good properties for the estimator. In this case, you may want to leave the matrix unnormalized using the normalize (none) option.

What are the differences among the three normalizations?

There are two reasons to normalize: interpretability of the spatial lag coefficients and estimability.
normalize(spectral) and normalize(minmax) produce matrices that differ from the original only by a scalar multiple. This not true for normalize (row), so let's discuss it first.

Row normalization, normalize (row), has a long history and is popular in applied work. Row normalization can potentially multiply different rows by different scalars, and if it does so, that changes the model specification given by the weighting matrix. For example, if you start with a contiguity matrix, and the first row has two 1 s and the second row has four 1 s , then after row normalization, the first row contains two halves and the second four quarters. This amounts to spreading the potential spillover effects of each spatial unit equally across its neighbors, whereas the original unnormalized contiguity matrix modeled equal potential spillover effects for each neighbor regardless of the number of neighbors. normalize (row) also transforms a symmetric contiguity matrix into an asymmetric matrix. Row normalization should be used when the spatial lags it specifies are appropriate for your research question and when the lags of the original matrix are not.

When the unnormalized matrix has been formulated to match your research question, there is the choice of normalize(spectral), normalize(minmax), or normalize(none). The choice affects the interpretation of the spatial lag coefficients.

Because dependent-variable spatial lags enter the model as $\lambda \mathbf{W y}$, covariate lags enter as $\gamma \mathbf{W} \mathbf{x}$, and the autoregressive errors are modeled using $\rho \mathbf{W e}$, we would expect the spatial lag coefficient estimates to scale inversely by the scale of \mathbf{W}. If \mathbf{W} is scaled by c to become \mathbf{W} / c, then $\widehat{\lambda}$ becomes $c \widehat{\lambda}, \widehat{\gamma}$ becomes $c \widehat{\gamma}$, and $\widehat{\rho}$ becomes $c \widehat{\rho}$.

For example, if an unnormalized matrix results in an estimation of $\widehat{\rho}_{\text {unnorm }}=0.1$, and if the matrix is then scaled by $c=5$, the estimation using the normalized matrix would yield $\widehat{\rho}_{\text {norm }}=0.5$. So what we want for the interpretation of the parameter estimate is a scaling where $\widehat{\rho}_{\text {norm }}$ is typically in the range -1 to 1 . Recall from the discussion in [SP] Intro 2 and [SP] Intro 7 that ρ is not a true correlation, only something like a correlation. There is no guarantee that the estimate for it will be between -1 and 1 . In an explosive model, the estimate will be outside this range.

The scaling factor c from normalize(spectral) is always less than or equal to the scaling factor from normalize(minmax). So for the same model run with different normalizations, minmax will result in an estimate $\widehat{\rho}_{\text {minmax }}$ that is larger than $\widehat{\rho}_{\text {spectral }}$, the estimate resulting from using spectral. So the spectral normalization is more likely to produce estimates of ρ in the range -1 to 1 .

The second reason for normalization is estimability. The scaling from normalize(spectral) guarantees nonsingularity of certain terms in the model estimation; see Methods and formulas. The bigger scaling of normalize(minmax), of course, also guarantees nonsingularity, but it is a bigger scaling than necessary.

Row normalization also guarantees nonsingularity, but because it is not a scalar multiple of the unnormalized matrix, we cannot in general say how it will change the spatial lag coefficient estimates relative to the estimates produced using the unnormalized matrix. Row normalization, as we said earlier, results in a different model specification.

You may have created your own weighting matrix, and you know that based on its properties and the form of the estimator that it will not yield singularities. In this case, you need not normalize. If an unnormalized matrix, however, causes a singularity in the estimation, you may get "wrong" estimation results, that is, ones differing by other than a scale factor from those using a spectral or min-max normalization.
spmatrix create and other Sp matrix commands use spectral normalization by default because it is the smallest scaling that in general guarantees nonsingularity without changing the model specification of the original matrix. However, normalize (spectral) is computationally expensive. It can take
a long time for large matrices. If this is a consideration, normalize (minmax) is faster to compute and will yield results that are close to those of normalize(spectral).

Direct and indirect effects and normalization

Direct and indirect, also called spillover, effects were discussed in [SP] Intro 1 and [SP] Intro 2. In example 1 below, we show how to get these estimates using the estat impact command.

The scaling property between the spectral and min-max normalizations and the spatial lag coefficient estimates that we described in the previous section implies that the estimates of the direct and indirect effects should be scale invariant. spregress, ml has this scaling property and gives scale-invariant effects. When there is no autoregressive error term, spregress, gs2sls also has this scaling property and gives scale-invariant effects. When there is an autoregressive error term, however, the GS2SLS estimator is only asymptotically scale invariant.

Practically speaking, this means when you use estat impact to look at the direct and indirect effects of the covariates after spregress, ml in all cases, or spregress, gs2sls with no errorlag(), you will get results differing only by numerical precision whether you used normalize(spectral), normalize(minmax), or an unnormalized matrix with sound numerical properties.

The GS2SLS estimator, however, is a nonlinear function of the weighting matrix when an autoregressive error term is included. For this nonlinear GS2SLS estimator, models are well defined only if the coefficient on the spatial lag of the dependent variable and the coefficient on the spatially lagged error lie within certain intervals. Normalizing the weighting matrix by the spectral normalization or the row normalization puts the estimates in these intervals when there are no higher-order lags. Because min-max normalization is a close approximation to spectral normalization, the resulting estimates should be close.

Again, practically speaking, this means that even though normalize(spectral) and normalize (minmax) both simply multiply the original matrix by a scalar, and the scalars are similar in size, estat impact may give slightly different estimates depending on the normalization for the GS2SLS estimator with an autoregressive error term. This is especially the case in small samples, and the differences will decrease as the sample size increases.

Of course, the normalize (row) normalization will yield different estimates of effects compared with the other normalizations or with no normalization because row normalization results in a different model specification.

In higher-order models with GS2SLS and autoregressive error terms, the estimator is a nonlinear function of multiple weighting matrices. The sets of spatial lag coefficients for which the models are well defined are multidimensional regions, but the same normalizations are used, and the tradeoffs mentioned above still apply.

Examples

$>$ Example 1: A spatial autoregressive model

We want to model the homicide rate in counties in southern states of the United States. homicide1990.dta contains hrate, the county-level homicide rate per year per 100,000 persons; ln_population, the logarithm of the county population; ln_pdensity, the logarithm of the population density; and gini, the Gini coefficient for the county, a measure of income inequality where larger values represent more inequality (Gini 1909). The data are an extract of the data originally used by Messner et al. (2000); see Britt (1994) for a literature review of the topic.

We used spshape2dta to create homicide1990.dta and homicide1990_shp.dta. The latter file contains the boundary coordinates for U.S. southern counties. See [SP] Intro 4, [SP] Intro 7, [SP] spshape2dta, and [SP] spset.

Because the analysis dataset and the Stata-formatted shapefile must be in our working directory to spset the data, we first save both homicide1990.dta and homicide1990_shp.dta to our working directory by using the copy command. We then load the data and type spset to see the Sp settings.

```
. copy https://www.stata-press.com/data/r18/homicide1990.dta .
. copy https://www.stata-press.com/data/r18/homicide1990_shp.dta .
. use homicide1990
(S.Messner et al.(2000), U.S southern county homicide rates in 1990)
. spset
    Sp dataset: homicide1990.dta
Linked shapefile: homicide1990_shp.dta
            Data: Cross sectional
    Spatial-unit ID: _ID
    Coordinates: _CX, _CY (planar)
```

We plot the homicide rate on a map of the counties by using the grmap command; see [SP] grmap. Figure 1 is the result.

```
. grmap hrate
```


Figure 1: Homicide rate in 1990 for southern U.S. counties
The homicide rate appears to be spatially dependent because the high homicide-rate counties appear to be clustered together. As described in [SP] Intro 7, we can fit an ordinary linear regression and test whether the errors are spatially correlated using the Moran test.

To conduct the test, we need a spatial weighting matrix. We will create one that puts the same positive weight on contiguous counties and a zero weight on all other counties-a matrix known as a contiguity matrix. We will use the default spectral normalization for the matrix. See [SP] Intro 2, [SP] spmatrix create, and Choosing weighting matrices and their normalization above for details. We type

```
. spmatrix create contiguity W
```

To create W, spmatrix used the coordinate data in homicide1990_shp.dta behind the scenes.

Now, we run regress and then estat moran.


```
. estat moran, errorlag(W)
Moran test for spatial dependence
    H0: Error terms are i.i.d.
    Errorlags: W
    chi2(1) = 265.84
    Prob > chi2 = 0.0000
```

The test reports that we can reject that the errors are i.i.d. and confirms our visual appraisal of the data.

To model the homicide rate hrate, we will use the GS2SLS estimator and specify the option dvarlag(W) to fit a model with a spatial lag of hrate based on W.

```
. spregress hrate ln_population ln_pdensity gini, gs2sls dvarlag(W)
    (1412 observations)
    (1412 observations (places) used)
    (weighting matrix defines 1412 places)
Spatial autoregressive model Number of obs = 1,412
GS2SLS estimates Wald chi2(4) = 328.40
Prob > chi2 = 0.0000
Pseudo R2 = 0.1754
```

| hrate | Coefficient | Std. err. | z | P>\|z| | [95\% conf. interval] | |
| :--- | ---: | :--- | ---: | :--- | ---: | ---: |
| hrate | | | | | | |
| ln_populat $\sim n$ | .195714 | .2654999 | 0.74 | 0.461 | -.3246563 | .7160843 |
| ln_pdensity | 1.060728 | .2303736 | 4.60 | 0.000 | .6092043 | 1.512252 |
| gini | 77.10293 | 5.330446 | 14.46 | 0.000 | 66.65544 | 87.55041 |
| _cons | -28.79865 | 2.945944 | -9.78 | 0.000 | -34.57259 | -23.02471 |
| W | | | | | | |
| hrate | .2270154 | .0607158 | 3.74 | 0.000 | .1080146 | .3460161 |

The estimated coefficient on the spatial lag of hrate is 0.23 , indicating positive correlation between the homicide rate in one county and the homicide rate in a neighboring county.

As we discussed in [SP] Intro 7 the coefficients cannot be interpreted as they are in standard regression models. We can use estat impact to interpret results, but first we will illustrate how to fit other SAR models.

We now include a spatial autoregressive error term by adding errorlag(W).

```
. spregress hrate ln_population ln_pdensity gini, gs2sls dvarlag(W) errorlag(W)
    (1412 observations)
    (1412 observations (places) used)
    (weighting matrix defines }1412\mathrm{ places)
```

Estimating rho using 2SLS residuals:

| Initial: | GMM criterion $=16.837319$ |
| :--- | :--- | :--- |
| Alternative: | GMM criterion $=10.842722$ |
| Rescale: | GMM criterion $=1.1522691$ |
| Iteration 0: | GMM criterion $=1.1522691$ |
| Iteration 1: | GMM criterion $=1.1386586$ |
| Iteration 2: | GMM criterion $=1.1386578$ |
| Iteration 3: | GMM criterion $=1.1386578$ |

Estimating rho using GS2SLS residuals:
Iteration 0: GMM criterion $=.02771702$
Iteration 1: GMM criterion $=.0262056$
Iteration 2: GMM criterion $=.02606375$
Iteration 3: GMM criterion $=.02601873$
Iteration 4: GMM criterion $=$. 02601004
Iteration 5: GMM criterion $=.02600789$
Iteration 6: GMM criterion $=.02600742$
Iteration 7: GMM criterion $=.02600731$
Iteration 8: GMM criterion $=.02600729$
Spatial autoregressive model Number of obs $=1,412$
GS2SLS estimates

| Number of obs | $=1,412$ |
| :--- | :--- |
| Wald chi2(4) | $=276.72$ |
| Prob > chi2 | $=0.0000$ |
| Pseudo R2 | $=0.1736$ |

| hrate | Coefficient | Std. err. | z | P>\|z| | [95\% conf. interval] | |
| :--- | ---: | :--- | ---: | :--- | ---: | ---: |
| hrate | | | | | | |
| ln_populat~n | .1034997 | .2810656 | 0.37 | 0.713 | -.4473787 | .6543781 |
| ln_pdensity | 1.081404 | .2520505 | 4.29 | 0.000 | .5873939 | 1.575414 |
| gini | 82.0687 | 5.658372 | 14.50 | 0.000 | 70.9785 | 93.1589 |
| _cons | -29.63033 | 3.070332 | -9.65 | 0.000 | -35.64807 | -23.61259 |
| | | | | | | |
| W hrate | .1937419 | .0654322 | 2.96 | 0.003 | .0654972 | .3219867 |
| e.hrate | .3555443 | .0786465 | 4.52 | 0.000 | .2014 | .5096887 |

Note that when an autoregressive error term is included, the estimation procedure becomes an iterative generalized method of moments procedure.

We keep the SAR error term e.hrate in our model and add terms representing spatial lags of the independent variables by using ivarlag(W:...).

```
. spregress hrate ln_population ln_pdensity gini, gs2sls dvarlag(W) errorlag(W)
> ivarlag(W: ln_population ln_pdensity gini)
    (1412 observations)
    (1412 observations (places) used)
    (weighting matrix defines }1412\mathrm{ places)
    (output omitted)
```

Spatial autoregressive model Number of obs $=1,412$
GS2SLS estimates Wald chi2(7) = 394.61
Prob > chi2 $=0.0000$
Pseudo R2 $=0.1866$

| hrate | Coefficient | Std. err. | z | $\mathrm{P}>\|\mathrm{z}\|$ | [95\% con | interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| hrate | | | | | | |
| ln_populat \sim n | -. 3489221 | . 3050009 | -1.14 | 0.253 | -. 9467129 | . 2488687 |
| ln_pdensity | 1.210485 | . 3015442 | 4.01 | 0.000 | . 6194695 | 1.801501 |
| gini | 89.17773 | 6.454876 | 13.82 | 0.000 | 76.5264 | 101.8291 |
| _cons | -28.80191 | 3.178656 | -9.06 | 0.000 | -35.03196 | -22.57186 |
| W | | | | | | |
| ln_populat \sim_{n} | 1.918436 | . 4598247 | 4.17 | 0.000 | 1.017196 | 2.819676 |
| ln_pdensity | -1.260725 | . 5326521 | -2.37 | 0.018 | -2.304704 | -. 2167459 |
| gini | -43.4606 | 8.607378 | -5.05 | 0.000 | -60.33075 | -26.59045 |
| hrate | . 5071798 | . 1139532 | 4.45 | 0.000 | . 2838356 | . 730524 |
| e.hrate | -. 3135187 | . 1396411 | -2.25 | 0.025 | -. 5872103 | -. 0398271 |

The coefficients for the lagged variables and the autoregressive error term are significant.
We are often unsure which spatial weighting matrix should be used to compute spatial lags. Many researchers use a spatial weighting matrix whose (i, j) th element is the inverse of the distance between units i and j. This inverse-distance matrix has many nice properties and a long history in spatial analysis; see [SP] spmatrix and Choosing weighting matrices and their normalization above.

With the GS2SLS estimator, we can include spatial lags using two spatial weighting matrices, in which case we might view them as together providing a "higher-order" approximation to the true spatial process. We had in our model a spatial lag of the dependent variable using a contiguity matrix alone. Now, we will include that and another lag of the dependent variable using an inverse-distance matrix.

We create the inverse-distance matrix M with the default spectral normalization and use spmatrix dir to list our Sp matrices.
. spmatrix create idistance M
. spmatrix dir

| Weighting matrix name | | N x N | Type | Normalization |
| ---: | ---: | ---: | :--- | :--- |
| M | 1412×1412 | idistance | spectral | |
| W | 1412×1412 | contiguity | spectral | |

Now, we add dvarlag(M) to our model.

| . spregress hrate ln_population $\ln _{\text {_p }}$ pdensi
 > ivarlag(W: ln_population ln_pdensity gini) (1412 observations)
 (1412 observations (places) used) (weighting matrices define 1412 places) (output omitted) | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Spatial autoregressive model GS2SLS estimates | | | | | Number of obs
 Wald chi2(8)
 Prob > chi2
 Pseudo R2 | $\begin{aligned} & =1,412 \\ & =1323.43 \\ & =0.0000 \\ & =0.1121 \end{aligned}$ |
| hrate | Coefficient | Std. err. | z | $P>\|z\|$ | [95\% conf. | interval] |
| hrate | | | | | | |
| ln_populat \sim n | -. 6245271 | . 2830848 | -2.21 | 0.027 | -1.179363 | -. 069691 |
| ln_pdensity | 1.266528 | . 2831372 | 4.47 | 0.000 | . 711589 | 1.821466 |
| gini | 69.30288 | 5.64501 | 12.28 | 0.000 | 58.23887 | 80.3669 |
| _cons | -19.77151 | 2.753498 | -7.18 | 0.000 | -25.16827 | -14.37476 |
| W | | | | | | |
| $1 n_{\text {_populat }}$ n | 2.590823 | . 3806543 | 6.81 | 0.000 | 1.844754 | 3.336892 |
| ln_pdensity | -2.63202 | . 4261688 | -6.18 | 0.000 | -3.467295 | -1.796744 |
| gini | -59.75958 | 6.438899 | -9.28 | 0.000 | -72.37959 | -47.13957 |
| hrate | . 9269412 | . 0492867 | 18.81 | 0.000 | . 8303411 | 1.023541 |
| e.hrate | -. 8531151 | . 0914652 | -9.33 | 0.000 | -1.032384 | -. 6738465 |
| M | | | | | | |
| hrate | . 2289786 | . 0755038 | 3.03 | 0.002 | . 0809939 | . 3769633 |

The hrate lag specified by M is significant in addition to the hrate lag specified by W . We may well want to include both in our final model.

We could repeat the process, fitting a model with errorlag(M) in addition to errorlag(W), and another model with ivarlag(M:...) in addition to ivarlag(W:...). One issue is that we have "only" $N=1412$ spatial units (observations) in this example. To fit higher-order lags, one needs lots of spatial units, so we need to exercise judgment just as in any other model-building process. In our final model, we keep a single weighting matrix for each term. We use W for dvarlag() and ivarlag(), but M for errorlag().

| . spregress hrate ln_population ln_pdensi
 > ivarlag(W: ln_population ln_pdensity gin (1412 observations)
 (1412 observations (places) used) (weighting matrices define 1412 places) (output omitted) | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Spatial autoregressive model GS2SLS estimates | | | | | Number of o Wald chi2(7)
 Prob > chi2
 Pseudo R2 | $\begin{aligned} & =1,412 \\ & =357.06 \\ & =0.0000 \\ & =0.1241 \end{aligned}$ |
| hrate | Coefficient | Std. err. | z | $\mathrm{P}>\|\mathrm{z}\|$ | [95\% conf | interval] |
| hrate | | | | | | |
| ln_populat \sim n | -. 0475582 | . 3295548 | -0.14 | 0.885 | -. 6934737 | . 5983573 |
| ln_pdensity | . 8989538 | . 3211524 | 2.80 | 0.005 | . 2695066 | 1.528401 |
| gini | 89.91969 | 6.409286 | 14.03 | 0.000 | 77.35772 | 102.4817 |
| _cons | -32.21599 | 3.590014 | -8.97 | 0.000 | -39.25229 | -25.17969 |
| W | | | | | | |
| ln_populat \sim n | 2.679931 | . 5218152 | 5.14 | 0.000 | 1.657192 | 3.702669 |
| ln_pdensity | -2.468953 | . 6209688 | -3.98 | 0.000 | -3.686029 | -1.251876 |
| gini | -57.38302 | 9.418108 | -6.09 | 0.000 | -75.84217 | -38.92387 |
| hrate | . 6818566 | . 1141573 | 5.97 | 0.000 | . 4581125 | . 9056007 |
| M | | | | | | |
| e.hrate | . 9533048 | . 1324392 | 7.20 | 0.000 | . 6937289 | 1.212881 |
| ```Wald test of spatial terms: chi2(5) = 169.23 Prob > chi2 = 0.0000 estimates store model_ex1_last``` | | | | | | |

In [SP] Intro 7, we cautioned that interpreting covariate effects based on their coefficient estimates is difficult when there is a dependent-variable lag or an independent-variable lag in the model.

The spatial lag of hrate modifies the covariate effects. A change in gini in a county changes the conditional mean of hrate in that county, and that change in hrate changes the conditional mean of hrate in all contiguous counties. The change in hrate in these counties then affects hrate in all counties contiguous to them, and so on, until all counties linked by a chain of contiguous counties are affected.

The effects of a covariate vary over the counties because of how the spatial lag of hrate modifies the covariate effects. There are as many effects of a covariate as there are spatial units. As discussed by LeSage and Pace (2009, sec. 2.7), we define the average of these spatial unit-level effects to be the covariate effect.

The effect of gini on the conditional mean of hrate in other counties is called an indirect, or spillover, effect.

Because a spatial lag of gini is included in the model, there is a second indirect effect. The equation for hrate includes a term for gini in neighboring counties, so a change in gini in one county changes the conditional mean of hrate in neighboring counties.

