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Example 52g — Latent profile model

Description Remarks and examples References Also see

Description
To demonstrate latent profile models, we use the following data:

. use https://www.stata-press.com/data/r18/gsem_lca2
(Latent profile analysis)

. describe

Contains data from https://www.stata-press.com/data/r18/gsem_lca2.dta
Observations: 145 Latent profile analysis

Variables: 7 18 Jan 2023 12:39
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

patient int %9.0g Patient ID
relwgt float %9.0g Relative weight
fglucose int %9.0g Fasting plasma glucose
glucose float %9.0g Glucose area (mg/10mL/hr)
insulin float %9.0g Insulin area (mIU/10mL/hr)
sspg float %9.0g Steady-state plasma glucose
cclass byte %17.0g class Clinical classification

Sorted by:

. notes

_dta:
1. Source: Data originally analyzed in Reaven, G. M., and R. G. Miller.

1979. An attempt to define the nature of chemical diabetes using a
multidimensional analysis. Diabetologia 16: 17-24.
https://doi.org/10.1007/BF00423145.

2. Data made publicly available in Andrews, D. F., and A. M. Herzberg. 1985.
Data: A Collection of Problems from Many Fields for the Student and
Research Worker. New York: Springer.

3. Data includes variables related to diabetes for 145 nonobese adults.

See Latent class models in [SEM] Intro 5 for background.

Remarks and examples stata.com

Remarks are presented under the following headings:

Fitting the two-class model
Comparing models
Fitting the three-class model with covariances
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Fitting the two-class model

In this manual, when we talk about latent class analysis, we are referring to an analysis that
involves fitting models with categorical latent variables. Sometimes, these models are given more
specific names. In [SEM] Example 50g, we fit a latent class model with a categorical latent variable and
categorical observed variables. This is a typical latent class model. However, models with categorical
latent variables are not limited to having categorical observed variables. A latent class model that
instead has continuous observed variables is often referred to as a latent profile model.

Masyn (2013) uses the data described above to fit a series of latent profile models, each having one
categorical latent variable and three observed variables, glucose, insulin, and sspg. The goal is to
determine categories of diabetes based on these three variables. We begin by fitting a model in which
the latent variable, C, has two classes. We fit a linear regression model for each observed variable
where the intercept, αjc, is allowed to vary across the classes of the latent variable. Because we are
using linear regression, we also estimate the variances of the error terms e.glucose, e.insulin,
and e.sspg.

More specifically, for class 1 we fit

glucose = α11 + e.glucose

insulin = α21 + e.insulin

sspg = α31 + e.sspg

and for class 2 we fit

glucose = α12 + e.glucose

insulin = α22 + e.insulin

sspg = α32 + e.sspg

We also estimate the probability of being in each class using multinomial logistic regression,

Pr(C = 1) =
eγ1

eγ1 + eγ2

Pr(C = 2) =
eγ2

eγ1 + eγ2

where γ1 and γ2 are intercepts in the multinomial logit model. By default, the first class will be
treated as the base, so γ1 = 0.

We will assume that the errors are uncorrelated, which is the default, and that the variances do
not differ across classes, also the default.

https://www.stata.com/manuals/semexample50g.pdf#semExample50g
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. gsem (glucose insulin sspg <- _cons), lclass(C 2)

(iteration log omitted )
Generalized structural equation model Number of obs = 145
Log likelihood = -1702.5542

( 1) [/]var(e.glucose)#1bn.C - [/]var(e.glucose)#2.C = 0
( 2) [/]var(e.insulin)#1bn.C - [/]var(e.insulin)#2.C = 0
( 3) [/]var(e.sspg)#1bn.C - [/]var(e.sspg)#2.C = 0

Coefficient Std. err. z P>|z| [95% conf. interval]

1.C (base outcome)

2.C
_cons -1.541025 .2205682 -6.99 0.000 -1.973331 -1.10872

Class: 1

Response: glucose
Family: Gaussian
Link: Identity

Response: insulin
Family: Gaussian
Link: Identity

Response: sspg
Family: Gaussian
Link: Identity

Coefficient Std. err. z P>|z| [95% conf. interval]

glucose
_cons 41.22237 1.298051 31.76 0.000 38.67824 43.7665

insulin
_cons 20.98005 1.000974 20.96 0.000 19.01817 22.94192

sspg
_cons 14.96579 .6868081 21.79 0.000 13.61967 16.31191

var(e.gluc~e) 191.5596 23.83815 150.0992 244.4723
var(e.insu~n) 119.0542 14.00336 94.54204 149.9217

var(e.sspg) 55.91283 6.713667 44.18801 70.7487
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Class: 2