The effect of gini on the conditional mean of hrate in the same county is called a direct, or own, effect. The sum of the direct and indirect effects is called the total effect.

We use estat impact to estimate the magnitude of these effects.

See the percentages at the top of the output? For large datasets, calculating standard errors of the effects can be time consuming, so estat impact reports its progress as it does the computations.

The direct effect of gini is positive because the coefficient of gini is positive. The indirect effect of gini due to the spatial lag of hrate is positive because the coefficient of the dependent-variable lag is positive and the coefficient of gini is positive. The indirect effect of gini due to its spatial lag, however, is negative because the coefficient of its lag is negative. estat impact shows that the two indirect effects of gini sum to a net positive indirect effect, although the sum is not significantly different from 0 .

Note that the normalization of W affects the size of the coefficient estimates for the lags of the covariates. For the GS2SLS estimator, the normalization of W (except for the case of row normalization) does not affect the asymptotic estimates of the covariate effects. In finite samples, this means that the normalization of W may have a small effect on the estimates produced by estat impact-small compared with the effect's standard error. For the ML estimator, the normalization does not affect the size of estimated effects shown by estat impact. See Choosing weighting matrices and their normalization.

Running estat impact after spregress is essential for proper interpretation of the model. The output of estat impact can be read directly as the change in the metric of the dependent variable per incremental change of the covariate averaged across all the spatial units (observations).
estat impact shows marginal (incremental change) effects. We might want to see the total effect of a discrete change in a covariate. The expectation of the dependent variable is linear in the covariates in this example. We did not fit polynomial or other nonlinear terms. We could just multiply the incremental change by the discrete change of the covariate. Or, we could use the margins command, which works for both linear and nonlinear terms; see $[R]$ margins.

The median of gini is 0.39 , its 25 th percentile is 0.37 , and its 75 th percentile is 0.41 . So it is reasonable to ask how a change of ± 0.02 in the Gini coefficient affects the homicide rate. Here's how to get the answer by using margins:

A change of ± 0.02 in the Gini coefficient causes the homicide rate to change by roughly ± 2.0 per 100,000 persons per year.

The computations that margins must do to calculate standard errors can sometimes be time consuming. Time will depend on the complexity of the spatial model and the number of spatial units in the data. You may want to fit your model with a subsample of your data, run margins, and extrapolate to estimate the time required to run margins on the full sample. See [P] timer and [P$]$ rmsg.

> Example 2: spregress, gs2sls heteroskedastic

The spregress, gs2sls command has a heteroskedastic option that requires the errors to be independent but not necessarily identically distributed. Practically speaking, this option causes the estimates of the spatial autoregressive error correlations and the standard errors to change. In models without spatially autoregressive errors, only standard errors will change. See Methods and formulas.

If we add the heteroskedastic option to the last model we fit in example 1, we get

```
. spregress hrate ln_population ln_pdensity gini, gs2sls heteroskedastic
> dvarlag(W) errorlag(M) ivarlag(W: ln_population ln_pdensity gini)
    (1412 observations)
    (1412 observations (places) used)
    (weighting matrices define 1412 places)
    (output omitted)
```

Spatial autoregressive model Number of obs $=1,412$
GS2SLS estimates Wald chi2(7) = 248.74
Prob > chi2 $=0.0000$
Pseudo R2 $=0.1241$

| hrate | Coefficient | Std. err. | z | $P>\|z\|$ | [95\% con | interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| hrate | | | | | | |
| ln_populat \sim n | -. 0475582 | . 3545931 | -0.13 | 0.893 | -. 7425479 | . 6474315 |
| ln_pdensity | . 8989538 | . 4016155 | 2.24 | 0.025 | . 1118019 | 1.686106 |
| gini | 89.91969 | 10.71501 | 8.39 | 0.000 | 68.91866 | 110.9207 |
| _cons | -32.21599 | 5.013344 | -6.43 | 0.000 | -42.04197 | -22.39002 |
| W | | | | | | |
| ln_populat \sim n | 2.679931 | . 5247129 | 5.11 | 0.000 | 1.651512 | 3.708349 |
| ln_pdensity | -2.468953 | . 6786844 | -3.64 | 0.000 | -3.79915 | -1.138756 |
| gini | -57.38302 | 9.719208 | -5.90 | 0.000 | -76.43232 | -38.33372 |
| hrate | . 6818566 | . 13258 | 5.14 | 0.000 | . 4220047 | . 9417085 |
| M | | | | | | |
| e.hrate | . 9614507 | . 1554489 | 6.18 | 0.000 | . 6567764 | 1.266125 |

Wald test of spatial terms: chi2(5) = 156.95 Prob > chi2 = 0.0000

```
. estimates store heterosk_model
```

We used estimates store to store the results of the earlier model, and we stored this model, too. We can now use estimates table to display coefficient estimates with their standard errors side by side. See [R] estimates store and [R] estimates table.

```
. estimates table model_ex1_last heterosk_model, b(%6.3f) se(%6.3f)
```

| Variable | model \sim t | heter~1 |
| :---: | :---: | :---: |
| hrate | | |
| ln_populat n | -0.048 | -0.048 |
| | 0.330 | 0.355 |
| ln_pdensity | 0.899 | 0.899 |
| | 0.321 | 0.402 |
| gini | 89.920 | 89.920 |
| | 6.409 | 10.715 |
| _cons | -32.216 | -32.216 |
| | 3.590 | 5.013 |
| W | | |
| ln_populat \sim n | 2.680 | 2.680 |
| | 0.522 | 0.525 |
| ln_pdensity | -2.469 | -2.469 |
| | 0.621 | 0.679 |
| gini | -57.383 | -57.383 |
| | 9.418 | 9.719 |
| hrate | 0.682 | 0.682 |
| | 0.114 | 0.133 |
| M | | |
| e.hrate | 0.953 | 0.961 |
| | 0.132 | 0.155 |

Legend: b/se
We see that standard errors are larger, especially those for the direct-effect coefficients of the covariates. We also see that the estimate of ρ, the SAR error correlation labeled as e.hrate, differs between the two estimators.
> Example 3: spregress, ml
SAR models can be fit using ML estimation. Here's the second model we fit in example 1 estimated using ml in place of gs2sls.

```
. spregress hrate ln_population ln_pdensity gini, ml dvarlag(W) errorlag(W)
    (1412 observations)
    (1412 observations (places) used)
    (weighting matrix defines 1412 places)
Performing grid search ... finished
Optimizing concentrated log likelihood:
Iteration 0: Log likelihood = -4557.201
Iteration 1: Log likelihood = -4556.763
Iteration 2: Log likelihood = -4556.7539
Iteration 3: Log likelihood = -4556.7539
Optimizing unconcentrated log likelihood:
Iteration 0: Log likelihood = -4556.7539
Iteration 1: Log likelihood = -4556.7539 (backed up)
```

| Spatial autoregressive model | Number of obs $=1,412$ |
| :--- | :--- |
| Maximum likelihood estimates | Wald chi2 $(4)=240.21$ |
| | Prob $>$ chi2 $=0.0000$ |
| Log likelihood $=-4556.7539$ | Pseudo R2 $=0.1590$ |

| hrate | Coefficient | Std. err. | z | $P>\|z\|$ | [95\% conf. interval] | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| hrate | | | | | | |
| ln_populat ${ }^{\text {n }}$ | . 5268247 | . 3038837 | 1.73 | 0.083 | -. 0687763 | 1.122426 |
| ln_pdensity | . 5269135 | . 3136226 | 1.68 | 0.093 | -. 0877755 | 1.141603 |
| gini | 91.44471 | 6.263932 | 14.60 | 0.000 | 79.16763 | 103.7218 |
| _cons | -32.8348 | 3.205075 | -10.24 | 0.000 | -39.11663 | -26.55297 |
| W | | | | | | |
| hrate | -. 1850846 | . 1218453 | -1.52 | 0.129 | -. 423897 | . 0537279 |
| e.hrate | . 6244211 | . 0897639 | 6.96 | 0.000 | . 4484871 | . 8003551 |
| var(e.hrate) | 34.79054 | 1.599235 | | | 31.79315 | 38.07052 |

. estimates store ml_model
We stored the estimation results with estimates store, as we did with the same model fit with gs2sls, and now we use estimates table to compare coefficient estimates and their standard errors.
. estimates table gs2sls_model ml_model, b(\%6.3f) se(\%6.3f)

| Variable | gs2sl~1 | ml_mo~l |
| :---: | :---: | :---: |
| hrate | | |
| ln_populat ${ }^{\text {n }}$ | 0.103 | 0.527 |
| | 0.281 | 0.304 |
| ln_pdensity | 1.081 | 0.527 |
| | 0.252 | 0.314 |
| gini | 82.069 | 91.445 |
| | 5.658 | 6.264 |
| _cons | -29.630 | -32.835 |
| | 3.070 | 3.205 |
| W | | |
| hrate | 0.194 | -0.185 |
| | 0.065 | 0.122 |
| e.hrate | 0.356 | 0.624 |
| | 0.079 | 0.090 |
| var (e.hrate) | | 34.791 |
| | | 1.599 |

Legend: b/se
There are meaningful differences in the results. The coefficient of ln_pdensity was significant in the GS2SLS model but is nonsignificant in the ML model. The coefficient estimates for gini, however, are similar, as are their standard errors. The coefficient of the lag of hrate becomes negative in the ML model, and the SAR error correlation increases from $\rho=0.36$ to $\rho=0.62$.

We note that the ML estimator is not consistent under heteroskedasticity; for consistency, the error distribution needs to be i.i.d., although it need not be normal. Heteroskedasticity may be the reason why the estimates differ as they do. See Arraiz et al. (2010).

Stored results

spregress, gs2sls stores the following in e():
Scalars

```
e(N)
e(k)
e(df_m)
e(df_c)
e(iterations)
e(iterations_2sls)
e(rank)
e(r2_p)
e(chi2)
e(chi2_c)
e(p)
e(p_c)
e(converged)
e(converged_2sls)
```

Macros
e(cmd)
e(cmdline)
e(depvar)
e(indeps)
e(idvar)
e(estimator)
e(title)
e(constant)
e(exogr)
e(dlmat)
e(elmat)
e(het)
e(chi2type)
e(properties)
e(estat_cmd)
e(predict)
e(marginsok)
e(marginsnotok)
e(asbalanced)
e(asobserved)
Matrices
e(b)
e(delta_2sls)
e(rho_2sls)
e(V)
Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r() :

```
Matrices
```

 \(r\) (table) matrix containing the coefficients with their standard errors, test statistics, \(p\)-values,
 and confidence intervals
 Note that results stored in r() are updated when the command is replayed and will be replaced when any r -class command is run after the estimation command.
spregress, $m l$ stores the following in e():
Scalars
e(N)
e(k)
$e\left(d f _m\right)$
e(df_c)
e(ll)
e(iterations)
e(rank)
e(r2_p)
e(chi2)
e(chi2_c)
e(p)
e(p_c)
e(converged)
Macros
e(cmd)
e(cmdline)
e(depvar)
e(indeps)
e(idvar)
e(estimator)
e(title)
e(constant)
e(dlmat)
e(elmat)
e(chi2type)
e(vce)
e(vcetype)
e(ml_method)
e (technique)
e(properties)
e(estat_cmd)
e(predict)
e(marginsok)
e(marginsnotok)
e(asbalanced)
e(asobserved)
Matrices
e(b)
e(Cns)
e(ilog)
e(gradient)
e(Hessian)
e (V)
Functions
e(sample) marks estimation sample
number of observations
number of parameters
model degrees of freedom
log likelihood
rank of $e(V)$
pseudo- R^{2}
χ^{2}
χ^{2} for test of spatial terms
p-value for model test
p-value for test of spatial terms
1 if converged, 0 otherwise

spregress

command as typed
name of dependent variable
names of independent variables
name of ID variable
ml
title in estimation output
hasconstant or noconstant

Wald; type of model χ^{2} test
vcetype specified in vce()
title used to label Std. err.
type of ml method
maximization technique
b V
program used to implement estat
program used to implement predict
predictions allowed by margins
predictions disallowed by margins
factor variables fvset as asbalanced
factor variables fvset as asobserved
coefficient vector
constraints matrix
iteration \log (up to 20 iterations)
gradient vector
Hessian matrix

In addition to the above, the following is stored in r() :

```
Matrices
\(r\) (table)
    r(table)
```

degrees of freedom for test of spatial terms
number of maximum log-likelihood estimation iterations
name of spatial weighting matrix applied to depvar
name of spatial weighting matrix applied to errors
variance-covariance matrix of the estimators
matrix containing the coefficients with their standard errors, test statistics, p-values, and confidence intervals

Note that results stored in $r()$ are updated when the command is replayed and will be replaced when any r-class command is run after the estimation command.

Methods and formulas

SAR models date back to the works of Whittle (1954) and Cliff and Ord (1973, 1981). Cressie (1993), LeSage and Pace (2009), and Waller and Gotway (2004) provide textbook introductions. Spatial models have been applied in a variety of disciplines, such as criminology, demography, economics, epidemiology, political science, and public health. See Darmofal (2015), Waller and Gotway (2004), Kelejian and Prucha (2010), Drukker, Egger, and Prucha (2013), and Lee, Liu, and Lin (2010) for examples in economics, social science, and public health, including examples of nongeographic models such as social interactions and social networks.

The GS2SLS estimator was derived by Kelejian and Prucha (1998, 1999, 2010) and extended by Arraiz et al. (2010) and Drukker, Egger, and Prucha (2013).

The formulas for the GS2SLS without higher-order spatial weighting matrices were published in Drukker, Prucha, and Raciborski (2013). For the higher-order models, spregress, gs2sls implements the estimator derived in Badinger and Egger (2011) and Prucha, Drukker, and Egger (2016).

The properties of the ML estimator were proven by Lee (2004), which also provides the formulas for the robust estimator of the VCE.

Methods and formulas are presented under the following headings:

```
Model
GS2SLS estimator
    2SLS estimator of \delta
    GMM estimator of \rho}\mathrm{ based on 2SLS residuals
    GS2SLS estimator of }
    Efficient GMM estimator of \rho based on GS2SLS residuals
ML estimator
    Log-likelihood function
Pseudo-R }\mp@subsup{}{}{2
```


Model

We consider a cross-sectional spatial autoregressive model with autoregressive disturbances (SARAR), allowing for higher-order spatial dependence in the dependent variable, exogenous independent variables, and spatial errors. The model is

$$
\begin{align*}
\mathbf{y} & =\sum_{k=1}^{K} \beta_{k} \mathbf{x}_{k}+\sum_{p=1}^{P} \gamma_{p} \mathbf{W}_{p} \mathbf{x}_{p}+\sum_{r=1}^{R} \lambda_{r} \mathbf{W}_{r} \mathbf{y}+\mathbf{u} \\
\mathbf{u} & =\sum_{s=1}^{S} \rho_{s} \mathbf{M}_{s} \mathbf{u}+\boldsymbol{\epsilon} \tag{1}
\end{align*}
$$

where
\mathbf{y} is an $n \times 1$ vector of observations on the dependent variable;
\mathbf{x}_{k} is an $n \times 1$ vector of observations on the exogenous variable; β_{k} is the corresponding scalar parameter;
$\mathbf{W}_{p}, \mathbf{W}_{r}$, and \mathbf{M}_{s} are $n \times n$ spatial weighting matrices with 0 diagonal elements;
$\mathbf{W}_{p} \mathbf{x}_{p}, \mathbf{W}_{r} \mathbf{y}$, and $\mathbf{M}_{s} \mathbf{u}$ are $n \times 1$ vectors typically referred to as spatial lags for the exogenous variable, dependent variable, and error term; γ_{p}, λ_{r}, and ρ_{s} are scalar parameters; and
$\boldsymbol{\epsilon}$ is an $n \times 1$ vector of innovations (i.i.d. disturbances).

The model in (1) is frequently referred to as a higher-order spatial autoregressive model with spatial autoregressive disturbances, or namely, a $\operatorname{SARAR}(R, S)$ model.

The spatial weighting matrices $\mathbf{W}_{p}, \mathbf{W}_{r}$, and \mathbf{M}_{s} are assumed to be known and nonstochastic. See [SP] Intro 2 and Darmofal (2015, chap. 2) for an introduction to spatial weighting matrices, and see Kelejian and Prucha (2010) for a technical discussion of how normalization affects parameter definition.

The scalar parameters γ_{p} and λ_{r} measure the degree to which the dependent variable depends on its neighboring covariate's values and outcomes. See example 1 and LeSage and Pace (2009, sec. 2.7) for discussions of effect estimation.

The innovations ϵ are assumed to be i.i.d. or independent but heteroskedastically distributed, where the heteroskedasticity is of unknown form. The errors \mathbf{u} are spatially autoregressive.

The GS2SLS estimator produces consistent estimates in both cases when the heteroskedastic option is specified. For the first-order SARAR model, see Kelejian and Prucha (1998, 1999, 2010), Arraiz et al. (2010), and Drukker, Egger, and Prucha (2013) for formal results and discussions; for the higher-order $\operatorname{SARAR}(R, S)$ model, see Badinger and Egger (2011) for formal results. The ML estimator is consistent in the i.i.d. case for the $\operatorname{SARAR}(1,1)$ model but generally not consistent in the heteroskedastic case. See Lee (2004) for some results for the ML estimator; see Arraiz et al. (2010) for evidence that the ML estimator does not produce consistent estimates in the heteroskedastic case.

The GS2SLS estimator can fit the $\operatorname{SARAR}(R, S)$ model, whereas the ML estimator can only fit the $\operatorname{SARAR}(1,1)$ model.

GS2SLS estimator

In this section, we give a detailed description of the computations performed by spregress, gs2sls. For the $\operatorname{SARAR}(1,1)$ model, spregress, gs2sls implements the estimator described in Kelejian and Prucha (2010), Arraiz et al. (2010), and Drukker, Egger, and Prucha (2013); for the $\operatorname{SARAR}(R, S)$ model, spregress, gs2sls implements the estimator described in Badinger and Egger (2011). We will describe the GS2SLS estimator for the $\operatorname{SARAR}(R, S)$ model, which generalizes the first-order SARAR model.

Let's first rewrite (1) in a compact form:

$$
\begin{align*}
& \mathbf{y}=\mathbf{X} \beta+\overline{\mathbf{X}} \gamma+\overline{\mathbf{Y}} \lambda+\mathbf{u}=\mathbf{Z} \delta+\mathbf{u} \\
& \mathbf{u}=\overline{\mathbf{U}} \rho+\boldsymbol{\epsilon} \tag{2}
\end{align*}
$$

where
$\mathbf{X}=\left[\mathbf{x}_{k}\right]_{k=1, \ldots, K}$ is an $n \times K$ matrix of exogenous covariates;
$\overline{\mathbf{X}}=\left[\mathbf{W}_{p} \mathbf{x}_{p}\right]_{p=1, \ldots, P}$ is an $n \times P$ matrix of spatial lags for the exogenous covariates;
$\overline{\mathbf{Y}}=\left[\mathbf{W}_{r} \mathbf{y}\right]_{r=1, \ldots, R}$ is an $n \times R$ matrix of spatial lags for the dependent variables;
$\overline{\mathbf{U}}=\left[\mathbf{M}_{s} \mathbf{u}\right]_{s=1, \ldots, S}$ is an $n \times S$ matrix of spatial lags for the error term;
$\mathbf{Z}=[\mathbf{X}, \overline{\mathbf{X}}, \overline{\mathbf{Y}}]$ is an $n \times(K+P+R)$ matrix;
β, γ, λ, and ρ denote the $K \times 1, P \times 1, R \times 1$, and $S \times 1$ vectors of coefficients corresponding to $\mathbf{X}, \overline{\mathbf{X}}, \overline{\mathbf{Y}}$, and $\overline{\mathbf{U}}$, respectively; and
$\delta=\left(\beta^{\prime}, \gamma^{\prime}, \lambda^{\prime}\right)^{\prime}$ is a $(K+P+R) \times 1$ vector of coefficients for \mathbf{Z}.
In the following, we review the two-stage least-squares (2SLS), generalized spatial two-stage least-squares (GS2SLS), and GMM estimation approaches as discussed in Badinger and Egger (2011).

2SLS estimator of δ

In the first step, we apply 2SLS to (2) using an instrument matrix \mathbf{H}_{1} to estimate δ. The 2SLS estimator of δ-say, $\widetilde{\delta}$-is defined as

$$
\widetilde{\delta}=\left(\widetilde{\mathbf{Z}}^{\prime} \mathbf{Z}\right)^{-1} \widetilde{\mathbf{Z}}^{\prime} \mathbf{y}
$$

where $\widetilde{\mathbf{Z}}=\mathbf{P}_{\mathbf{H}_{\mathbf{1}}} \mathbf{Z}$ and $\mathbf{P}_{\mathbf{H}_{1}}=\mathbf{H}_{1}\left(\mathbf{H}_{1}^{\prime} \mathbf{H}_{1}\right)^{-1} \mathbf{H}_{1}^{\prime}$. The 2SLS estimator $\widetilde{\delta}$ depends on the instrument matrix \mathbf{H}_{1}. Let \mathbf{X}_{f} denote all the exogenous regressors; that is, $\mathbf{X}_{f}=[\mathbf{X}, \overline{\mathbf{X}}]$ in our case. The instrument matrix \mathbf{H}_{1} contains the linearly independent columns in

$$
\mathbf{H}_{1}=\left[\mathbf{X}_{\mathrm{f}}, \mathbf{W}^{1} \mathbf{X}_{\mathrm{f}}, \ldots, \mathbf{W}^{q} \mathbf{X}_{\mathrm{f}}\right]
$$

where $\mathbf{W}^{1} \equiv\left\{W_{r}\right\}_{r=1, \ldots, R}$ denotes all the spatial weighting matrices applied to the dependent variable, and $\mathbf{W}^{q} \equiv\left\{\mathbf{W}_{j_{1}} \mathbf{W}_{j_{2}} \ldots \mathbf{W}_{j_{q}}\right\}_{j_{1}, j_{2}, \ldots, j_{q}=1, \ldots, R}$ denotes the product of q matrices from W^{1} in any possible permutation order.

The impower (\#) option specifies q, the number of the power in \mathbf{W}^{q}. The default is impower (2). Increasing q may improve the precision of the estimation of δ.

We now illustrate the construction of \mathbf{H}_{1} with an example. Suppose we use two spatial weighting matrices \mathbf{W}_{1} and \mathbf{W}_{2} to generate the spatial lags for the dependent variable. So $\mathbf{W}^{1}=\left(\mathbf{W}_{1}, \mathbf{W}_{2}\right)$. If we have $q=2$, then $\mathbf{W}^{2}=\left(\mathbf{W}_{1} \mathbf{W}_{1}, \mathbf{W}_{1} \mathbf{W}_{2}, \mathbf{W}_{2} \mathbf{W}_{1}, \mathbf{W}_{2} \mathbf{W}_{2}\right)$. Plug \mathbf{W}^{1} and \mathbf{W}^{2} into the definition of \mathbf{H}_{1}, and the instrument matrix \mathbf{H}_{1} in this special case contains the linear independent columns in the following matrix:

$$
\mathbf{H}_{1}=\left[\mathbf{X}_{\mathrm{f}}, \mathbf{W}_{1} \mathbf{X}_{\mathrm{f}}, \mathbf{W}_{2} \mathbf{X}_{\mathrm{f}}, \mathbf{W}_{1} \mathbf{W}_{1} \mathbf{X}_{\mathrm{f}}, \mathbf{W}_{1} \mathbf{W}_{2} \mathbf{X}_{\mathrm{f}}, \mathbf{W}_{2} \mathbf{W}_{1} \mathbf{X}_{\mathrm{f}}, \mathbf{W}_{2} \mathbf{W}_{2} \mathbf{X}_{\mathrm{f}}\right]
$$

GMM estimator of ρ based on 2SLS residuals

The initial GMM estimates of ρ solve the sample equivalent of the population moment conditions

$$
\begin{aligned}
& (1 / N) E\left(\boldsymbol{\epsilon}^{\prime} \mathbf{A}_{s} \boldsymbol{\epsilon}\right)=0 \\
& (1 / N) E\left(\boldsymbol{\epsilon}^{\prime} \mathbf{B}_{s} \boldsymbol{\epsilon}\right)=0 \quad \text { for } \quad s \in\{1, \ldots, S\}
\end{aligned}
$$

where $\mathbf{A}_{s}=\mathbf{M}_{s}$ and $\mathbf{B}_{s}=\mathbf{M}_{s}^{\prime} \mathbf{M}_{s}-\operatorname{diag}\left(\mathbf{M}_{s}^{\prime} \mathbf{M}_{s}\right)$. See the estimator derived in Badinger and Egger (2011) and Prucha, Drukker, and Egger (2016) for details.

GS2SLS estimator of δ

The GS2SLS estimator of δ is based on the spatially Cochrane-Orcutt-transformed model.

$$
\begin{equation*}
\mathbf{y}_{n t}=\mathbf{Z}_{*}(\rho) \delta+\boldsymbol{\epsilon} \tag{3}
\end{equation*}
$$

where $\mathbf{y}_{n t}=\left(\mathbf{I}_{n}-\sum_{s=1}^{S} \rho_{s} \mathbf{M}_{s}\right) \mathbf{y}, \mathbf{Z}_{*}(\rho)=\left(\mathbf{I}_{n}-\sum_{s=1}^{S} \rho_{s} \mathbf{M}_{s}\right) \mathbf{Z}$, and \mathbf{I}_{n} is an $n \times n$ identity matrix.

Now, we apply the 2SLS estimator to (3) by using an instrument matrix \mathbf{H}_{2} and replacing ρ with $\widetilde{\rho}$. The GS2SLS estimator of δ-say, $\widehat{\delta}$-is defined as

$$
\left.\widehat{\delta}=\left\{\widehat{\mathbf{Z}}_{*} \widetilde{\widetilde{\rho}}^{\prime} \mathbf{Z}_{*}(\widetilde{\rho})\right\}^{-1} \widehat{\mathbf{Z}_{*}(\widetilde{\rho}}\right)^{\prime} \mathbf{y}_{*}(\widetilde{\rho})
$$

where

$$
\begin{aligned}
& \mathbf{y}_{*}(\widetilde{\rho})=\left(\mathbf{I}_{n}-\sum_{s=1}^{S} \widetilde{\rho_{s}} \mathbf{M}_{s}\right) \mathbf{y} \\
& \mathbf{Z}_{*}(\widetilde{\rho})=\left(\mathbf{I}_{n}-\sum_{s=1}^{S} \widetilde{\rho_{s}} \mathbf{M}_{s}\right) \mathbf{Z}, \\
& \widehat{\mathbf{Z}_{*}(\widetilde{\rho})}=\mathbf{P}_{\mathbf{H}_{\mathbf{2}}} \mathbf{Z}_{*}(\widetilde{\rho}), \text { and } \\
& \mathbf{P}_{\mathbf{H}_{\mathbf{2}}}=\mathbf{H}_{2}\left(\mathbf{H}_{2}^{\prime} \mathbf{H}_{2}\right)^{-1} \mathbf{H}_{2}^{\prime} .
\end{aligned}
$$

The instrument matrix \mathbf{H}_{2} contains the linearly independent columns in

$$
\mathbf{H}_{2}=\left[\mathbf{H}_{1}, \mathbf{M}_{1} \mathbf{H}_{1}, \ldots, \mathbf{M}_{\mathbf{S}} \mathbf{H}_{1}\right]
$$

Efficient GMM estimator of ρ based on GS2SLS residuals

The form of the efficient GMM weighting matrix is given in Badinger and Egger (2011) and Prucha, Drukker, and Egger (2016). The matrix has one form in the default homoskedastic case and another in the heteroskedastic case. The form of the matrix causes the estimates of spatially autoregressive error correlations and the standard errors to differ when the heteroskedastic option is specified.

ML estimator

We implement a quasimaximum likelihood (QML) estimator for the first-order SARAR model. We can write $\operatorname{SARAR}(1,1)$ [see (1)] as

$$
\begin{align*}
& \mathbf{y}=\mathbf{X} \beta+\overline{\mathbf{X}} \gamma+\lambda \mathbf{W} \mathbf{y}+\mathbf{u}=\mathbf{X}_{\mathrm{f}} \zeta+\lambda \mathbf{W} \mathbf{y}+\mathbf{u} \tag{4}\\
& \mathbf{u}=\rho \mathbf{M} \mathbf{u}+\boldsymbol{\epsilon}
\end{align*}
$$

where
$\mathbf{X}_{\mathrm{f}}=[\mathbf{X}, \overline{\mathbf{X}}]$ is an $n \times L$ matrix containing exogenous covariates and spatial lags for the exogenous variables, with $L=K+P$;
$\zeta=\left(\beta^{\prime}, \gamma^{\prime}\right)^{\prime}$ is an $L \times 1$ vector of coefficients;
\mathbf{W} and \mathbf{M} are $n \times n$ spatial weighting matrices with 0 diagonal elements; and
λ and ρ are scalar parameters.

Log-likelihood function

We give the log-likelihood function assuming that $\boldsymbol{\epsilon} \sim N\left(0, \sigma^{2} \mathbf{I}_{n}\right)$. Lee (2004) gives formal results on the consistency and asymptotic normality of the QML estimator when the innovations are i.i.d. but not necessarily normally distributed. Violations of the assumption that the innovations are i.i.d. can cause the QML estimator to produce inconsistent results.

The reduced form of (4) is

$$
\mathbf{y}=\left(\mathbf{I}_{n}-\lambda \mathbf{W}\right)^{-1} \mathbf{X}_{\mathrm{f}} \zeta+\left(\mathbf{I}_{n}-\lambda \mathbf{W}\right)^{-1}\left(\mathbf{I}_{n}-\rho \mathbf{M}\right)^{-1} \boldsymbol{\epsilon}
$$

The unconcentrated log-likelihood function is

$$
\begin{align*}
& \ln L\left(\mathbf{y} \mid \zeta, \lambda, \rho, \sigma^{2}\right)=-\frac{n}{2} \ln (2 \pi)-\frac{n}{2} \ln \left(\sigma^{2}\right)+\ln \left\|\mathbf{I}_{n}-\lambda \mathbf{W}\right\|+\ln \left\|\mathbf{I}_{n}-\rho \mathbf{M}\right\| \\
& \quad-\frac{1}{2 \sigma^{2}}\left\{\left(\mathbf{I}_{n}-\lambda \mathbf{W}\right) \mathbf{y}-\mathbf{X}_{\mathrm{f}} \zeta\right\}^{\prime}\left(\mathbf{I}_{n}-\rho \mathbf{M}\right)^{\prime}\left(\mathbf{I}_{n}-\rho \mathbf{M}\right)\left\{\left(\mathbf{I}_{n}-\lambda \mathbf{W}\right) \mathbf{y}-\mathbf{X}_{\mathrm{f}} \zeta\right\} \tag{5}
\end{align*}
$$

We can concentrate the log-likelihood function by taking first-order derivatives with respect to ζ and σ^{2} in (5) and setting them to 0 , yielding the maximizers

$$
\begin{aligned}
\widehat{\zeta}(\lambda, \rho)= & \left\{\mathbf{X}_{\mathrm{f}}^{\prime}\left(\mathbf{I}_{n}-\rho \mathbf{M}\right)^{\prime}\left(\mathbf{I}_{n}-\rho \mathbf{M}\right) \mathbf{X}_{\mathrm{f}}\right\}^{-1} \mathbf{X}_{\mathrm{f}}^{\prime}\left(\mathbf{I}_{n}-\rho \mathbf{M}\right)^{\prime}\left(\mathbf{I}_{n}-\rho \mathbf{M}\right)\left(\mathbf{I}_{n}-\lambda \mathbf{W}\right) \mathbf{y} \\
\widehat{\sigma^{2}}(\lambda, \rho)=\frac{1}{n} & \left\{\left(\mathbf{I}_{n}-\lambda \mathbf{W}\right) \mathbf{y}-\mathbf{X}_{\mathrm{f}} \widehat{\zeta}(\lambda, \rho)\right\}^{\prime}\left(\mathbf{I}_{n}-\rho \mathbf{M}\right)^{\prime}\left(\mathbf{I}_{n}-\rho \mathbf{M}\right) \\
& \times\left\{\left(\mathbf{I}_{n}-\lambda \mathbf{W}\right) \mathbf{y}-\mathbf{X}_{\mathrm{f}} \widehat{\zeta}(\lambda, \rho)\right\}
\end{aligned}
$$

Substituting $\widehat{\zeta}(\lambda, \rho)$ and $\widehat{\sigma^{2}}(\lambda, \rho)$ into the log-likelihood function in (5), we have the concentrated log-likelihood function

$$
\ln L_{c}(\mathbf{y} \mid \lambda, \rho)=-\frac{n}{2}\{\ln (2 \pi)+1\}-\frac{n}{2} \ln \left\{\sigma^{2}(\lambda, \rho)\right\}+\ln \left\|\mathbf{I}_{n}-\lambda \mathbf{W}\right\|+\ln \left\|\mathbf{I}_{n}-\rho \mathbf{M}\right\|
$$

The QML estimates for $\widehat{\lambda}$ and $\widehat{\rho}$ can be computed by maximizing the concentrated log likelihood. Then, we can calculate the QML estimates for ζ and σ^{2} as $\widehat{\zeta}(\widehat{\lambda}, \widehat{\rho})$ and $\widehat{\sigma^{2}}(\widehat{\lambda}, \widehat{\rho})$.
spregress, ml uses a grid search to find reasonable initial values for λ and ρ.
The formula for the robust VCE is given in Lee (2004).

Pseudo-R ${ }^{2}$

The pseudo- R^{2} is calculated as $\{\operatorname{corr}(y, \widehat{y})\}^{2}$, where \widehat{y} is the reduced-form prediction of y.

References

Arraiz, I., D. M. Drukker, H. H. Kelejian, and I. R. Prucha. 2010. A spatial Cliff-Ord-type model with heteroskedastic innovations: Small and large sample results. Journal of Regional Science 50: 592-614. https://doi.org/10.1111/j.14679787.2009.00618.x.

Badinger, H., and P. H. Egger. 2011. Estimation of higher-order spatial autoregressive cross-section models with heteroscedastic disturbances. Papers in Regional Science 90: 213-235. https://doi.org/10.1111/j.1435-5957.2010.00323.x.
Baum, C. F., and S. Hurn. 2021. Environmental Econometrics Using Stata. College Station, TX: Stata Press.
Britt, C. L. 1994. Crime and unemployment among youths in the United States, 1958-1990: A time series analysis. American Journal of Economics and Sociology 53: 99-109. https://doi.org/10.1111/j.1536-7150.1994.tb02680.x.
Cliff, A. D., and J. K. Ord. 1973. Spatial Autocorrelation. London: Pion.
——. 1981. Spatial Processes: Models and Applications. London: Pion.

Colella, F., R. Lalive, S. O. Sakalli, and M. Thoenig. 2023. acreg: Arbitrary correlation regression. Stata Journal 23: 119-147.

Cressie, N. 1993. Statistics for Spatial Data. Rev. ed. New York: Wiley.
Darmofal, D. 2015. Spatial Analysis for the Social Sciences. New York: Cambridge University Press.
Drukker, D. M., P. H. Egger, and I. R. Prucha. 2013. On two-step estimation of a spatial autoregressive model with autoregressive disturbances and endogenous regressors. Econometric Reviews 32: 686-733. https://doi.org/10.1080/07474938.2013.741020.

Drukker, D. M., I. R. Prucha, and R. Raciborski. 2013. Maximum likelihood and generalized spatial two-stage least-squares estimators for a spatial-autoregressive model with spatial-autoregressive disturbances. Stata Journal 13: 221-241.

Gini, C. 1909. Concentration and dependency ratios (in Italian). English translation in Rivista di Politica Economica 1997 87: 769-789.

Kelejian, H. H., and I. R. Prucha. 1998. A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. Journal of Real Estate Finance and Economics 17: 99-121. https://doi.org/10.1023/A:1007707430416.
-_. 1999. A generalized moments estimator for the autoregressive parameter in a spatial model. International Economic Review 40: 509-533. https://doi.org/10.1111/1468-2354.00027.
——. 2010. Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances. Journal of Econometrics 157: 53-67. https://doi.org/10.1016/j.jeconom.2009.10.025.

Lee, L.-F. 2004. Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models. Econometrica 72: 1899-1925. https://doi.org/10.1111/j.1468-0262.2004.00558.x.

Lee, L.-F., X. Liu, and X. Lin. 2010. Specification and estimation of social interaction models with network structures. Econometrics Journal 13: 145-176. https://doi.org/10.1111/j.1368-423X.2010.00310.x.

LeSage, J., and R. K. Pace. 2009. Introduction to Spatial Econometrics. Boca Raton, FL: Chapman and Hall/CRC.
Messner, S. F., L. Anselin, D. F. Hawkins, G. Deane, S. E. Tolnay, and R. D. Baller. 2000. An Atlas of the Spatial Patterning of County-Level Homicide, 1960-1990. Pittsburgh: National Consortium on Violence Research.

Prucha, I. R., D. M. Drukker, and P. H. Egger. 2016. Simultaneous equations models with higher-order spatial or social network interactions. Working paper, Department of Economics, University of Maryland. http://econweb.umd. edu/~ prucha/papers/WP_IRP_PHE_DMD_2016.pdf.

Waller, L. A., and C. A. Gotway. 2004. Applied Spatial Statistics for Public Health Data. Hoboken, NJ: Wiley.
Whittle, P. 1954. On stationary processes in the plane. Biometrika 434-449. https://doi.org/10.2307/2332724.

Also see
 [SP] spregress postestimation - Postestimation tools for spregress
 [SP] estat moran - Moran's test of residual correlation with nearby residuals
 [SP] Intro - Introduction to spatial data and SAR models
 [SP] spivregress - Spatial autoregressive models with endogenous covariates
 [SP] spmatrix - Categorical guide to the spmatrix command
 [SP] spxtregress - Spatial autoregressive models for panel data
 [R$]$ regress - Linear regression
 [U] 20 Estimation and postestimation commands

Title

spregress postestimation - Postestimation tools for spregress

| Postestimation commands | predict | margins | estat impact |
| :--- | :--- | :--- | :--- |
| Methods and formulas | References | Also see | |

Postestimation commands

The following postestimation command is of special interest after spregress:

| Command | Description |
| :--- | :--- |
| estat impact | direct, indirect, and total impacts |

The following standard postestimation commands are also available:

| Command | Description |
| :--- | :--- |
| contrast | contrasts and ANOVA-style joint tests of estimates
 * estat ic |
| Akaike's, consistent Akaike's, corrected Akaike's, and Schwarz's Bayesian in-
 formation criteria (AIC, CAIC, AICc, and BIC) | |
| estat summarize | summary statistics for the estimation sample |
| estat vce | variance-covariance matrix of the estimators (VCE) |
| estimates | cataloging estimation results |
| etable | table of estimation results |
| lincom | point estimates, standard errors, testing, and inference for linear combinations of
 coefficients
 *rtest |
| likelihood-ratio test | |

[^8]
predict

Description for predict

predict creates a new variable containing predictions such as the reduced-form mean, the direct mean, the indirect mean, the limited-information mean, the full-information mean, the naïve-form prediction, the linear prediction, the residuals, or the uncorrelated residuals.

Menu for predict

Statistics $>$ Postestimation

Syntax for predict

```
predict [type] newvar [if] [in] [, statistic]
```


statistic Description

Main

| $\underline{\text { rform }}$ | reduced-form mean; the default |
| :--- | :--- |
| direct | direct mean
 indirect |
| indirect mean | |
| $\underline{\text { ímited }}$ | limited-information mean |
| full | full-information mean |
| $\underline{\text { naive }}$ | naïve-form prediction |
| xb | linear prediction |
| $\underline{\text { residuals }}$ | residuals |
| ucresiduals | uncorrelated residuals |

These statistics are only available in a subset of the estimation sample.

Options for predict

\qquad Main
rform, the default, calculates the reduced-form mean. It is the predicted mean of the dependent variable conditional on the independent variables and any spatial lags of the independent variables. See Methods and formulas.
direct calculates the direct mean. It is a unit's predicted contribution to its own reduced-form mean. The direct and indirect means sum to the reduced-form mean.
indirect calculates the indirect mean. It is the predicted sum of the other units' contributions to a unit's reduced-form mean.
limited calculates the limited-information mean. It is the predicted mean of the dependent variable conditional on the independent variables, any spatial lags of the independent variables, and any spatial lags of the dependent variable. limited is not available when the heteroskedastic option is used with spregress, gs2sls.
full calculates the full-information mean. It is the predicted mean of the dependent variable conditional on the independent variables, any spatial lags of the independent variables, and the other units' values of the dependent variable full is not available when the heteroskedastic option is used with spregress, gs2sls.
naive calculates the naïve-form prediction. It is the predicted linear combination of the independent variables, any spatial lags of the independent variables, and any spatial lags of the dependent variable. It is not a consistent estimator of an expectation. See Methods and formulas.
xb calculates the predicted linear combination of the independent variables.
residuals calculates the residuals, including any autoregressive error term.
ucresiduals calculates the uncorrelated residuals, which are estimates of the uncorrelated error term.

margins

Description for margins

margins estimates margins of response for the reduced-form mean, direct mean, indirect mean, and linear predictions.

Menu for margins

Statistics $>$ Postestimation

Syntax for margins

```
margins [marginlist] [, options]
margins [marginlist] , predict(statistic ...) [predict(statistic ...)...] [options]
```

statistic Description

| rform | reduced-form mean; the default |
| :--- | :--- |
| direct | direct mean |
| indirect | indirect mean |
| xb | linear prediction |
| limited | not allowed with margins |
| full | not allowed with margins |
| naive | not allowed with margins |
| $\underline{\text { residuals }}$ | not allowed with margins |
| $\underline{\text { ucresiduals }}$ | not allowed with margins |

Statistics not allowed with margins are functions of stochastic quantities other than e(b).
For the full syntax, see [R] margins.