Response: glucose
Family: Gaussian
Link: Identity

Response: insulin
Family: Gaussian
Link: Identity

Response: sspg
Family: Gaussian
Link: Identity

Coefficient Std. err. z P>|z| [95% conf. interval]

glucose
_cons 115.7123 2.849914 40.60 0.000 110.1266 121.2981

insulin
_cons 7.553144 2.160949 3.50 0.000 3.317761 11.78853

sspg
_cons 34.5529 1.53117 22.57 0.000 31.55187 37.55394

var(e.gluc~e) 191.5596 23.83815 150.0992 244.4723
var(e.insu~n) 119.0542 14.00336 94.54204 149.9217

var(e.sspg) 55.91283 6.713667 44.18801 70.7487

. estimates store c2inv

Notes:

1. The first table in the output provides the estimated coefficients in the multinomial logit model
for C.

2. The next two tables are the results for the linear regression models for the first and second
classes.

Comparing models

Before we interpret any results, we will fit and compare other models. We modify our command
above to specify that C has three, four, and then five latent classes, and we store the results of those
models by typing

. gsem (glucose insulin sspg <- _cons), lclass(C 3)

. estimates store c3inv

. gsem (glucose insulin sspg <- _cons), lclass(C 4) ///
startvalues(randomid, draws(5) seed(15)) emopts(iter(20))

. estimates store c4inv

. gsem (glucose insulin sspg <- _cons), lclass(C 5) ///
startvalues(randomid, draws(5) seed(15)) emopts(iter(20))

. estimates store c5inv

For the models with four and five latent classes, we added the startvalues(randomid),
draws(5) seed(15)) option to request that starting values be computed using random class assign-
ments. In this option, draws(5) specifies that five random draws be taken and that the one with
the best log likelihood after the EM iterations be selected. The emopts(iter(20)) option says that
20 EM iterations are used for each random draw. We also set the seed for reproducible results. We
could have used the same options in the models with two classes and three classes. Difficulty finding
good starting values is fairly common when fitting latent class models, so gsem provides a variety
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of options for obtaining starting values. See [SEM] Intro 12 and [SEM] gsem estimation options for
more information on starting values.

We can compare the four models fit above using Akaike’s information criterion (AIC) and Schwarz’s
Bayesian information criterion (BIC).

. estimates stats c2inv c3inv c4inv c5inv

Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

c2inv 145 . -1702.554 10 3425.108 3454.876
c3inv 145 . -1653.238 14 3334.476 3376.15
c4inv 145 . -1626.828 18 3289.656 3343.237
c5inv 145 . -1578.207 22 3200.414 3265.902

Note: BIC uses N = number of observations. See [R] IC note.

The model with five latent classes has the smallest values of both AIC and BIC and would be considered
the best based on these information criteria.

Fitting the three-class model with covariances

Masyn’s final model was a three-class model that allowed for covariances among the error terms and
that estimated all parameters separately across classes. To estimate the covariances, we add the cov-
structure(e. 0En, unstructured) option. See [SEM] sem and gsem option covstructure( ) for
details on this option. To allow all parameters to vary across classes, we add the lcinvariant(none)
option. Here none specifies that no parameters are constrained to be equal across classes.

. gsem (glucose insulin sspg <- _cons), lclass(C 3) lcinvariant(none)
> covstructure(e._OEn, unstructured)

(iteration log omitted )
Generalized structural equation model Number of obs = 145
Log likelihood = -1536.6409

Coefficient Std. err. z P>|z| [95% conf. interval]

1.C (base outcome)

2.C
_cons -.8853513 .2386536 -3.71 0.000 -1.353104 -.4175988

3.C
_cons -.612664 .2260018 -2.71 0.007 -1.055619 -.1697085

https://www.stata.com/manuals/semintro12.pdf#semIntro12
https://www.stata.com/manuals/semgsemestimationoptions.pdf#semgsemestimationoptions
https://www.stata.com/manuals/ricnote.pdf#rICnote
https://www.stata.com/manuals/semsemandgsemoptioncovstructure.pdf#semsemandgsemoptioncovstructure()
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Class: 1

Response: glucose
Family: Gaussian
Link: Identity

Response: insulin
Family: Gaussian
Link: Identity

Response: sspg
Family: Gaussian
Link: Identity

Coefficient Std. err. z P>|z| [95% conf. interval]

glucose
_cons 35.68584 .5741752 62.15 0.000 34.56048 36.81121

insulin
_cons 16.58066 .6204724 26.72 0.000 15.36456 17.79677

sspg
_cons 10.49755 .5833606 17.99 0.000 9.354183 11.64091

var(e.gluc~e) 19.30952 3.932547 12.9544 28.78233
var(e.insu~n) 26.7354 4.494093 19.23108 37.16804

var(e.sspg) 18.71079 3.970509 12.34422 28.36094

cov(e.gluc~e,
e.insulin) 3.456027 2.942391 1.17 0.240 -2.310954 9.223008

cov(e.gluc~e,
e.sspg) 5.474303 2.811729 1.95 0.052 -.0365846 10.98519

cov(e.insu~n,
e.sspg) 7.995803 3.020304 2.65 0.008 2.076115 13.91549
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Class: 2