Remarks for margins

The computations that margins must do to calculate standard errors can sometimes be time consuming. Time will depend on the complexity of the spatial model and the number of spatial units in the data. You may want to fit your model with a subsample of your data, run margins, and extrapolate to estimate the time required to run margins on the full sample. See [P] timer and [P$]$ rmsg.

estat impact

Description for estat impact

estat impact estimates the mean of the direct, indirect, and total impacts of independent variables on the reduced-form mean of the dependent variable.

Syntax for estat impact

```
estat impact [varlist] [if] [in] [, nolog vce(vcetype)]
```

varlist is a list of independent variables, including factor variables, taken from the fitted model. By default, all independent variables from the fitted model are used.
collect is allowed; see [U] 11.1.10 Prefix commands.

Options for estat impact

\qquad Main
nolog suppresses the calculation progress log that shows the percentage completed. By default, the \log is displayed.

VCE

vce (vcetype) specifies how the standard errors of the impacts are calculated.
vce (delta), the default, is the delta method and treats the independent variables as fixed.
vce(unconditional) specifies that standard errors account for sampling variance in the independent variables. This option is not available when if or in is specified with estat impact.

Remarks for estat impact

estat impact is essential for interpreting the output of spregress. See [SP] Intro 7 and example 1 of [SP] spregress for explanations and examples.

Stored results for estat impact

estat impact stores the following in r() :

```
Scalars
    r(N)
Macros
Matrices
    r(b_indirect)
    r(Jacobian_indirect)
```

 \(r\) (vce) vcetype specified in vce()
 \(r\) (xvars) names of independent variables
 \(r\) (b_direct) vector of estimated direct impacts
 \(r\) (Jacobian_direct) Jacobian matrix for direct impacts
 \(r\) (V_direct) estimated variance-covariance matrix
 vector of estimated indirect impacts
 \(r\) (V_indirect) estimated variance-covariance matrix of indirect impacts
 \(r\) (b_total) vector of estimated total impacts
 \(r\) (Jacobian_total) Jacobian matrix for total impacts
 \(r\) (V_total) estimated variance-covariance matrix of total impacts

Methods and formulas

Methods and formulas are presented under the following headings:
Predictions
Reduced-form mean
Direct and indirect means
Limited-information mean
Full-information mean
Naïve-form predictor
Linear predictor
Residuals
Uncorrelated residuals
Impacts

Predictions

To motivate the predictions, consider the vector form of a spatial autoregressive model

$$
\begin{equation*}
\mathbf{y}=\lambda \mathbf{W} \mathbf{y}+\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon} \tag{1}
\end{equation*}
$$

where
\mathbf{y} is the vector containing each unit's dependent-variable observation,
$\mathbf{W} \mathbf{y}$ is a spatial lag of \mathbf{y},
\mathbf{X} is the matrix of independent-variable observations,
ϵ is a vector of errors, and
λ and $\boldsymbol{\beta}$ are the coefficients.
Any spatial lags of the independent variables are assumed to be in \mathbf{X}. Spatial lags of the error do not affect the reduced-form, direct, or indirect means, so they are not included in (1) for simplicity.

Reduced-form mean

Equation (1) represents the spatial autoregressive model as a system of equations. The solution

$$
\begin{equation*}
\mathbf{y}=(\mathbf{I}-\lambda \mathbf{W})^{-1}(\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}) \tag{2}
\end{equation*}
$$

implies that the mean of \mathbf{y} given the independent variables and the spatial weighting matrix is

$$
\begin{equation*}
E(\mathbf{y} \mid \mathbf{X}, \mathbf{W})=(\mathbf{I}-\lambda \mathbf{W})^{-1}(\mathbf{X} \boldsymbol{\beta}) \tag{3}
\end{equation*}
$$

This is known as the reduced-form mean because the solution in (2) is known as the reduced form of the model. The predicted reduced-form mean substitutes estimates of λ and $\boldsymbol{\beta}$ into (3).

Direct and indirect means

To define the direct mean and the indirect mean, let

$$
\mathbf{S}=(\mathbf{I}-\lambda \mathbf{W})^{-1}
$$

and let \mathbf{S}_{d} be a matrix with diagonal elements of \mathbf{S} on its diagonal and with off-diagonal elements set to 0 .

The direct means are

$$
\mathbf{S}_{d} \mathbf{X} \boldsymbol{\beta}
$$

which capture the contributions of each unit's independent variables on its own reduced-form mean. Substituting estimates of λ and $\boldsymbol{\beta}$ produces the predictions.

The indirect means capture the contributions of the other units' independent variables on a unit's reduced-form prediction, and they are

$$
\left\{(\mathbf{I}-\lambda \mathbf{W})^{-1}-\mathbf{S}_{d}\right\} \mathbf{X} \boldsymbol{\beta}
$$

Limited-information mean

Instead of solving for the reduced form, the limited-information mean conditions on the spatial lag of y for observation i, which we denote by $(\mathbf{W} \mathbf{y})_{i}$, which yields

$$
\begin{equation*}
E\left\{y_{i} \mid \mathbf{X}, \mathbf{W},(\mathbf{W} \mathbf{y})_{i}\right\}=\mathbf{x}_{i} \boldsymbol{\beta}+\lambda(\mathbf{W} \mathbf{y})_{i}+u_{i} \tag{4}
\end{equation*}
$$

where u_{i} is the predictable part of the error term given $(\mathbf{W} \mathbf{y})_{i}$. See Kelejian and Prucha (2007) and Drukker, Prucha, and Raciborski (2013).

Full-information mean

The full-information mean conditions on the dependent-variable values of all the other units instead of conditioning on the spatial lag of the dependent variable, as does the limited-information mean. The additional information produces a better prediction of the error term when a spatial lag of the errors is in the model. See Kelejian and Prucha (2007).

Naïve-form predictor

The naïve-form predictor sets u_{i} to 0 in (4). It is not consistent for $E\left\{y_{i} \mid \mathbf{X}, \mathbf{W},(\mathbf{W} \mathbf{y})_{i}\right\}$ because it ignores u_{i}.

Linear predictor

The linear predictor is $\mathbf{X} \beta$.

Residuals

The residuals are u_{i} from (4).

Uncorrelated residuals

The uncorrelated residuals are

$$
\widehat{\boldsymbol{\epsilon}}=(\mathbf{I}-\widehat{\rho} \mathbf{M})^{-1} \mathbf{u}
$$

where \mathbf{u} is the vector of u_{i} 's, \mathbf{M} is the spatial weighting matrix for the autoregressive error term, and $\hat{\rho}$ is the estimated correlation of \mathbf{u}.

Impacts

The total impact of an independent variable \mathbf{x} is the average of the marginal effects it has on the reduced-form mean,

$$
\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial E\left(\mathbf{y}_{i} \mid \mathbf{X}, \mathbf{W}\right)}{\partial x_{j}}
$$

where $E\left(\mathbf{y}_{i} \mid \mathbf{X}, \mathbf{W}\right)$ is the i th element of the vector $E(\mathbf{y} \mid \mathbf{X}, \mathbf{W})$, whose formula is given in (2), and x_{j} is the j th unit's value for \mathbf{x}.

The direct impact of an independent variable \mathbf{x} is the average of the direct, or own, marginal effects:

$$
\frac{1}{n} \sum_{i=1}^{n} \frac{\partial E\left(\mathbf{y}_{i} \mid \mathbf{X}, \mathbf{W}\right)}{\partial x_{i}}
$$

The indirect impact of an independent variable \mathbf{x} is the average of the indirect, or spillover, marginal effects:

$$
\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \frac{\partial E\left(\mathbf{y}_{i} \mid \mathbf{X}, \mathbf{W}\right)}{\partial x_{j}}
$$

LeSage and Pace (2009, 36-37) call the average direct impact the "average total direct impact", and they call the average indirect impact the "average total indirect impact".
estat impact with the default vce (delta) uses the delta method to calculate the estimated variance of the impacts. This variance is conditional on the values of the independent variables in the model.
estat impact with vce(unconditional) uses the generalized method of moments estimation strategy to estimate the unconditional variance of the impacts. It accounts for sampling variance of the independent variables in the model.

References

Drukker, D. M., I. R. Prucha, and R. Raciborski. 2013. Maximum likelihood and generalized spatial two-stage least-squares estimators for a spatial-autoregressive model with spatial-autoregressive disturbances. Stata Journal 13: 221-241.

Kelejian, H. H., and I. R. Prucha. 2007. The relative efficiencies of various predictors in spatial econometric models containing spatial lags. Regional Science and Urban Economics 37: 363-374. https://doi.org/10.1016/j.regsciurbeco.2006.11.005.
LeSage, J., and R. K. Pace. 2009. Introduction to Spatial Econometrics. Boca Raton, FL: Chapman and Hall/CRC.
Liu, D. 2017. How to create animated graphics to illustrate spatial spillover effects. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/2018/03/06/how-to-create-animated-graphics-to-illustrate-spatial-spillover-effects/.

Also see

[SP] spregress - Spatial autoregressive models
[U] 20 Estimation and postestimation commands

Title

spset - Declare data to be Sp spatial data

| Description | Quick start | Menu | Syntax |
| :--- | :--- | :--- | :--- |
| Options | Remarks and examples | Stored results | Also see |

Description

Data must be spset before you can use the other Sp commands. The spset command serves three purposes:

1. It reports whether the data are spset and if so, how.
2. It sets the spatial data for the first time.
3. It modifies how the data are spset at any time.

Data that are spset are called Sp data.

Quick start

Query whether or how data are spset
spset
In cross-sectional data, specify geographic unit identifier id
spset id
Add coordinates stored in variables x and y to previously spset data
spset, modify coord(x y)
In panel data, specify geographic unit identifier id and time within area identifier tvar
xtset id tvar
spset id

Menu

Statistics $>$ Spatial autoregressive models

Syntax

Display the current setting

```
spset
```

Set data with shapefiles
spshape2dta...
(see [SP] spshape2dta)

Set data without shapefiles
spset idvar [, options]
Modify how data are set with shapefiles spset [idvar], modify [shpmodoptions]

Modify how data are set without shapefiles
spset, modify [modoptions]

Clear the setting

```
spset, clear
```

$i d v a r$ is an existing, numeric variable that uniquely identifies the geographic units, meaning the observations in cross-sectional data and the panels in panel data.
shapefile refers to a Stata-format shapefile, specified with or without the .dta suffix. Such files usually have names of the form name_shp.dta.
options
Description
coord (xvar yvar) designate xvar and yvar as the location coordinates
coordsys(coordsys) specify how coordinates are interpreted
shpmodoptions
Description

| coordsys(coordsys) | change how coordinates are interpreted |
| :--- | :--- |
| noshpfile | break link with shapefile |
| replace | replace current geographic identifier with idvar |

modoptions
Description
coord (xvar yvar)
replace location coordinates with xvar and yvar
coordsys (coordsys)
nocoord
shpfile(shapefile)
change how coordinates are interpreted
clear coordinate settings
establish link to shapefile

Options

coord (xvar yvar) and nocoord specify coordinates. coord() specifies the variables recording the x and y coordinates or the longitude and latitude. nocoord specifies that previously set coordinates be forgotten.
coord (xvar yvar) creates or replaces the contents of Sp variables _CX and _CY.
coord() and nocoord are allowed only if the data are not linked to a shapefile. If you want to use different coordinates than the shapefile provides, break the connection to the shapefile by typing

```
. spset, modify noshpfile
```

and then use spset, modify coord(xvar yvar). You can later use spset, modify shpfile(shapefile) to reestablish the link. Relinking to the shapefiles reestablishes the original coordinates stored in _CX and _CY.
coordsys (coordsys) specifies how to interpret coordinates. You may specify coordsys() regardless of whether you are linked to a shapefile. coordsys() syntax is

```
coordsys(planar) (default)
coordsys(latlong)
(kilometers implied)
coordsys(latlong, kilometers)
coordsys(latlong, miles)
```

coordsys (latlong) specifies latitude and longitude coordinates. kilometers and miles specify the units in which distances should be calculated. Distances for planar coordinates are always in the units of the planar coordinates.
modify specifies that existing spset settings are to be modified. Omitting modify means that the data are being spset for the first time.
You can modify Sp settings as often as you wish.
clear clears all Sp settings. It drops the variables _ID, _CX, and _CY that spset previously created. replace replaces the current geographic identifier with idvar.
noshpfile breaks the link to the Stata-format shapefile, the file that usually has shapefile_shp.dta. Data that were linked to a shapefile will be just as if they had never been linked to it. Before breaking the link, you should make a note of the shapefile's name:

```
. spset (make a note of the shapefile's name)
```

. spset, modify noshpfile

The shapefile might have been named shapefile_shp.dta. You will need the name later should you wish to reestablish the link.
shpfile(shapefile) and drop are for linking or relinking to a shapefile. To reestablish the link to the shapefile that was just unlinked above, you would type

```
. spset, modify shpfile(shapefile_shp)
```

The shapefile will be relinked, and the coordinates stored in _CX and _CY will be restored. shpfile() will refuse to link the shapefile if the data in memory contain observations for _ID values not found in the shapefile. In this case, specify shpfile() and drop if you are willing to drop the extra observations from the data in memory.

Remarks and examples

Remarks are presented under the following headings:

```
Determining whether and how data are spset
    Setting data for the first time
    Setting data with a standard-format shapefile
    Setting data with a Stata-format shapefile
    Setting data without a shapefile but with coordinates
    Setting data without a shapefile
Modifying settings
    Modifying coordinates
    Modifying how coordinates are interpreted
    Modifying the ID variable
    Modifying whether the data are linked to a shapefile
Converting cross-sectional data to panel data and vice versa
```


Determining whether and how data are spset

spset without arguments queries the Sp setting. Data starts out not being spset:

- spset
data not spset
r(459) ;
After the data have been spset, the output might be

```
. spset
            Sp dataset: dataset.dta
Linked shapefile: shapefile_shp.dta
            Data: Cross sectional
    Spatial-unit ID: _ID
            Coordinates: _CY, _CX (latitude-and-longitude, miles)
```

These data are as described in [SP] Intro 4. They are linked to a Stata-format shapefile.
Or, the output might be

```
. spset
    Sp dataset: dataset.dta
Linked shapefile: none
            Data: Cross sectional
    Spatial-unit ID: _ID (equal to fips)
        Coordinates: _CY, _CX (latitude-and-longitude, miles)
```

These data are as described in [SP] Intro 5. The data contain coordinates but are not linked to a shapefile.

Or, the output might be

```
. spset
    Sp dataset: dataset.dta
Linked shapefile: none
    Data: Cross sectional
    Spatial-unit ID: _ID (equal to fips)
            Coordinates: none
```

These data are as described in [SP] Intro 6. They do not contain coordinates nor are they linked to a shapefile.

All the examples above are for cross-sectional data. If the data were panel data, the output might be

```
. spset
    Sp dataset: dataset.dta
Linked shapefile: shapefile_shp.dta
            Data: Panel
    Spatial-unit ID: _ID
        Time ID: time (see xtset)
        Coordinates: _CY, _CX (latitude-and-longitude, miles)
```


Setting data for the first time

There are two kinds of data as far as Sp is concerned: cross-sectional and panel. In brief, crosssectional data contain one observation per spatial unit, such as one observation per county. Panel data contain multiple observations, such as one observation per county per calendar year. The kinds of data are described in more detail in [SP] Intro 3.

We are about to explain the various spset cases one at a time. We will discuss cross-sectional and panel data together. In all the examples, we will assume that you want to spset analysis.dta. This example dataset has the following characteristics:

1. It is cross-sectional or panel.
2. It contains data on U.S. counties. Variable fips contains the standard federal information processing standard (FIPS) code identifying U.S. counties.
If the data are cross-sectional, then fips uniquely identifies the observations.
If the data are panel, then variable time will be assumed to contain the second-level identifier. fips and time uniquely identify the observations. The time variable need not be named time, nor is the second-level identifier required to be time. See [SP] Intro 3.
spset adds one or three variables to your data.
3. _ID, which identifies the geographical areas.
4. _CX and _CY, which record the coordinates of the areas. Variables _CX and _CY are added only if the coordinates are known.
spset also adds information stored in Stata characteristics.
5. coordsys, the system in which coordinates are recorded and whether distances should be measured in kilometers or miles.
6. shpfile, the name of the Stata-format shapefile to which the data are linked, if they are linked.

The variables and characteristics that spset adds to your data should be viewed as spset's property. Do not modify or drop them. Use spset, modify to change settings.

Setting data with a standard-format shapefile

Shapefiles contain maps for each of the spatial units, which we will imagine are counties of the United States. You obtain shapefiles over the web.

You use [SP] spshape2dta to translate standard-format *.zip shapefiles to Stata-format *_shp.dta files. How you do that is explained in [SP] Intro 4.
spshape2dta performs the initial Sp setting of the data for you. That initial setting will be

```
. spset
    Sp dataset: analysis.dta
Linked shapefile: shapefile_shp.dta
            Data: Cross sectional
    Spatial-unit ID: _ID
        Coordinates: _CY, _CX (planar)
```

Note that spshape2dta derived the centroid coordinates for each of the spatial units (counties) and spset them.

You can modify settings. One important setting specifies how the coordinates are recorded. They are either planar, which is another word for rectangular, or they are degrees latitude and longitude. By default, Sp assumes coordinates are planar. Sp provides two coordinate-system settings:

```
. spset, modify coordsys(planar)
```

. spset, modify coordsys(latlong)

It is important that you modify coordsys () to be latlong if that is what the data record, because the formulas for calculating distances differ; see [SP] spdistance. Sp datasets record the coordinate values in variables _CX and _CY.
coordsys (latlong) has an extra setting that may be important to you:
. spset, modify coordsys(latlong, kilometers)
. spset, modify coordsys(latlong, miles)
By default, coordsys(latlong) calculates distances in kilometers.

Setting data with a Stata-format shapefile

All shapefiles start out as standard-format shapefiles and are translated into Stata-format _shp.dta files. It is possible that you have a Stata-format _shp.dta file from a previous analysis that is appropriate for this analysis. In that case, you can just link to it.

Let's assume that we want to spset analysis.dta, which you may recall is county data and contains variable fips (and time if it is panel data).

Let's assume that you also have Stata-format shapefile shapefile_shp.dta from a previous analysis. The _shp.dta file is indexed on FIPS codes.

To spset the data and link them to shapefile_shp.dta, type
Cross-sectional data:

```
. use analysis
. spset fips
. spset, modify shpfile(shapefile_shp)
```

Panel data:
. use analysis
. xtset fips time
. spset fips
. spset, modify shpfile(shapefile_shp)

The above will work as long as analysis.dta does not contain counties that do not appear in shapefile_shp.dta; see shpfile() and drop under Options above.

Notice that spset expects xtset to handle panel-data details. With panel data, you are required to xtset the data first. After the spset, if you typed xtset without arguments, you would discover that the spset modified the xtset setting. Data that were xtset on fips and time will now be xtset on _ID and time. When you typed spset fips, spset created the variable _ID equal to fips, and then it changed the xtset setting to match its own. spset does not drop the variable fips; it just makes its own copy of it.

Actually, what we typed for the panel-data case may not be sufficient. We should have typed
Panel data:
. use analysis
. xtset fips time
. spbalance, balance // <-- new
. spset fips
. spset, modify shpfile(shapefile_shp)
spset requires that panel data be strongly balanced. spbalance, balance will make panel data strongly balanced if they are not already. We omitted it because spset will verify that the data are strongly balanced and, if they are not, will issue an error. If spset complains, we can type spbalance, balance and then type the spset command again. See [SP] spbalance.

Whether data are cross-sectional or panel, you may need to modify the coordsys() setting. Use All data:

```
. spset, modify coordsys(latlong, kilometers)
. spset, modify coordsys(latlong, miles)
```

It is important that the coordinate system be set correctly; see [SP] spdistance.

Setting data without a shapefile but with coordinates

Assume that analysis.dta is the same county dataset used previously. In addition to fips and perhaps time, the data also contain variables x and y recording the coordinates of each county.

To spset the data without a shapefile, type
Cross-sectional data:
. use analysis
. spset fips, coord(x y)
Panel data:
. use analysis
. xtset fips time
. spset fips, coord(x y)
If x contains longitude and y contains latitude, also type
All data:
. spset, modify coordsys(latlong, kilometers)
. spset, modify coordsys(latlong, miles)

Setting data without a shapefile

Assume that analysis.dta no longer contains variables x and y . We have no shapefile and no coordinates. At this point, the data are probably not even geographically based. So rather than fips, we will assume the spatial units are uniquely identified by node. If the data are panel data, we assume observations are identified by node and time.

To spset the data, type
Cross-sectional data:
. use analysis
. spset node
Panel data:
. use analysis
. xtset node time
. spset fips

Modifying settings

You use spset, modify to modify settings of data that are already spset. You may modify whether the data contain coordinates, whether the coordinates are planar or latitude and longitude, the ID-variable codes used to identify the spatial units, and whether the data are linked to a shapefile.

Modifying coordinates

The coordinates for each of the spatial units in your data are stored in variables _CX and _CY if Sp knows them.

Sp knows the coordinates if you are linked to a shapefile. It knows them because Sp itself calculated the centroids of the spatial units from the information in the shapefile and stored the results in $\quad \mathrm{CX}$ and _CY.

Sp also knows the coordinates if you are not linked to a shapefile but specified the coordinates when you originally spset the data. In that case, it copied the coordinates you supplied into _CX and _CY.

If you are linked to a shapefile, you may not modify the coordinates Sp has stored-nor would you want to modify them.

If you are not linked to a shapefile, you can add or replace coordinates by typing spset, modify coord(xvar yvar)

If you want to delete the coordinates, type

```
spset, modify nocoord
```


Modifying how coordinates are interpreted

The coordinates stored in _CX and _CY are interpreted as planar or as degrees latitude and longitude. The interpretation determines how distances are calculated; see [SP] spdistance. You can change the interpretation by typing

```
spset, modify coordsys(planar)
spset, modify coordsys(latlong)
```

In the case of the latlong setting, you can specify the units to be used for distances, too:

```
spset, modify coordsys(latlong, kilometers)
spset, modify coordsys(latlong, miles)
```

When you set or reset coordsys (latlong), kilometers are assumed.

Modifying the ID variable

Variable _ID identifies the spatial units in your data. Each unit has a different code. The codes could be 1,2 , and 3 or any set of numbers.

If you started with a standard-format shapefile, Sp used $1,2,3$, and so on for _ID when you used spshape2dta to translate the file to Stata format. Perhaps you subsequently modified the coding stored in _ID. We did in [SP] Intro 4 when we showed you how to prepare data using a shapefile. We modified _ID to contain FIPS codes.

You can modify the codes stored in _ID at any time. The commands are as follows:

```
spset newidvar, modify if you are not linked to a shapefile
spset newidvar, modify replace if you are linked to a shapefile
```

Avoid doing this. These commands exist so that you can modify _ID at the outset when you are preparing your data. At that stage, you have no investment in the codes that are being used.

Later, you have an investment. The codes were used to identify the rows and columns of spatial weighting matrices you created. If you change the codes, any weighting matrices you have saved will become unusable.

If you are linked to a shapefile and change the codes, Sp will reindex both your data and its linked shapefile. If other datasets are linked to the same shapefile, their links to it will no longer work.

In [SP] Intro 4, [SP] Intro 5, and [SP] Intro 6, we modified codes before you became invested in the coding system used.

Sometimes, you really do have to change codes later. Let's imagine the unimaginable situation where the U.S. Census Bureau changes from FIPS in favor of NEWFIPS. Even then, we would ask you whether you really need to migrate to NEWFIPS, but for this example we will assume that you do. We will assume that you have a migration dataset containing two variables, fips and newfips. Variable newfips is never missing, but some fips values might be. Start by taking the migration dataset and dropping any observations for which fips is missing:

```
. use migration, clear
. drop if missing(fips)
. save mymigration
```

Now, merge with your analysis file:
. use project, clear
. merge 1:1 fips using mymigration
. assert _merge!=1 // no master unmatched
. keep if _merge==3 // keep the matches
. drop _merge
You can now change Sp's _ID variable. If project.dta is not linked to a shapefile, type

```
. spset newfips, modify
```

. save, replace
If it is linked to a shapefile, type
. spset newfips, modify replace
. save, replace
File project.dta now uses NEWFIPS. There is no solution that will allow the use of old spatial weighting matrices indexed on FIPS. You will be using the NEWFIPS codes.

If your data were linked to a shapefile and you have other datasets linked to the shapefile you just reindexed, you need to do the following with each dataset:
. use dataset, clear
. spset, modify noshpfile
. merge 1:1 fips using mymigration
. assert _merge!=1 // no master unmatched
. keep if _merge==3 // keep the matches
. drop _merge
. spset newfips, modify
. spset, modify shpfile(shapefile_shp.dta)
. save, replace

Modifying whether the data are linked to a shapefile

The commands
spset, modify shpfile(shapefile)
spset, modify noshpfile
make and break links to shapefiles. When you establish a connection, variable _ID must use the same codes as the Stata-format shapefile shapefile.

We used these commands in the example in the previous section.

Converting cross-sectional data to panel data and vice versa

Cross-sectional data can become panel data and vice versa. A cross-sectional dataset could become panel because of a merge. A panel dataset could become cross-sectional because of a drop.

Here is a case of cross-sectional data becoming panel data:

```
. use analysis // cross-sectional data
. spset
    Sp dataset: analysis.dta
Linked shapefile: shapefile_shp.dta
            Data: Cross sectional
    Spatial-unit ID: _ID
    Coordinates: _CY, _CX (latitude and longitude, miles)
. merge 1:m fips using paneldata
    (output omitted)
```

Note that the data were spset before the merge, and after the merge, the data are panel data, but they are not yet xtset. If you typed spset without arguments right now, it would complain about repeated _ID values. To fix the problem, xtset the data:

```
. xtset fips time
```

Now, spset will report

```
. spset
    Sp dataset: dataset.dta
Linked shapefile: shapefile_shp.dta
    Data: Panel
Spatial-unit ID: _ID
            Time ID: time (see xtset)
        Coordinates: _CY, _CX (latitude-and-longitude, miles)
```

Now, let's convert these panel data back to cross-sectional data:

```
. keep if time==1
```

Here is how you tell Sp that the data are no longer panel data:

```
. xtset, clear
```

Now, spset will report

```
. spset
    Sp dataset: dataset.dta
Linked shapefile: shapefile_shp.dta
            Data: Cross sectional
Spatial-unit ID: _ID
            Coordinates: _CY, _CX (latitude-and-longitude, miles)
```


Stored results

spset stores the following in $r()$:
Macros

```
        r(sp_ver)
        r(sp_ver)
        r(sp_id_var)
        r(sp_shp_dta_path) path to _shp.dta file
        r(sp_shp_dta) shapefile_shp.dta
    r(sp_cx) _CX or empty
    r(sp_cy) _CY or empty
    r(sp_coord_sys)
        r(sp_coord_sys_dunit) kilometers or miles if r(sp_coord_sys)=latlong
        r(sp_ver)
        varname or empty
    planar or latlong
```


Also see

[SP] Intro 3 - Preparing data for analysis
[SP] Intro 4 - Preparing data: Data with shapefiles
[SP] Intro 5 - Preparing data: Data containing locations (no shapefiles)
[SP] Intro 6 - Preparing data: Data without shapefiles or locations
[SP] Intro 7 - Example from start to finish
[SP] spbalance - Make panel data strongly balanced
[SP] spdistance - Calculator for distance between places
[SP] spshape2dta - Translate shapefile to Stata format
[XT] xtset - Declare data to be panel data

Title

spshape2dta - Translate shapefile to Stata format

| Description | Quick start | Menu | Syntax |
| :--- | :--- | :--- | :--- |
| Options | Remarks and examples | Also see | |

Description

spshape2dta name reads files name.shp and name.dbf and creates Sp dataset name.dta and translated shapefile name_shp.dta. The translated shapefile will be linked to the Sp dataset name.dta.

Quick start

Create myfile.dta and myfile_shp.dta from myfile.shp and myfile.dbf
spshape2dta myfile
Create newfile.dta and newfile_shp.dta from oldfile.shp and oldfile.dbf spshape2dta oldfile, saving(newfile)

Menu

Statistics $>$ Spatial autoregressive models

Syntax

spshape2dta name [, options]

| options | Description |
| :--- | :--- |
| clear | clear existing data from memory |
| replace | if name.dta or name_shp.dta exists, replace them |
| saving(name2) | create new files named name2.dta and name2_shp.dta instead of |
| | name.dta and name_shp.dta |

spshape2dta translates files name.shp and name.dbf. They must be in the current directory.
spshape2dta creates files name.dta and name_shp.dta. They will be created in the current directory. The data in memory, if any, remain unchanged.

Options

clear specifies to clear any data in memory.
replace specifies that if the new files being created already exist on disk, they can be replaced. saving (name2) specifies that rather than the new files being named name.dta and name_shp.dta, they be named name2.dta and name2_shp.dta.

Remarks and examples

spshape2dta is the first step in preparing data to be used with shapefiles. See [SP] Intro 4 for step-by-step instructions.
spshape2dta creates two files:

```
name.dta
name_shp.dta
```

name. dta is an ordinary Stata dataset. The dataset will have N observations, one for each spatial unit. The dataset will be spset.

```
. use name
```

. spset

Sp dataset: name.dta
Linked shapefile: name_shp.dta
Data: Cross sectional
Spatial-unit ID: _ID
Coordinates: _CY, _CX (latitude-and-longitude, miles)
name.dta will contain the variables
_ID values $1,2, \ldots, N$. This variable links observations in the data to observations in the Stata-format shapefile, name_shp.dta.
_CX, _CY
contain the centroids for the places (spatial units)
name. dta will include the other variables defined in name. dbf . Usually, there will be five or ten. What they contain varies but can usually be determined from their names and by looking at their values.
name.dta will be linked to name_shp.dta, which is called the Stata-format shapefile. It contains the map. It too is an ordinary Stata dataset, but you ignore it. Sp will use name_shp.dta behind the scenes when you construct contiguity spatial weighting matrices using spmatrix create contiguity or when you graph choropleth maps using grmap.

Also see

[SP] Intro 3 - Preparing data for analysis
[SP] Intro 4 - Preparing data: Data with shapefiles

Title

spxtregress - Spatial autoregressive models for panel data

Description
Syntax
Remarks and examples
References

Quick start

Options for spxtregress, fe
Stored results
Also see

Menu

Options for spxtregress, re Methods and formulas

Description

spxtregress fits spatial autoregressive (SAR) models, also known as simultaneous autoregressive models, for panel data. The commands spxtregress, fe and spxtregress, re are extensions of xtreg, fe and xtreg, re for spatial data; see [XT] xtreg.

If you have not read [SP] Intro 1-[SP] Intro 8, you should do so before using spxtregress.
To use spxtregress, your data must be Sp data and xtset. See [SP] Intro 3 for instructions on how to prepare your data.

To specify spatial lags, you will need to have one or more spatial weighting matrices. See [SP] Intro 2 and [SP] spmatrix for an explanation of the types of weighting matrices and how to create them.

Quick start

SAR fixed-effects model of y on x 1 and x 2 with a spatial lag of y specified by the spatial weighting matrix W
spxtregress y x1 x2, fe dvarlag(W)
Add a spatially lagged error term also specified by W
spxtregress y x1 x2, fe dvarlag(W) errorlag(W)
Add spatial lags of covariates $x 1$ and $x 2$
spxtregress y x1 x2, fe dvarlag(W) errorlag(W) ivarlag(W: x1 x2)
Add an additional spatial lag of the covariates specified by the matrix M
spxtregress y x1 x2, fe dvarlag(W) errorlag(W) ivarlag(W: x1 x2) /// ivarlag (M: x1 x2)

SAR random-effects model
spxtregress y x1 x2, re dvarlag(W) errorlag(W) ivarlag(W: x1 x2) /// ivarlag (M: x1 x2)

An re model with panel effects that follow the same spatial process as the errors using sarpanel
spxtregress y x1 x2, re sarpanel dvarlag(W) errorlag(W) ///
ivarlag(W: x1 x2) ivarlag(M: x1 x2)

Menu

Statistics $>$ Spatial autoregressive models

Syntax

Fixed-effects maximum likelihood
spxtregress depvar [indepvars] [if] [in], fe [fe_options]

Random-effects maximum likelihood
spxtregress depvar [indepvars] [if] [in], re [re_options]

fe_options

Description
Model
*fe
dvarlag (spmatname)
errorlag (spmatname)
ivarlag (spmatname : varlist)
force
gridsearch(\#)

Reporting
level(\#)
display_options
use fixed-effects estimator
spatially lagged dependent variable spatially lagged errors
spatially lagged independent variables; repeatable allow estimation when estimation sample is a subset of the sample used to create the spatial weighting matrix resolution of the initial-value search grid; seldom used
set confidence level; default is level (95)
control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling

Maximization
maximize_options
control the maximization process; seldom used
coeflegend

Description

Model

*re
dvarlag (spmatname)
errorlag (spmatname)
ivarlag(spmatname : varlist)
sarpanel
noconstant
force
use random-effects estimator
spatially lagged dependent variable
spatially lagged errors
spatially lagged independent variables; repeatable
alternative formulation of the estimator in which the panel effects follow the same spatial process as the errors
suppress constant term
allow estimation when estimation sample is a subset of the sample used to create the spatial weighting matrix

Reporting
level(\#)
display_options

Maximization
maximize_options
coeflegend
set confidence level; default is level (95)
control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling
control the maximization process; seldom used display legend instead of statistics

* You must specify either fe or re.
indepvars and varlist specified in ivarlag() may contain factor variables; see [U] 11.4.3 Factor variables. collect is allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options for spxtregress, fe

\qquad Model
fe requests the fixed-effects regression estimator.
dvarlag (spmatname) specifies a spatial weighting matrix that defines a spatial lag of the dependent variable. Only one dvarlag () option may be specified. By default, no spatial lags of the dependent variable are included.
errorlag (spmatname) specifies a spatial weighting matrix that defines a spatially lagged error. Only one errorlag() option may be specified. By default, no spatially lagged errors are included.
ivarlag (spmatname : varlist) specifies a spatial weighting matrix and a list of independent variables that define spatial lags of the variables. This option is repeatable to allow spatial lags created from different matrices. By default, no spatial lags of the independent variables are included.
force requests that estimation be done when the estimation sample is a proper subset of the sample used to create the spatial weighting matrices. The default is to refuse to fit the model. Weighting matrices potentially connect all the spatial units. When the estimation sample is a subset of this space, the spatial connections differ and spillover effects can be altered. In addition, the normalization of the weighting matrix differs from what it would have been had the matrix been normalized over the estimation sample. The better alternative to force is first to understand the
spatial space of the estimation sample and, if it is sensible, then create new weighting matrices for it. See [SP] spmatrix and Missing values, dropped observations, and the W matrix in [SP] Intro 2. gridsearch(\#) specifies the resolution of the initial-value search grid. The default is gridsearch(0.1). You may specify any number between 0.001 and 0.1 inclusive.
\qquad Reporting
level(\#); see [R] Estimation options.
display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabel, fvwrap(\#), fvwrapon(style), cformat (\%fmt), pformat (\%fmt), sformat (\% $\% m t$), and nolstretch; see [R] Estimation options.

Maximization
maximize_options: difficult, technique (algorithm_spec), iterate(\#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(\#), ltolerance(\#), nrtolerance(\#), and nonrtolerance; see [R] Maximize.

The following option is available with spxtregress, fe but is not shown in the dialog box:
coeflegend; see [R] Estimation options.

Options for spxtregress, re

Model
re requests the generalized least-squares random-effects estimator.
dvarlag (spmatname) specifies a spatial weighting matrix that defines a spatial lag of the dependent variable. Only one dvarlag() option may be specified. By default, no spatial lags of the dependent variable are included.
errorlag (spmatname) specifies a spatial weighting matrix that defines a spatially lagged error. Only one errorlag() option may be specified. By default, no spatially lagged errors are included.
ivarlag (spmatname : varlist) specifies a spatial weighting matrix and a list of independent variables that define spatial lags of the variables. This option is repeatable to allow spatial lags created from different matrices. By default, no spatial lags of the independent variables are included.
sarpanel requests an alternative formulation of the estimator in which the panel effects follow the same spatial process as the errors. By default, the panel effects are included in the estimation equation as an additive term, just as they are in the standard nonspatial random-effects model. When sarpanel and errorlag (spmatname) are specified, the panel effects also have a spatial autoregressive form based on spmatname. If errorlag() is not specified with sarpanel, the estimator is identical to the estimator when sarpanel is not specified. The sarpanel estimator was originally developed by Kapoor, Kelejian, and Prucha (2007); see Methods and formulas.
noconstant; see [R] Estimation options.
force requests that estimation be done when the estimation sample is a proper subset of the sample used to create the spatial weighting matrices. The default is to refuse to fit the model. This is the same force option described for use with spxtregress, fe.
level(\#); see [R] Estimation options.
display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabel, fvwrap(\#), fvwrapon(style), cformat (\%fmt), pformat (\%fmt), sformat (\% fint), and nolstretch; see [R] Estimation options.
\qquad Maximization
maximize_options: difficult, technique (algorithm_spec), iterate(\#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(\#), ltolerance(\#), nrtolerance(\#), and nonrtolerance; see [R] Maximize.

The following option is available with spxtregress, re but is not shown in the dialog box: coeflegend; see [R] Estimation options.

Remarks and examples

See [SP] Intro for an overview of SAR models.
Datasets for Sp panel models contain observations on geographical areas or other units with multiple observations on each unit. See [SP] Intro 3 for an explanation of how to work with Sp panel data. The data must be xtset and must be strongly balanced. There must be a within-panel identifier, a variable indicating time or the equivalent, and the values of this identifier must be the same for every panel. The command spbalance will strongly balance datasets that are not strongly balanced. See [SP] Intro 3, [SP] Intro 7, and [SP] spbalance.

Remarks and examples are presented under the following headings:

```
Sp panel models
The fixed-effects model
The random-effects model
The random-effects model with autoregressive panel effects
Differences among models
Examples
```


Sp panel models

Both the fixed-effects and the random-effects models for spatial panel data can be written as

$$
\begin{align*}
& \mathbf{y}_{n t}=\lambda \mathbf{W} \mathbf{y}_{n t}+\mathbf{X}_{n t} \beta+\mathbf{c}_{n}+\mathbf{u}_{n t} \tag{1}\\
& \mathbf{u}_{n t}=\rho \mathbf{M} \mathbf{u}_{n t}+\mathbf{v}_{n t} \quad t=1,2, \ldots, T
\end{align*}
$$

where $\mathbf{y}_{n t}=\left(y_{1 t}, y_{2 t}, \ldots, y_{n t}\right)^{\prime}$ is an $n \times 1$ vector of observations for the dependent variable for time period t with n number of panels; $\mathbf{X}_{n t}$ is a matrix of time-varying regressors; \mathbf{c}_{n} is a vector of panel-level effects; $\mathbf{u}_{n t}$ is the spatially lagged error; $\mathbf{v}_{n t}$ is a vector of disturbances and is independent and identically distributed (i.i.d.) across panels and time with variance σ^{2}; and \mathbf{W} and \mathbf{M} are spatial weighting matrices.

The fixed-effects model

For fixed effects, spxtregress, fe implements the quasimaximum likelihood (QML) estimator in Lee and Yu (2010a) to fit the model. A transformation is used to eliminate the fixed effects from the equations, yielding

$$
\begin{aligned}
& \widetilde{\mathbf{y}}_{n t}=\lambda \mathbf{W} \widetilde{\mathbf{y}}_{n t}+\widetilde{\mathbf{X}}_{n t} \beta+\widetilde{\mathbf{u}}_{n t} \\
& \widetilde{\mathbf{u}}_{n t}=\rho \mathbf{M} \widetilde{\mathbf{u}}_{n t}+\widetilde{\mathbf{v}}_{n t} \quad t=1,2, \ldots, T-1
\end{aligned}
$$

Panel effects, which are effects that are constant within panels, are conditioned out of the likelihood. Only covariates that vary within panels can be fit with this estimator.

The random-effects model

For random effects, spxtregress, re assumes that \mathbf{c}_{n} in (1) is normal i.i.d. across panels with mean 0 and variance $\sigma_{\mathbf{c}}^{2}$. The output of spxtregress, re displays estimates of $\sigma_{\mathbf{c}}$, labeled as /sigma_u, and σ, labeled as /sigma_e, which is consistent with how xtreg, re labels the output.

The random-effects model with autoregressive panel effects

The sarpanel option for random-effects models fits a slightly different set of equations from (1):

$$
\begin{aligned}
& \mathbf{y}_{n t}=\lambda \mathbf{W} \mathbf{y}_{n t}+\mathbf{X}_{n t} \beta+\mathbf{u}_{n t} \\
& \mathbf{u}_{n t}=\rho \mathbf{M} \mathbf{u}_{n t}+\mathbf{c}_{n}+\mathbf{v}_{n t}, \quad t=1,2, \ldots, T
\end{aligned}
$$

In this variant due to Kapoor, Kelejian, and Prucha (2007), the panel-level effects \mathbf{c}_{n} are considered a disturbance in the error equation. Because \mathbf{c}_{n} enters the equation as an additive term next to $\mathbf{v}_{n t}$, the panel-level effects \mathbf{c}_{n} have the same autoregressive form as the time-level errors $\mathbf{v}_{n t}$.