Response: glucose
Family: Gaussian
Link: Identity

Response: insulin
Family: Gaussian
Link: Identity

Response: sspg
Family: Gaussian
Link: Identity

Coefficient Std. err. z P>|z| [95% conf. interval]

glucose
_cons 47.66176 1.492718 31.93 0.000 44.73609 50.58744

insulin
_cons 34.35203 3.00337 11.44 0.000 28.46554 40.23853

sspg
_cons 24.414 .7395383 33.01 0.000 22.96453 25.86347

var(e.gluc~e) 53.21326 15.56547 29.99396 94.40735
var(e.insu~n) 228.6332 59.03553 137.832 379.2526

var(e.sspg) 13.75515 3.838523 7.960284 23.76853

cov(e.gluc~e,
e.insulin) 40.02875 23.12762 1.73 0.083 -5.300552 85.35805

cov(e.gluc~e,
e.sspg) .7294854 5.48065 0.13 0.894 -10.01239 11.47136

cov(e.insu~n,
e.sspg) -5.743169 11.4943 -0.50 0.617 -28.27158 16.78524
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Class: 3

Response: glucose
Family: Gaussian
Link: Identity

Response: insulin
Family: Gaussian
Link: Identity

Response: sspg
Family: Gaussian
Link: Identity

Coefficient Std. err. z P>|z| [95% conf. interval]

glucose
_cons 93.92473 6.985336 13.45 0.000 80.23372 107.6157

insulin
_cons 10.37614 1.123135 9.24 0.000 8.174836 12.57744

sspg
_cons 28.4787 1.94975 14.61 0.000 24.65726 32.30013

var(e.gluc~e) 1279.011 312.6774 792.1048 2065.218
var(e.insu~n) 36.38521 9.26287 22.09163 59.92692

var(e.sspg) 113.3239 27.67628 70.21642 182.8961

cov(e.gluc~e,
e.insulin) -163.4383 47.637 -3.43 0.001 -256.8051 -70.07153

cov(e.gluc~e,
e.sspg) 276.9206 81.60543 3.39 0.001 116.9769 436.8643

cov(e.insu~n,
e.sspg) -25.4313 11.66564 -2.18 0.029 -48.29554 -2.567057

Because we do not have any predictors in our regression models, the intercepts can be interpreted
as the predicted class-specific means of the corresponding variables. In class 1, glucose has an
estimated mean of 35.69, insulin has an estimated mean of 16.58, and sspg has an estimated mean
of 10.50. Also because we have no predictors, the estimated variances and covariances of the error
terms are simply class-specific estimates of the variances and covariances of the variables. In class 1,
the estimated variance of glucose is 19.31, the estimated covariance of glucose and insulin is
3.46. The remaining coefficients can be interpreted in a similar manner.

We can determine expected classification for each individual in the dataset based on the predicted
posterior class probabilities.

. predict cpost*, classposteriorpr

. egen max = rowmax(cpost*)

. generate predclass = 1 if cpost1==max
(69 missing values generated)

. replace predclass = 2 if cpost2==max
(32 real changes made)

. replace predclass = 3 if cpost3==max
(37 real changes made)
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. tabulate cclass predclass, col

Key

frequency
column percentage

Clinical predclass
classification 1 2 3 Total

Overt diabetic 0 2 31 33
0.00 6.25 83.78 22.76

Chemical diabetic 7 23 6 36
9.21 71.88 16.22 24.83

Normal 69 7 0 76
90.79 21.88 0.00 52.41

Total 76 32 37 145
100.00 100.00 100.00 100.00

When we compare the predicted classes (predclass) with the assigned clinical classifications
(cclass) given to these individuals, we see that 91% of the individuals predicted to be in class 1
were given a clinical classification of normal. Of those predicted to be in class 2, 72% were assigned
a clinical classification of chemical diabetic. Finally, 84% of those predicted to be in class 3 had a
clinical classification of overt diabetic.

Masyn went on to examine the individuals who were classified differently when using the clinical
definition and when using the results from the model. She found that the predictions from the latent
profile model could be explained medically and may be an improvement over the clinical definitions.
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