Differences among models

All three of the models-fe, re, and re sarpanel-are fit using maximum likelihood (ML) estimation. The differences are 1) fe removes the panel-level effects from the estimation and no distributional assumptions are made about them; 2) re models the panel-level effects as normal i.i.d.; and 3) re sarpanel assumes a normal distribution for panel-level effects but with the same autoregressive form as the time-level errors. The fe model allows the panel-level effects to be correlated with the observed covariates, whereas the re models require that the panel-level effects are independent of the observed covariates. See Methods and formulas for details. Also see Choosing weighting matrices and their normalization in [SP] spregress; the discussion there applies to these three estimation models.

Examples

> Example 1: spxtregress, re

We have data on the homicide rate in counties in southern states of the U.S. for the years 1960, 1970, 1980, and 1990. homicide_1960_1990.dta contains hrate, the county-level homicide rate per year per 100,000 persons for each of the four years. It also contains \ln _population, the logarithm of the county population; ln_pdensity, the logarithm of the population density; and gini, the Gini coefficient for the county, a measure of income inequality where larger values represent more inequality (Gini 1909). The data are an extract of the data originally used by Messner et al. (2000); see Britt (1994) for a literature review of the topic. The 1990 data are used in the examples in [SP] spregress.

We used spshape2dta to convert shapefiles into Stata .dta files, and then we merged the data file by county ID with our homicide-rate data. See [SP] Intro 4, [SP] Intro 7, [SP] spshape2dta, and [SP] spset.

Because the analysis dataset and the Stata-formatted shapefile must be in our working directory to spset the data, we first save both homicide_1960_1990.dta and homicide_1960_1990_shp.dta to our working directory by using the copy command. We then load the data and type spset to see the Sp settings.

```
. copy https://www.stata-press.com/data/r18/homicide_1960_1990.dta .
. copy https://www.stata-press.com/data/r18/homicide_1960_1990_shp.dta .
. use homicide_1960_1990
(S.Messner et al.(2000), U.S southern county homicide rate in 1960-1990)
. spset
    Sp dataset: homicide_1960_1990.dta
Linked shapefile: homicide_1960_1990_shp.dta
            Data: Cross sectional
    Spatial-unit ID: _ID
    Coordinates: _CX, _CY (planar)
variable _ID does not uniquely identify the observations in the master data
r(459);
```

We get an error! The data have not been xtset, and spxtregress requires it. Our data consist of 1,412 counties, and for each county we have data for four years. Our data look like this:

```
. list _ID year in 1/8, sepby(_ID)
```

| _ID | year |
| :---: | :---: |
| 876 | 1960 |
| 876 | 1970 |
| 876 | 1980 |
| 876 | 1990 |
| 921 | 1960 |
| 921 | 1970 |
| 921 | 1980 |
| 921 | 1990 |

We type

```
. xtset _ID year
Panel variable: _ID (strongly balanced)
    Time variable: year, 1960 to 1990, but with gaps
        Delta: 1 unit
```

xtset reports that our data are strongly balanced. Each county has data for the same four years. spxtregress requires the data to be strongly balanced. Missing values in our variables could cause the estimation sample to be unbalanced. The Sp panel estimators will complain, and we will have to make the data strongly balanced for the nonmissing values of the variables in our model. If you get a message that your data are not strongly balanced, see [SP] spbalance.

After having xtset our data, we type spset to check our Sp settings.

```
. spset
    Sp dataset: homicide_1960_1990.dta
Linked shapefile: homicide_1960_1990_shp.dta
            Data: Panel
    Spatial-unit ID: _ID
        Time ID: year (see xtset)
        Coordinates: _CX, _CY (planar)
```

We first run a nonspatial random-effects model by using xtreg, re and include dummies for the years by using the i.year factor-variable notation.

| Random-effects GLS regression Group variable: _ID | | | | Number | f obs | 5,648 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Number | f groups | 1,412 |
| R -squared: | | | | Obs per group: | | |
| Within $=0.0478$ | | | | | min | 4 |
| Between $=0.1666$ | | | | | avg | 4.0 |
| Overall $=0.0905$ | | | | | max | 4 |
| | | | | Wald ch | 2(6) | 414.32 |
| $\operatorname{corr}\left(u_{-} \mathrm{i}, \mathrm{X}\right)=0$ (assumed) | | | | Prob > | hi2 | 0.0000 |
| hrate | Coefficient | Std. err. | z | $P>\|z\|$ | [95\% conf. interval] | |
| ln_populat~n
 ln_pdensity gini | . 4394103 | . 1830599 | 2.40 | 0.016 | . 0806194 | . 7982012 |
| | . 3220698 | . 1591778 | 2.02 | 0.043 | . 0100872 | . 6340525 |
| | 34.43792 | 2.905163 | 11.85 | 0.000 | 28.7439 | 40.13193 |
| year | | | | | | |
| 1970 | 1.411074 | . 2579218 | 5.47 | 0.000 | . 9055562 | 1.916591 |
| 1980 | 1.347822 | . 2499977 | 5.39 | 0.000 | . 8578352 | 1.837808 |
| 1990 | . 3668468 | . 2648395 | 1.39 | 0.166 | -. 1522291 | . 8859228 |
| _cons | -10.07267 | 1.800932 | -5.59 | 0.000 | -13.60243 | -6.542908 |
| sigma_u | 3.5995346 | | | | | |
| sigma_erho | 5.646151 | | | | | |
| | . 28898083 | (fraction | f vari | ce due t | u_i) | |

We emphasize that you can ignore the spatial aspect of the data and use any of Stata's estimation commands even though the data are spatial. Doing that is often a good idea. It provides a baseline against which you can compare subsequent spatial results.

We are now going to fit a spatial random-effects model. To do that, we need a spatial weighting matrix. We will create one that puts the same positive weight on contiguous counties and a 0 weight
on all other counties-a matrix known as a contiguity matrix. We will use the default spectral normalization for this example. See [SP] spmatrix create. When we create the matrix, we must restrict spmatrix create to one observation per panel. That is easy to do using an if statement:

```
. spmatrix create contiguity W if year == 1990
```

Do not misinterpret the purpose of if year $==1990$. The matrix created will be appropriate for creating spatial lags for any year, because our map does not change. If two counties share a border in 1990, they share it in the other years too.

We can now fit our model. We include a spatial lag of the dependent variable and a spatially autoregressive error term.

```
. spxtregress hrate ln_population ln_pdensity gini i.year, re dvarlag(W)
> errorlag(W)
    (5648 observations)
    (5648 observations used)
    (data contain }1412\mathrm{ panels (places) )
    (weighting matrix defines }1412\mathrm{ places)
Fitting starting values:
Iteration 0: Log likelihood = -13299.332
Iteration 1: Log likelihood = -13298.431
Iteration 2: Log likelihood = -13298.43
Iteration 3: Log likelihood = -13298.43
Optimizing concentrated log likelihood:
Initial: Log likelihood = -18826.009
Improvement: Log likelihood = -18826.009
Rescale: Log likelihood = -18826.009
Rescale eq: Log likelihood = -18500.374
Iteration 0: Log likelihood = -18500.374 (not concave)
Iteration 1: Log likelihood = -18473.617 (not concave)
Iteration 2: Log likelihood = -18465.327
Iteration 3: Log likelihood = -18433.377
Iteration 4: Log likelihood = -18356.27
Iteration 5: Log likelihood = -18354.861
Iteration 6: Log likelihood = -18354.84
Iteration 7: Log likelihood = -18354.84
Optimizing unconcentrated log likelihood:
Iteration 0: Log likelihood = -18354.84
Iteration 1: Log likelihood = -18354.84 (backed up)
```


spxtregress, re first fits an spxtregress, fe model to get starting values. Then, it optimizes the concentrated log likelihood and then optimizes the unconcentrated \log likelihood. The final log likelihood of the concentrated will always be equal to the optimized log likelihood of the unconcentrated. The unconcentrated starts at the right point, takes a step to check that it is the right point, backs up to this point, and declares convergence as it should.

We can compare estimates of /sigma_u, the standard deviation of the panel effects, and /sigma_e, the standard deviation of the errors, with those fit by xtreg, re. They are similar. We cannot, however, directly compare the coefficient estimates with those of xtreg, re. When a spatial lag of the dependent variable is included in the model, covariates have both direct and indirect effects, as explained in example 1 of [SP] spregress. To obtain the direct, indirect, and total effects of the covariates, we must use estat impact.

Here are the averages of the effects of gini:

```
. estat impact gini
```

progress : 100\%
Average impacts \quad Number of obs $=5,648$

| | | Delta-Method
 std. err. | | | z | $\mathrm{P}>\|\mathrm{z}\|$ |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: |
| direct | [95\% conf. interval] | | | | | |
| gini | 24.11439 | 2.7159 | 8.88 | 0.000 | 18.79133 | 29.43746 |
| indirect gini | 22.73745 | 2.787573 | 8.16 | 0.000 | 17.27391 | 28.201 |
| total | | | | | | |

The percentages at the top of the output indicate progress in the estimation process. For large datasets, calculating standard errors of the effects can be time consuming, so estat impact reports its progress as it does the computations.
gini has significant average direct and average indirect effects on hrate, with both being positive. An increase in inequality is associated with an increase in the homicide rate.

We used a contiguity weighting matrix W for the spatial lags. Alternatively, we can use a weighting matrix based on the inverse distance between counties. We create this matrix, using again the default spectral normalization:
. spmatrix create idistance M if year == 1990
. spmatrix dir

| Weighting matrix name | | N x N | Type | Normalization |
| ---: | ---: | :--- | :--- | :--- |
| M | 1412×1412 | idistance | spectral | |
| W | 1412×1412 | contiguity | spectral | |

We would like to know if the effects of gini differ over time, so we include an interaction of gini and year in our model, and we use the weighting matrix M that we just created.

| ```> dvarlag(M) errorlag(M) (5648 observations) (5648 observations used) (data contain }1412\mathrm{ panels (places)) (weighting matrix defines }1412\mathrm{ places) (output omitted)``` | | | |
| :---: | :---: | :---: | :---: |
| Random-effects spatial regression | Number of obs | | 5,648 |
| Group variable: _ID | Number of groups | | 1,412 |
| | Obs per group | | 4 |
| | Wald chi2(10) | | 710.10 |
| | Prob > chi2 | | 0.0000 |
| Log likelihood $=-1.827 \mathrm{e}+04$ | Pseudo R2 | = | 0.1150 |

| hrate | Coefficient | Std. err. | z | $P>\|z\|$ | [95\% con | interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| hrate | | | | | | |
| ln_populat \sim n | . 7908003 | . 1764819 | 4.48 | 0.000 | . 444902 | 1.136698 |
| ln_pdensity | -. 1223671 | . 166526 | -0.73 | 0.462 | -. 4487521 | . 2040179 |
| gini | 17.82039 | 4.278782 | 4.16 | 0.000 | 9.43413 | 26.20665 |
| year | | | | | | |
| 1970 | -2.456656 | 2.303073 | -1.07 | 0.286 | -6.970596 | 2.057284 |
| 1980 | -9.470622 | 2.501528 | -3.79 | 0.000 | -14.37353 | -4.567717 |
| 1990 | -22.81817 | 2.528691 | -9.02 | 0.000 | -27.77432 | -17.86203 |
| year\#c.gini | | | | | | |
| 1970 | 6.664314 | 6.130454 | 1.09 | 0.277 | -5.351156 | 18.67978 |
| 1980 | 24.86122 | 6.715029 | 3.70 | 0.000 | 11.70001 | 38.02243 |
| 1990 | 57.40946 | 6.691102 | 8.58 | 0.000 | 44.29514 | 70.52378 |
| _cons | -11.17804 | 2.061047 | -5.42 | 0.000 | -15.21762 | -7.138466 |
| M | | | | | | |
| hrate | . 694492 | . 0496075 | 14.00 | 0.000 | . 5972631 | . 7917209 |
| e.hrate | 1.950078 | . 0513563 | 37.97 | 0.000 | 1.849422 | 2.050735 |
| /sigma_u | 2.696022 | . 1147302 | | | 2.480277 | 2.930533 |
| /sigma_e | 5.645628 | . 0618616 | | | 5.525674 | 5.768186 |

Wald test of spatial terms: chi2(2) = 1711.11 Prob > chi2 = 0.0000
Using the contrast command, we test the significance of the gini and year interaction:
. contrasts c.gini\#year
Contrasts of marginal linear predictions
Margins: asbalanced

| | df | chi2 | P>chi2 |
| :--- | :---: | :---: | :---: |
| hrate
 year\#c.gini | 3 | 81.59 | 0.0000 |

The interaction is significant. We can explore the effect of gini by year using estat impact with an if statement.


```
. estat impact gini if year == 1970
progress :100%
Average impacts \(\quad\) Number of obs \(=1,412\)
```

| | $\begin{array}{cc} & \text { Delta-Method } \\ \text { dy/dx } \quad \text { std. err. } \end{array}$ | | z | $P>\|z\|$ | [95\% conf. interval] | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| direct | | | | | | |
| gini | 24.53056 | 5.033544 | 4.87 | 0.000 | 14.66499 | 34.39613 |
| indirect | | | | | | |
| gini | 50.92535 | 15.21236 | 3.35 | 0.001 | 21.10968 | 80.74103 |
| total | | | | | | |
| gini | 75.45591 | 18.81752 | 4.01 | 0.000 | 38.57425 | 112.3376 |

. estat impact gini if year == 1980
progress : 100\%
Average impacts \quad Number of obs $=1,412$

| | $\begin{array}{cc} & \text { Delta-Method } \\ \text { dy/dx } & \text { std. err. } \end{array}$ | | z | $P>\|z\|$ | [95\% conf. interval] | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| direct | | | | | | |
| gini | 42.76155 | 5.683654 | 7.52 | 0.000 | 31.62179 | 53.9013 |
| indirect | | | | | | |
| gini | 88.77282 | 23.09515 | 3.84 | 0.000 | 43.50716 | 134.0385 |
| total | | | | | | |
| gini | 131.5344 | 26.20928 | 5.02 | 0.000 | 80.16512 | 182.9036 |

. estat impact gini if year $==1990$
progress : 100\%
Average impacts \quad Number of obs $=1,412$

| | Delta-Method
 std. err. | | | | z | $\mathrm{P}>\|\mathrm{z}\|$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| direct | [95\% conf. interval] | | | | | |
| gini | 75.37074 | 5.628584 | 13.39 | 0.000 | 64.33892 | 86.40256 |
| indirect
 gini | 156.4694 | 37.24056 | 4.20 | 0.000 | 83.47923 | 229.4596 |
| total | 231.8401 | 39.01862 | 5.94 | 0.000 | 155.365 | 308.3152 |

The if year $==\cdots$ statement used with estat impact allows us to estimate the average effects for each year. The direct, indirect, and total effects of gini trend upward.

Until now, we used the default form of the random-effects estimator. Let's run the command again, specifying the sarpanel option to use the alternative form of the estimator, where the panel-level effects have the same autoregressive form as the time-level errors.

```
. spxtregress hrate ln_population ln_pdensity c.gini##i.year, re sarpanel
> dvarlag(M) errorlag(M)
    (5648 observations)
    (5648 observations used)
    (data contain }1412\mathrm{ panels (places) )
    (weighting matrix defines }1412\mathrm{ places)
    (output omitted)
\begin{tabular}{llll} 
Random-effects spatial regression & Number of obs & \(=\) & 5,648 \\
Group variable: _ID & Number of groups & \(=\) & 1,412 \\
& Obs per group & \(=\) & 4 \\
& Wald chi2 (10) & \(=\) & 1136.49 \\
& Prob \(>\) chi2 & \(=\) & 0.0000 \\
Log likelihood \(=-1.824 e+04\) & Pseudo R2 & \(=\) & 0.1177
\end{tabular}
```

| hrate | Coefficient | Std. err. | z | $P>\|z\|$ | [95\% con | interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| hrate | | | | | | |
| ln_populat ${ }^{\text {n }}$ | . 4366742 | . 1752499 | 2.49 | 0.013 | . 0931906 | . 7801578 |
| ln_pdensity | . 1896 | . 1641331 | 1.16 | 0.248 | -. 1320949 | . 511295 |
| gini | 18.92328 | 4.426236 | 4.28 | 0.000 | 10.24802 | 27.59854 |
| year | | | | | | |
| 1970 | -. 9590229 | 2.362018 | -0.41 | 0.685 | -5.588493 | 3.670447 |
| 1980 | -8.19778 | 2.554509 | -3.21 | 0.001 | -13.20453 | -3.191035 |
| 1990 | -22.4189 | 2.610158 | -8.59 | 0.000 | -27.53472 | -17.30309 |
| year\#c.gini | | | | | | |
| 1970 | 5.865776 | 6.255307 | 0.94 | 0.348 | -6.3944 | 18.12595 |
| 1980 | 24.20335 | 6.83421 | 3.54 | 0.000 | 10.80855 | 37.59816 |
| 1990 | 58.38273 | 6.881913 | 8.48 | 0.000 | 44.89443 | 71.87103 |
| _cons | -6.535916 | 2.257848 | -2.89 | 0.004 | -10.96122 | -2.110615 |
| M | | | | | | |
| hrate | . 3317434 | . 0967132 | 3.43 | 0.001 | . 142189 | . 5212978 |
| e.hrate | 2.860571 | . 0558304 | 51.24 | 0.000 | 2.751145 | 2.969996 |
| /sigma_u | 2.686156 | . 1123355 | | | 2.474764 | 2.915605 |
| /sigma_e | 5.609948 | . 0612095 | | | 5.491253 | 5.731208 |

Wald test of spatial terms:
chi2 $(2)=2685.83 \quad$ Prob $>$ chi2 $=0.0000$
The re and re sarpanel estimators give appreciably different estimates for the coefficient of the spatial lag of hrate and for the autoregressive error term. Estimates of other terms are similar. It appears that some of the spatial-lag effect of hrate is being accounted for by the autoregressive form of the panel effects in the sarpanel model.
> Example 2: spxtregress, fe
The random-effects estimator assumes that the panel-level effects are uncorrelated with the covariates in the model. We can relax that assumption using the fixed-effects estimator.

We will fit fixed-effects models for the same data we used in example 1. Here's a nonspatial model fit with xtreg, fe.

We now use spxtregress, fe and include a spatial lag of the dependent variable hrate.

```
. spxtregress hrate ln_population ln_pdensity gini, fe dvarlag(M)
    (5648 observations)
    (5648 observations used)
    (data contain }1412\mathrm{ panels (places) )
    (weighting matrix defines }1412\mathrm{ places)
Performing grid search ... finished
Optimizing concentrated log likelihood:
Iteration 0: Log likelihood = -13321.27
Iteration 1: Log likelihood = -13321.27 (backed up)
Iteration 2: Log likelihood = -13321.269
Optimizing unconcentrated log likelihood:
Iteration 0: Log likelihood = -13321.269
Iteration 1: Log likelihood = -13321.269 (backed up)
```

Fixed-effects spatial regression
Group variable: ID
spxtregress, fe does not give an estimate of /sigma_u because the spatial fixed-effects estimator does not give consistent estimates for the levels of the panel fixed effects nor for their standard deviation. See Methods and formulas.

We cannot fit a fixed-effects model with all the terms we included in example 1. The i.year dummies are not allowed because spxtregress, fe assumes individual fixed effects only, as specified in section 2 of Lee and Yu (2010a).

In example 1, we found that gini was an important regressor and that the effect of gini differed across time. We will use Stata's factor-variable notation and add to the model c.gini\#i.year, which is gini interacted by year without main effects.

```
. spxtregress hrate ln_population ln_pdensity c.gini#i.year, fe
> dvarlag(M) errorlag(M)
    (5648 observations)
    (5648 observations used)
    (data contain }1412\mathrm{ panels (places) )
    (weighting matrix defines }1412\mathrm{ places)
    (output omitted)
\begin{tabular}{llll} 
Fixed-effects spatial regression & Number of obs & \(=\) & 5,648 \\
Group variable: _ID & Number of groups & \(=\) & 1,412 \\
& Obs per group & \(=\) & 4 \\
& Wald chi2 (7) & \(=\) & 128.16 \\
& Prob \(>\) chi2 & \(=\) & 0.0000 \\
Log likelihood \(=-1.330 e+04\) & Pseudo R2 & \(=\) & 0.0001
\end{tabular}
```

| hrate | Coefficient | Std. err. | z | $\mathrm{P}>\|\mathrm{z}\|$ | [95\% conf | interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| hrate | | | | | | |
| ln_populat \sim_{n} | -2.169113 | 1.70931 | -1.27 | 0.204 | -5.519298 | 1.181073 |
| ln_pdensity | -. 7395584 | 1.638919 | -0.45 | 0.652 | -3.95178 | 2.472663 |
| year\#c.gini | | | | | | |
| 1960 | 4.637191 | 4.648659 | 1.00 | 0.319 | -4.474013 | 13.74839 |
| 1970 | 11.15786 | 4.234694 | 2.63 | 0.008 | 2.858016 | 19.45771 |
| 1980 | 11.92355 | 4.158854 | 2.87 | 0.004 | 3.77235 | 20.07476 |
| 1990 | 11.13694 | 3.975613 | 2.80 | 0.005 | 3.344885 | 18.929 |
| M | | | | | | |
| hrate | . 1251126 | . 2552472 | 0.49 | 0.624 | -. 3751629 | . 625388 |
| e.hrate | 1.604259 | . 1898228 | 8.45 | 0.000 | 1.232213 | 1.976305 |
| /sigma_e | 5.582721 | . 0606909 | | | 5.465027 | 5.702949 |

We look at the effects:

| Average impacts | | | | Number of obs | | 5,648 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $d y / d x$ | elta-Method std. err | z | $P>\|z\|$ | [95\% con | interval] |
| direct | | | | | | |
| ln_populat~n | -2.169186 | 1.709375 | -1.27 | 0.204 | -5.5195 | 1.181127 |
| ln_pdensity | -. 7395835 | 1.638973 | -0.45 | 0.652 | -3.951911 | 2.472744 |
| gini | 9.714218 | 4.112071 | 2.36 | 0.018 | 1.654706 | 17.77373 |
| indirect | | | | | | |
| ln_populat ${ }^{\text {n }}$ | -. 2894662 | . 7155598 | -0.40 | 0.686 | -1.691938 | 1.113005 |
| ln_pdensity | -. 0986934 | . 3143279 | -0.31 | 0.754 | -. 7147649 | . 517378 |
| gini | 1.29631 | 3.022576 | 0.43 | 0.668 | -4.62783 | 7.22045 |
| total | | | | | | |
| ln_populat ${ }^{\text {n }}$ | -2.458653 | 2.065714 | -1.19 | 0.234 | -6.507378 | 1.590073 |
| ln_pdensity | -. 838277 | 1.867989 | -0.45 | 0.654 | -4.499469 | 2.822915 |
| gini | 11.01053 | 5.357526 | 2.06 | 0.040 | . 5099696 | 21.51109 |

The output shows the effects of gini across all the years. estat impact is smart enough to know that there are not year effects in the fixed-effects model. When it looks at the term c.gini\#i.year, it only gives the effects for gini. If year were replaced by a variable that varied within time, estat impact would show the effects for that variable, too.

If we want to see how the effects of gini change across the years, we can use if with estat impact as we did in example 1.

| Average impacts | | | | Number of obs | | 1,412 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Delta-Method $d y / d x$ std. err. | | z | $P>\|z\|$ | [95\% conf | interval] |
| direct | | | | | | |
| gini | 4.637349 | 4.648981 | 1.00 | 0.319 | -4.474487 | 13.74918 |
| indirect | | | | | | |
| gini | . 6188292 | 1.70156 | 0.36 | 0.716 | -2.716167 | 3.953826 |
| total | | | | | | |
| gini | 5.256178 | 5.794721 | 0.91 | 0.364 | -6.101266 | 16.61362 |

There is no evidence of a trend in the average total effect of gini from the fe model.

Stored results

spxtregress, fe and spxtregress, re store the following in e():
Scalars

```
e(N)
e(N_g)
e(g)
e(k)
e(df_m)
e(df_c)
e(ll)
e(iterations)
e(rank)
e(r2_p)
e(chi2)
e(chi2_c)
e(p)
e(p_c)
e(converged)
```

number of observations
number of groups (panels)
group size
number of parameters
model degrees of freedom
degrees of freedom for test of spatial terms
log likelihood
number of maximum log-likelihood estimation iterations
rank of e(V)
pseudo- R^{2}
χ^{2}
χ^{2} for test of spatial terms
p-value for model test
p-value for test of spatial terms
1 if converged, 0 otherwise
Macros
e(cmd)
e(cmdline)
e(depvar)
e(indeps)
e(idvar)
e(model)
e(title)
e(constant)
e(dlmat)
e(elmat)
e(chi2type)
e(vce)
e(ml_method)
e(technique)
e(properties)
e(estat_cmd)
e(predict)
e(marginsok)
e(asbalanced)
e(asobserved)
Matrices

```
e(b)
e(ilog)
e(gradient)
e(Hessian)
e(V)
```

Functions
e(sample) marks estimation sample
In addition to the above, the following is stored in r() :
Matrices
r(table)
matrix containing the coefficients with their standard errors, test statistics, p-values, and confidence intervals

Note that results stored in $r()$ are updated when the command is replayed and will be replaced when any r -class command is run after the estimation command.

Methods and formulas

spxtregress, fe estimates the parameters of the SAR model with spatially autoregressive errors and fixed effects using the QML estimator derived by Lee and Yu (2010a).
spxtregress, re estimates the parameters of two different SAR models with spatially autoregressive errors and random effects. In the default model, the random effects enter the equation for the dependent variable linearly. This model and the ML estimator for its parameters were derived by Lee and Yu (2010b). When the sarpanel option is specified, the random effects are subject to the same spatial autoregressive process as the idiosyncratic errors. This model and the ML estimator of its parameters were derived by Lee and Yu (2010b), which builds on the original formulation by Kapoor, Kelejian, and Prucha (2007). All of these papers build on theoretical work in Kelejian and Prucha (2001) and Lee (2004). We use the estimator derived by Baltagi and Liu (2011) to get initial values.

Methods and formulas are presented under the following headings:
Fixed-effects estimators
Random-effects estimators

Fixed-effects estimators

The Lee and Yu (2010a) SAR model for panel data with fixed effects is

$$
\begin{align*}
& \mathbf{y}_{n t}=\lambda \mathbf{W} \mathbf{y}_{n t}+\mathbf{X}_{n t} \beta+\mathbf{c}_{n}+\mathbf{u}_{n t} \tag{2}\\
& \mathbf{u}_{n t}=\rho \mathbf{M} \mathbf{u}_{n t}+\mathbf{v}_{n t} \quad t=1,2, \ldots, T
\end{align*}
$$

where
$\mathbf{y}_{n t}=\left(y_{1 t}, y_{2 t}, \ldots, y_{n t}\right)^{\prime}$ is an $n \times 1$ vector of observations on the dependent variable for time period t;
$\mathbf{X}_{n t}$ is an $n \times k$ matrix of nonstochastic time-varying regressors for time period $t . \mathbf{X}_{n t}$ may also contain spatial lag of exogenous covariates;
\mathbf{c}_{n} is an $n \times 1$ vector of individual effects;
$\mathbf{u}_{n t}$ is an $n \times 1$ vector of spatially lagged error;
$\mathbf{v}_{n t}=\left(v_{1 t}, v_{2 t}, \ldots, v_{n t}\right)^{\prime}$ is an $n \times 1$ vector of innovations, and $v_{i t}$ is i.i.d. across i and t with variance σ^{2}; and
\mathbf{W} and \mathbf{M} are $n \times n$ spatial weighting matrices.
spxtregress, fe estimates the parameters in this model by using the QML estimator derived by Lee and Yu (2010a). Lee and Yu (2010a) uses an orthogonal transformation to remove the fixed effects \mathbf{c}_{n} without inducing dependence in the transformed errors. The transform $\mathbf{F}_{T, T-1}$ is part of $\left[\mathbf{F}_{T, T-1}, 1 / \sqrt{T} \mathbf{l}_{T}\right]$, which is the orthonormal eigenvector matrix of $\left(\mathbf{I}_{T}-1 / T \mathbf{l}_{T} \mathbf{l}_{T}^{\prime}\right)$, where \mathbf{I}_{T} is the $T \times T$ identity matrix and \mathbf{l}_{T} is a $T \times 1$ vector of 1 s . Kuersteiner and Prucha (2015) discuss this class of transforms.

For any $n \times T$ matrix $\left[\mathbf{z}_{n 1}, \mathbf{z}_{n 2}, \ldots, \mathbf{z}_{n T}\right]$, the transformed $n \times(T-1)$ matrix is defined as

$$
\left[\widetilde{\mathbf{z}}_{n 1}, \widetilde{\mathbf{z}}_{n 2}, \ldots, \widetilde{\mathbf{z}}_{n, T-1}\right]=\left[\mathbf{z}_{n 1}, \mathbf{z}_{n 2}, \ldots, \mathbf{z}_{n T}\right] \mathbf{F}_{T, T-1}
$$

Thus, the transformed model for (2) is

$$
\begin{aligned}
& \widetilde{\mathbf{y}}_{n t}=\lambda \mathbf{W} \widetilde{\mathbf{y}}_{n t}+\widetilde{\mathbf{X}}_{n t} \beta+\widetilde{\mathbf{u}}_{n t} \\
& \widetilde{\mathbf{u}}_{n t}=\rho \mathbf{M} \widetilde{\mathbf{u}}_{n t}+\widetilde{\mathbf{v}}_{n t} \quad t=1,2, \ldots, T-1
\end{aligned}
$$

The transformed innovations $\widetilde{\mathbf{v}}_{n t}$ are uncorrelated for all i and t.

The log-likelihood function for the transformed model is
$\ln L_{n, T}(\theta)=-\frac{n(T-1)}{2} \ln \left(2 \pi \sigma^{2}\right)+(T-1)\left[\ln \left|\mathbf{S}_{n}(\lambda)\right|+\ln \left|\mathbf{R}_{n}(\rho)\right|\right]-\frac{1}{2 \sigma^{2}} \sum_{t=1}^{T-1} \widetilde{\mathbf{v}}_{n t}^{\prime}(\theta) \widetilde{\mathbf{v}}_{n t}(\theta)$
where $\mathbf{S}_{n}(\lambda)=\mathbf{I}_{n}-\lambda \mathbf{W}, \mathbf{R}_{n}(\rho)=\mathbf{I}_{n}-\rho \mathbf{M}$, and $\theta=\left(\beta^{\prime}, \lambda, \rho, \sigma^{2}\right)^{\prime}$.

Random-effects estimators

spxtregress, re fits two different random-effects SAR models for panel data. In the default model, the random effects enter the equation for $\mathbf{y}_{n t}$ linearly.

$$
\begin{align*}
& \mathbf{y}_{n t}=\lambda \mathbf{W} \mathbf{y}_{n t}+\mathbf{Z}_{n t} \beta+\mathbf{c}_{n}+\mathbf{u}_{n t} \tag{3}\\
& \mathbf{u}_{n t}=\rho \mathbf{M} \mathbf{u}_{n t}+\mathbf{v}_{n t} \quad t=1,2, \ldots, T
\end{align*}
$$

where
$\mathbf{Z}_{n t}$ may contain time-variant and -invariant regressors;
\mathbf{c}_{n} is random effects with mean 0 and variance $\sigma_{\mathbf{c}}^{2}$; and
all the other terms are defined as in (2).
When the sarpanel option is specified, spxtregress, re fits a model in which the random effects \mathbf{c}_{n} are subject to the same spatial autoregressive process as the errors.

$$
\begin{align*}
& \mathbf{y}_{n t}=\lambda \mathbf{W} \mathbf{y}_{n t}+\mathbf{Z}_{n t} \beta+\mathbf{u}_{n t} \\
& \mathbf{u}_{n t}=\rho \mathbf{M} \mathbf{u}_{n t}+\mathbf{c}_{n}+\mathbf{v}_{n t} \quad t=1,2, \ldots, T \tag{4}
\end{align*}
$$

When the \mathbf{c}_{n} are treated as fixed effects and transformed out of the model, the default model in (3) is equivalent to the sarpanel model in (4). When treating the \mathbf{c}_{n} as random effects, these two models are different.

For (3) or (4), we can stack all the time periods and write the equations as an $n T \times 1$ vector form

$$
\begin{equation*}
\mathbf{y}_{n T}=\lambda\left(\mathbf{I}_{T} \otimes \mathbf{W}\right) \mathbf{y}_{n T}+\mathbf{Z}_{n T} \beta+\xi_{n T} \tag{5}
\end{equation*}
$$

where
$\mathbf{y}_{n T}=\left(\mathbf{y}_{n 1}^{\prime}, \mathbf{y}_{n 2}^{\prime}, \ldots, \mathbf{y}_{n t}^{\prime}\right)^{\prime}$ is an $n T \times 1$ vector of observations of the dependent variable for $i=1, \ldots, n$ and $t=1, \ldots, T$;
$\mathbf{v}_{n T}=\left(\mathbf{v}_{n 1}^{\prime}, \mathbf{v}_{n 2}^{\prime}, \ldots, \mathbf{v}_{n t}^{\prime}\right)^{\prime}$ is an $n T \times 1$ vector of innovations;
$\mathbf{Z}_{n T}=\left\{\mathbf{Z}_{n 1}^{\prime}, \mathbf{Z}_{n 2}^{\prime}, \ldots, \mathbf{Z}_{*}(\rho)^{\prime}\right\}^{\prime}$ is an $n T \times k$ matrix of k regressors for $i=1, \ldots, n$ and $t=1, \ldots, T$; and
$\xi_{n T}$ is the overall disturbance $n T \times 1$ vector.
For (3), the overall disturbance vector $\xi_{n T}$ is

$$
\xi_{n T}=\mathbf{l}_{T} \otimes \mathbf{c}_{n}+\left\{\mathbf{I}_{T} \otimes \mathbf{R}_{n}(\rho)^{-1}\right\} \mathbf{v}_{n T}
$$

where $\mathbf{R}_{n}(\rho)=\mathbf{I}_{n}-\rho \mathbf{M}$. Its variance matrix is

$$
\Omega_{n T}(\theta)=\sigma_{\mathbf{c}}^{2}\left(\mathbf{l}_{T} \mathbf{l}_{T}^{\prime} \otimes \mathbf{I}_{T}\right)+\sigma^{2}\left\{\mathbf{I}_{T} \otimes \mathbf{R}_{n}(\rho)^{-1} \mathbf{R}_{n}^{\prime}(\rho)^{-1}\right\}
$$

For (4), the overall disturbance vector $\xi_{n T}$ is

$$
\xi_{n T}=\mathbf{l}_{T} \otimes \mathbf{R}_{n}(\rho)^{-1} \mathbf{c}_{n}+\left\{\mathbf{I}_{T} \otimes \mathbf{R}_{n}(\rho)^{-1}\right\} \mathbf{v}_{n T}
$$

Its variance matrix is

$$
\Omega_{n T}(\theta)=\sigma_{\mathbf{c}}^{2}\left\{\mathbf{l}_{T} \mathbf{l}_{T}^{\prime} \otimes \mathbf{R}_{n}(\rho)^{-1} \mathbf{R}_{n}^{\prime}(\rho)^{-1}\right\}+\sigma^{2}\left\{\mathbf{I}_{T} \otimes \mathbf{R}_{n}(\rho)^{-1} \mathbf{R}_{n}^{\prime}(\rho)^{-1}\right\}
$$

The log-likelihood function for (5) is

$$
\ln L_{n T}(\theta)=-\frac{n T}{2} \ln (2 \pi)-\frac{1}{2} \ln \left|\Omega_{n T}(\theta)\right|+T \ln \left|\mathbf{S}_{n}(\lambda)\right|-\frac{1}{2} \xi_{n T}^{\prime}(\theta) \Omega_{n T}(\theta)^{-1} \xi_{n T}(\theta)
$$

where $\mathbf{S}_{n}(\lambda)=\mathbf{I}_{n}-\lambda \mathbf{W}$, and $\theta=\left(\beta^{\prime}, \lambda, \rho, \sigma_{\mathbf{c}}^{2}, \sigma^{2}\right)^{\prime}$.

References

Baltagi, B. H., and L. Liu. 2011. Instrumental variable estimation of a spatial autoregressive panel model with random effects. Economics Letters 111: 135-137. https://doi.org/10.1016/j.econlet.2011.01.016.
Britt, C. L. 1994. Crime and unemployment among youths in the United States, 1958-1990: A time series analysis. American Journal of Economics and Sociology 53: 99-109. https://doi.org/10.1111/j.1536-7150.1994.tb02680.x.

Gini, C. 1909. Concentration and dependency ratios (in Italian). English translation in Rivista di Politica Economica 1997 87: 769-789.

Kapoor, M., H. H. Kelejian, and I. R. Prucha. 2007. Panel data models with spatially correlated error components. Journal of Econometrics 140: 97-130. https://doi.org/10.1016/j.jeconom.2006.09.004.

Kelejian, H. H., and I. R. Prucha. 2001. On the asymptotic distribution of the Moran I test statistic with applications. Journal of Econometrics 104: 219-257. https://doi.org/10.1016/S0304-4076(01)00064-1.
Kuersteiner, G. M., and I. R. Prucha. 2015. Dynamic spatial panel models: Networks, common shocks, and sequential exogeneity. Working paper, Department of Economics, University of Maryland. http://econweb.umd.edu/~prucha/ Papers/WP_GMK_IRP_2015.pdf.
Lee, L.-F. 2004. Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models. Econometrica 72: 1899-1925. https://doi.org/10.1111/j.1468-0262.2004.00558.x.

Lee, L.-F., and J. Yu. 2010a. Estimation of spatial autoregressive panel data models with fixed effects. Journal of Econometrics 154: 165-185. https://doi.org/10.1016/j.jeconom.2009.08.001.
_-. 2010b. Some recent developments in spatial panel data models. Regional Science and Urban Economics 40: 255-271. https://doi.org/10.1016/j.regsciurbeco.2009.09.002.
Li, J., Z. Liao, and W. Zhou. 2023. Uniform nonparametric inference for spatially dependent panel data: The xtnpsreg command. Stata Journal 23: 243-264.
Messner, S. F., L. Anselin, D. F. Hawkins, G. Deane, S. E. Tolnay, and R. D. Baller. 2000. An Atlas of the Spatial Patterning of County-Level Homicide, 1960-1990. Pittsburgh: National Consortium on Violence Research.

Also see

[SP] spxtregress postestimation - Postestimation tools for spxtregress
[SP] estat moran - Moran's test of residual correlation with nearby residuals
[SP] Intro - Introduction to spatial data and SAR models
[SP] spbalance - Make panel data strongly balanced
[SP] spivregress - Spatial autoregressive models with endogenous covariates
[SP] spmatrix - Categorical guide to the spmatrix command
[SP] spregress - Spatial autoregressive models
[XT] xtreg - Fixed-, between-, and random-effects and population-averaged linear models ${ }^{+}$
[U] 20 Estimation and postestimation commands

Title

spxtregress postestimation - Postestimation tools for spxtregress

| Postestimation commands | predict | margins | estat impact |
| :--- | :--- | :--- | :--- |
| Methods and formulas | Reference | Also see | |

Postestimation commands

The following postestimation command is of special interest after spxtregress:

| Command | Description |
| :--- | :--- |
| estat impact | direct, indirect, and total impacts |

The following standard postestimation commands are also available:

| Command | Description |
| :--- | :--- |
| contrast | contrasts and ANOVA-style joint tests of estimates
 estat ic |
| Akaike's, consistent Akaike's, corrected Akaike's, and Schwarz's Bayesian in-
 formation criteria (AIC, CAIC, AICc, and BIC) | |
| estat summarize | summary statistics for the estimation sample |
| estat vce | variance-covariance matrix of the estimators (VCE)
 cataloging estimation results |
| estimates | table of estimation results |
| etable | point estimates, standard errors, testing, and inference for linear combinations of
 coefficients |
| lincom | likelihood-ratio test |
| marginal means, predictive margins, marginal effects, and average marginal effects | |
| marginsplot | graph the results from margins (profile plots, interaction plots, etc.)
 point estimates, standard errors, testing, and inference for nonlinear combinations |
| nlcom | of coefficients |
| predict | predictions, residuals, influence statistics, and other diagnostic measures
 point estimates, standard errors, testing, and inference for generalized predictions
 predictnl |
| pwcompare | Wald tests of simple and composite linear hypotheses |
| test | Wald tests of nonlinear hypotheses |

predict

Description for predict

predict creates a new variable containing predictions such as the reduced-form mean, the direct mean, the indirect mean, or the linear prediction.

Menu for predict

Statistics $>$ Postestimation

Syntax for predict

```
predict [type] newvar [if] [in] [, statistic]
```

statistic Description
Main
rform reduced-form mean; the default
direct direct mean
indirect indirect mean
$\mathrm{xb} \quad$ linear prediction
These statistics are only available in a subset of the estimation sample.

Options for predict

\qquad Main
rform, the default, calculates the reduced-form mean. It is the predicted mean of the dependent variable conditional on the independent variables and any spatial lags of the independent variables. See Methods and formulas.
direct calculates the direct mean. It is a unit's predicted contribution to its own reduced-form mean. The direct and indirect means sum to the reduced-form mean.
indirect calculates the indirect mean. It is the predicted sum of the other units' contributions to a unit's reduced-form mean.
xb calculates the predicted linear combination of the independent variables.

margins

Description for margins

margins estimates margins of response for reduced-form mean, direct mean, indirect mean, and linear predictions.

Menu for margins

Statistics $>$ Postestimation

Syntax for margins

```
margins [marginlist] [, options]
margins [marginlist], predict(statistic ...) [自redict(statistic ...)...] [options]
```

statistic Description

| rform | reduced-form mean; the default |
| :--- | :--- |
| direct | direct mean |
| indirect | indirect mean |
| xb | linear prediction |

For the full syntax, see [R] margins.

Remarks for margins

The computations that margins must do to calculate standard errors can sometimes be time consuming. Time will depend on the complexity of the spatial model and the number of spatial units in the data. You may want to fit your model with a subsample of your data, run margins, and extrapolate to estimate the time required to run margins on the full sample. See [P] timer and [P$]$ rmsg.

estat impact

Description for estat impact

estat impact estimates the mean of the direct, indirect, and total impacts of independent variables on the reduced-form mean of the dependent variable.

Syntax for estat impact

estat impact [varlist] [if] [in] [, nolog]
varlist is a list of independent variables, including factor variables, taken from the fitted model. By default, all independent variables from the fitted model are used.
collect is allowed; see [U] 11.1.10 Prefix commands.

Option for estat impact

\qquad Main
nolog suppresses the calculation progress log that shows the percentage completed. By default, the \log is displayed.

Remarks for estat impact

estat impact is essential for interpreting the output of spxtregress. See [SP] Intro 7, example 1 of [SP] spregress, and examples 1 and 2 of [SP] spxtregress for explanations and examples.

Stored results for estat impact

estat impact stores the following in $r()$:
Scalars
$r(N)$
Macros
r (xvars) names of independent variables
Matrices
r (b_direct) vector of estimated direct impacts
r (Jacobian_direct) Jacobian matrix for direct impacts
r(V_direct)
r (b_indirect)
r (Jacobian_indirect)
r (V_indirect)
r(b_total)
r(Jacobian_total)
r(V_total)
number of observations
estimated variance-covariance matrix of direct impacts
vector of estimated indirect impacts
Jacobian matrix for indirect impacts
estimated variance-covariance matrix of indirect impacts
vector of estimated total impacts
Jacobian matrix for total impacts
estimated variance-covariance matrix of total impacts

Methods and formulas

Methods and formulas are presented under the following headings:
Predictions
Reduced-form mean
Direct and indirect means
Linear predictor
Impacts in random-effects models
Impacts in fixed-effects models

Predictions

To motivate the predictions, consider the vector form of a spatial panel autoregressive model

$$
\begin{equation*}
\mathbf{y}_{n t}=\lambda \mathbf{W} \mathbf{y}_{n t}+\mathbf{X}_{n t} \boldsymbol{\beta}+\mathbf{c}_{n}+\boldsymbol{\epsilon}_{n t} \quad t=1,2, \ldots, T \tag{1}
\end{equation*}
$$

where
$\mathbf{y}_{n t}$ is the $n \times 1$ vector containing each unit's dependent-variable observations for time period t, $\mathbf{W} \mathbf{y}_{n t}$ is a spatial lag of $\mathbf{y}_{n t}$,
$\mathbf{X}_{n t}$ is the matrix of independent-variable observations for time period t,
\mathbf{c}_{n} are individual effects, which can be either fixed effects or random effects,
$\epsilon_{n t}$ are the vector errors, and
λ and $\boldsymbol{\beta}$ are the coefficients.
Any spatial lags of the independent variables are assumed to be in $\mathbf{X}_{n t}$. Spatial lags of the error do not affect the reduced-form, direct, or indirect means, so they are not included in (1) for simplicity.

Reduced-form mean

Equation (1) represents the spatial autoregressive model as a system of equations. The solution to this system is

$$
\begin{equation*}
\mathbf{y}_{n t}=(\mathbf{I}-\lambda \mathbf{W})^{-1}\left(\mathbf{X}_{n t} \boldsymbol{\beta}+\mathbf{c}_{n}+\boldsymbol{\epsilon}_{n t}\right) \tag{2}
\end{equation*}
$$

To simplify later notation, we define $\widetilde{\mathbf{y}}_{n t}$ as $\mathbf{y}_{n t}$ minus the spatial spillover of the individual effects \mathbf{c}_{n}.

$$
\begin{align*}
\widetilde{\mathbf{y}}_{n t} & =\mathbf{y}_{n t}-(\mathbf{I}-\lambda \mathbf{W})^{-1} \mathbf{c}_{n} \\
& =(\mathbf{I}-\lambda \mathbf{W})^{-1}\left(\mathbf{X}_{n t} \boldsymbol{\beta}+\boldsymbol{\epsilon}_{n t}\right) \tag{3}
\end{align*}
$$

For the random-effects model, the individual effects \mathbf{c}_{n} are treated as part of random errors. Thus, (2) implies that the mean of $\mathbf{y}_{n t}$ conditional on the independent variables and their spatial lags is

$$
\begin{equation*}
E\left(\mathbf{y}_{n t} \mid \mathbf{X}_{n t}, \mathbf{W}\right)=(\mathbf{I}-\lambda \mathbf{W})^{-1}\left(\mathbf{X}_{n t} \boldsymbol{\beta}\right) \tag{4}
\end{equation*}
$$

This is known as the reduced-form mean because the solution in (2) is known as the reduced form of the model. The predicted reduced-form mean substitutes estimates of λ and $\boldsymbol{\beta}$ into (4).

For the fixed-effects model, the individual effects \mathbf{c}_{n} are treated as fixed effects, and they cannot be consistently estimated. The reduced-form prediction after spxtregress, fe is the conditional mean of $\widetilde{\mathbf{y}}_{n t}$ given the independent variables and their spatial lags:

$$
\begin{equation*}
E\left(\widetilde{\mathbf{y}}_{n t} \mid \mathbf{X}_{n t}, \mathbf{W}\right)=(\mathbf{I}-\lambda \mathbf{W})^{-1}\left(\mathbf{X}_{n t} \boldsymbol{\beta}\right) \tag{5}
\end{equation*}
$$

Direct and indirect means

To define the direct mean and the indirect mean, let

$$
\mathbf{S}_{n}=(\mathbf{I}-\lambda \mathbf{W})^{-1}
$$

and let \mathbf{S}_{d} be a matrix with diagonal elements of \mathbf{S}_{n} on its diagonal and with all off-diagonal elements set to 0 .

The direct means are

$$
\mathbf{S}_{d} \mathbf{X}_{n t} \boldsymbol{\beta}
$$

which capture the contributions of each unit's independent variables on its own reduced-form mean. Substituting estimates of λ and $\boldsymbol{\beta}$ produces the predictions.

The indirect means capture the contributions of the other units' independent variables on a unit's reduced-form mean. They are

$$
\left\{(\mathbf{I}-\lambda \mathbf{W})^{-1}-\mathbf{S}_{d}\right\} \mathbf{X}_{n t} \boldsymbol{\beta}
$$

Linear predictor

The linear predictor is $\mathbf{X}_{n t} \boldsymbol{\beta}$.

Impacts in random-effects models

The total impact of an independent variable \mathbf{x} is the average of the marginal effects it has on the reduced-form mean of $\mathbf{y}_{n t}$,

$$
\frac{1}{n T} \sum_{t=1}^{T} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial E\left(\mathbf{y}_{i t} \mid \mathbf{X}_{n t}, \mathbf{W}\right)}{\partial x_{j t}}
$$

where $E\left(\mathbf{y}_{i t} \mid \mathbf{X}_{n t}, \mathbf{W}\right)$ is the i th element of the vector $E\left(\mathbf{y}_{n t} \mid \mathbf{X}_{n t}, \mathbf{W}\right)$, whose formula is given in (3), and $x_{j t}$ is the j th unit's value for \mathbf{x} at time t.

The direct impact of an independent variable \mathbf{x} is the average of the direct, or own, marginal effects:

$$
\frac{1}{n T} \sum_{t=1}^{T} \sum_{i=1}^{n} \frac{\partial E\left(\mathbf{y}_{i t} \mid \mathbf{X}_{n t}, \mathbf{W}\right)}{\partial x_{i t}}
$$

The indirect impact of an independent variable \mathbf{x} is the average of the indirect, or spillover, marginal effects:

$$
\frac{1}{n T} \sum_{t=1}^{T} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \frac{\partial E\left(\mathbf{y}_{i t} \mid \mathbf{X}_{n t}, \mathbf{W}\right)}{\partial x_{j t}}
$$

LeSage and Pace (2009, 36-37) call the average direct impact the "average total direct impact" and they call the average indirect impact the "average total indirect impact".

Impacts in fixed-effects models

The total impact of an independent variable \mathbf{x} is the average of the marginal effects it has on the reduced-form mean of $\widetilde{\mathbf{y}}_{n t}$,

$$
\frac{1}{n T} \sum_{t=1}^{T} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial E\left(\widetilde{\mathbf{y}}_{i t} \mid \mathbf{X}_{n t}, \mathbf{W}\right)}{\partial x_{j t}}
$$

where $E\left(\widetilde{\mathbf{y}}_{i t} \mid \mathbf{X}_{n t}, \mathbf{W}\right)$ is the i th element of the vector $E\left(\widetilde{\mathbf{y}}_{n t} \mid \mathbf{X}_{n t}, \mathbf{W}\right)$, whose formula is given in (5), and $x_{j t}$ is the j th unit's value for \mathbf{x} at time t.

The direct impact of an independent variable \mathbf{x} is the average of the direct, or own, marginal effects:

$$
\frac{1}{n T} \sum_{t=1}^{T} \sum_{i=1}^{n} \frac{\partial E\left(\widetilde{\mathbf{y}}_{i t} \mid \mathbf{X}_{n t}, \mathbf{W}\right)}{\partial x_{i t}}
$$

The indirect impact of an independent variable \mathbf{x} is the average of the indirect, or spillover, marginal effects:

$$
\frac{1}{n T} \sum_{t=1}^{T} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \frac{\partial E\left(\widetilde{\mathbf{y}}_{i t} \mid \mathbf{X}_{n t}, \mathbf{W}\right)}{\partial x_{j t}}
$$

Reference

LeSage, J., and R. K. Pace. 2009. Introduction to Spatial Econometrics. Boca Raton, FL: Chapman and Hall/CRC.

Also see

[SP] spxtregress - Spatial autoregressive models for panel data
[U] 20 Estimation and postestimation commands

Glossary

adjacent. Two areas are said to be adjacent if they share a border. Also see contiguity matrix.
AR(1). See autoregressive errors.
areal data. Areal data is a term for data on areas. SAR models are appropriate for areal and lattice data.
areas. Areas is an informal term for geographic units.
attributes. Attributes is the name given to the variables included in standard-format shapefiles.
autoregressive errors. Spatially autoregressive errors account for spatially lagged correlation of the residuals. ρ is the correlation parameter. It is not a correlation coefficient, but it shares certain properties with correlation coefficients. It is bounded by -1 and 1 , and 0 has the same meaning, namely, no correlation.
autoregressive models. Spatially autoregressive models include a spatially lagged dependent variable or spatially autoregressive errors. See [SP] Intro 1.
balanced and strongly balanced. Panel data are balanced if each panel contains the same number of observations. They are strongly balanced if they record data for the same times (subcategory).
border and vertex. Consider the following map:

A and B share a border because there is a line segment separating them. For the same reasons, B and C share a border.
A and C share a vertex. They have only a single point in common.
How should you treat vertex-only adjacency? This issue arises when constructing a contiguity matrix. It is up to you whether a vertex in common is sufficient to label the areas as contiguous. Vertex-only adjacency occurs frequently when the shapes of the geographic units are rectangular.
choropleth map. A choropleth map is a map in which shading or coloring is used to indicate values of a variable within areas.
contiguity matrix and ex post contiguity matrix. A contiguity matrix is a symmetric matrix containing 0 s and 1 s before normalization, with 1 s indicating that areas are adjacent.
spmatrix create contiguity creates contiguity matrices and other matrices that would not be considered contiguity matrices by the above definition. It can create first-order neighbor matrices containing 0 s and 1 s . That is a contiguity matrix. It can create first- and second-order neighbor matrices containing 0 s and 1 s . That is not a contiguity matrix strictly speaking. And it can create other matrices where second-order neighbors are recorded as 0.5 or any other value of your choosing.
And finally, even if the matrix started out as a contiguity matrix strictly speaking, after normalization the two values that it contains are 0 and c.
As a result, commands like spmatrix summarize use a different definition for contiguity matrix.

An ex post contiguity matrix is any matrix in which all values are either 0 or c, a positive constant. It is meaningful to count neighbors in such cases. Thus, the matrix W2 created by typing
. spmatrix create contiguity W2, second
is an ex post contiguity matrix, and the matrix W created by typing

```
. spmatrix create contiguity W, first second(0.5)
```

is not.
coordinate system. A coordinate system is the encoding used by numbers used to designate locations. Latitude and longitude are a coordinate system. As far as Sp is concerned, the only other coordinate system is planar. Planar coordinates are also known as rectangular or Cartesian coordinates. In theory, standard-format shapefiles provide planar coordinates. In practice, they sometimes use latitude and longitude, but standards for encoding the system used are still developing. See [SP] spdistance for a more complete description, and see [SP] Intro 4 for how you can determine whether coordinates are planar or latitude and longitude.
covariate. See explanatory variable.
cross-sectional data. Cross-sectional data contain one observation per spatial unit. Also see panel data.
.dbf files. See shapefiles.
dependent variable. See outcome variable.
distance matrix. A distance matrix is a spatial weighting matrix based on some function of distance. Usually that function is $1 /$ distance, and the matrix is then called an inverse-distance spatial weighting matrix.
explanatory variable. An explanatory variable is a variable that appears on the right-hand side of the equation used to "explain" the values of the outcome variable.
FIPS codes. FIPS stands for federal information processing standard. FIPS codes are used for designating areas of the United States. At the most detailed level is the five-digit FIPS county codes, which range from 01001 for Autauga County in Alabama to 78030 for St. Thomas Island in the Virgin Islands. The FIPS county code includes counties, U.S. possessions, and freely associated areas.

The first two digits of the five-digit code are FIPS state codes. The two-digit code covers states, U.S. possessions, and freely associated areas.

The five-digit code appears in some datasets as the two-digit state code plus a three-digit county code. The full five-digit code is formed by joining the two-digit and three-digit codes.
geographic units. Geographic units is the generic term for places or areas such as zip-code areas, census blocks, cities, counties, countries, and the like. The units do not need to be based on geography. They could be network nodes, for instance. In this manual, we also use the words places and areas for the geographic units. Also see spatial units.
GIS data. GIS is an acronym for geographic information system. Some of the information in shapefiles is from such systems.

ID, _ID variable. An ID variable is a variable that uniquely identifies the observations. Sp's _ID variable is an example of an ID variable that uniquely identifies the geographic units. Sp's _ID variable is a numeric variable that uniquely identifies the observations in cross-sectional data and uniquely identifies the panels in panel data.
idistance spatial weighting matrix. An idistance spatial weighting matrix is Sp jargon for an inversedistance spatial weighting matrix.
i.i.d. I.i.d. stands for independent and identically distributed. A variable is i.i.d. when each observation of the variable has the same probability distribution as all the other observations and all are independent of one another.
imported spatial weighting matrix. An imported spatial weighting matrix is a spatial weighting matrix created with the spmatrix import command.
instrumental variables. Instrumental variables are variables related to the covariates (explanatory variables) and unrelated to the errors (residuals).
inverse-distance spatial weighting matrix. An inverse-distance spatial weighting matrix is a matrix in which the elements $W_{i, j}$ before normalization contain the reciprocal of the distance between places j and i. The term is also used for inverse-distance matrices in which places farther apart than a specified distance are set to 0 .
lags. See spatial lags.
latitude and longitude. See coordinate system.
lattice data. Lattice data are a kind of area data. In lattice data, all places are vertices appearing on a grid. SAR models are appropriate for lattice data and areal data.
neighbors, first- and second-order. First-order neighbors share borders. Second-order neighbors are neighbors of neighbors.
normalized spatial weighting matrix. A normalized spatial weighting matrix is a spatial weighting matrix multiplied by a constant to improve numerical accuracy and to make nonexplosive autoregressive parameters bounded by -1 and 1 . See Choosing weighting matrices and their normalization in [SP] spregress for details about normalization.
outcome variable (dependent variable). The outcome variable of a model is the variable appearing on the left-hand side of the equation. It is the variable being "explained" or predicted.
panel data. Panel data contain data on geographic units at various times. Each observation contains data on a geographic unit at a particular time, and thus the data contain multiple observations per geographic unit. Also see cross-sectional data.
places. Places is an informal term for geographic units.
planar coordinates. See coordinate system.
proximity matrix. Proximity matrix is another word for distance matrix.
SAR. SAR stands for spatial autoregressive or simultaneous autoregressive, which themselves mean the same thing but are used by researchers in different fields. See autoregressive models and autoregressive errors.
shapefiles. Shapefiles are files defining maps and more that you find on the web. A shapefile might be name.zip. name.zip contains name.shp, name.dbf, and files with other suffixes.
In this manual, shapefiles are also the shapefiles as described above translated into Stata format. They are Stata datasets named name_shp.dta.

To distinguish the two meanings, we refer to standard-format and Stata-format shapefiles.
Sp. Sp stands for spatial and refers to the SAR system described in this manual.
Sp data. Sp data are data that have been spset, whether directly or indirectly. You can type spset without arguments to determine whether your data are spset.
spatial lags. Spatial lags are the spatial analogy of time-series lags. In time series, the lag of x_{t} is x_{t-1}. In spatial analysis, the lag of $x_{i}-x$ in place i-is a weighted sum of x in nearby places given by Wx. See [SP] Intro 1.
spatial units. Spatial units is the term we use for the units measuring distance when the coordinates are planar. For instance, New York and Boston might be recorded in planar units as being at $\left(_\right.$CX,, CY $)=(1.3,7.836)$ and $(1.447,7.118)$. In that case, the distance between them is 0.0284 spatial units. Because they are about 190 miles apart, evidently a spatial unit is 6,690 miles. Also see [SP] spdistance.
spatial weighting matrix. A spatial weighting matrix is square matrix \mathbf{W}. Wx plays the same role in spatial analysis that L.x plays in time-series analysis. One can think of W's elements as recording the potential spillover for place j to i.

Spatial weighting matrices have zero on the diagonal and nonzero or zero values elsewhere. A contiguity spatial weighting matrix would have 0 s and $1 \mathrm{~s} . W_{i, j}=W_{j, i}$ would equal 1 when i and j were neighbors.
The scale in which the elements of spatial weighting matrices are recorded is irrelevant. See [SP] Intro 2.
spatially autoregressive errors. See autoregressive errors.
spillover effects. Spillover effects and potential spillover effects are the informal words we use to describe the elements of a spatial weighting matrix. $W_{i, j}$ records the (potential) spillover from place j to i. See [SP] Intro 2.
standard-format shapefile. See shapefiles.
Stata-format shapefile. See shapefiles.
strongly balanced. See balanced and strongly balanced.
time variable. The time variable is the variable in panel data that identifies the second level of the panel. The variable is not required to measure time, but it usually does.
user-defined matrix. A user-defined matrix is a spatial weighting matrix created by typing

```
spmatrix userdefined
spmatrix fromdata
spmatrix spfrommata
```

vertex. See border and vertex.

Subject and author index

See the combined subject index and the combined author index in the Stata Index.

[^0]: Overview
 How to find and download shapefiles on the web
 Standard-format shapefiles
 Stata-format shapefiles
 Creating Stata-format shapefiles
 Step 1: Find and download a shapefile
 Step 2: Translate the shapefile to Stata format
 Step 3: Look at the translated data
 Step 4: Create a common ID variable for use with other data
 Step 5: Optionally, tell $S p$ to use the common ID variable
 Step 6: Set the units of the coordinates, if necessary
 Preparing your data
 Step 7a: Merge your cross-sectional data with the Stata-format shapefiles
 Step 7b: Merge your panel data with the Stata-format shapefiles
 Rules for working with $S p$ data, whether cross-sectional or panel

[^1]: Creating contiguity matrices
 Creating inverse-distance matrices
 Creating inverse-distance contiguity matrices
 The normalize() option
 Panel data

[^2]: Also see
 [SP] spmatrix - Categorical guide to the spmatrix command
 [SP] Intro - Introduction to spatial data and SAR models
 Mata Reference Manual

[^3]: Also see
 [SP] spmatrix - Categorical guide to the spmatrix command
 [SP] spmatrix import - Import weighting matrix from text file
 [SP] Intro - Introduction to spatial data and SAR models

[^4]: Also see
 [SP] spmatrix - Categorical guide to the spmatrix command
 [SP] spmatrix save - Save spatial weighting matrix to file
 [SP] Intro - Introduction to spatial data and SAR models

[^5]: W and v
 Simple use
 Advanced use

[^6]: Also see
 [SP] spmatrix - Categorical guide to the spmatrix command
 [SP] spmatrix create - Create standard weighting matrices
 [SP] spmatrix matafromsp - Copy weighting matrix to Mata
 [SP] Intro - Introduction to spatial data and SAR models
 Mata Reference Manual

[^7]: noconstant; see [R] Estimation options.

[^8]: *estat ic and lrtest are not appropriate with gs2sls estimation results.

