Example 20 - Two-factor measurement model by group
Description Remarks and examples Reference Also see

Description

Below we demonstrate sem's group() option, which allows fitting models in which path coefficients and covariances differ across groups of the data, such as for males and females. We use the following data:

```
. use https://www.stata-press.com/data/r18/sem_2fmmby
(Two-factor CFA)
ssd describe
    Summary statistics data from
    https://www.stata-press.com/data/r18/sem_2fmmby.dta
    Observations: 385 Two-factor CFA
        Variables: 16 25 May 2022 11:11
    (_dta has notes)
\begin{tabular}{ll}
\hline Variable name & Variable label \\
\hline phyab1 & Physical ability 1 \\
phyab2 & Physical ability 2 \\
phyab3 & Physical ability 3 \\
appear1 & Physical ability 4 \\
appear2 & Appearance 1 \\
appear3 & Appearance 2 \\
appear4 & Appearance 3 \\
peerrel1 & Appearance 4 \\
peerrel2 & Relationship w/ peers 1 \\
peerrel3 & Relationship w/ peers 2 \\
peerrel4 & Relationship w/ peers 3 \\
parrel1 & Relationship w/ peers 4 \\
parrel2 & Relationship w/ parent 1 \\
parrel3 & Relationship w/ parent 2 \\
parrel4 & Relationship w/ parent 3 \\
\end{tabular}
    Group variable: grade (2 groups)
    Obs by group: 134, 251
. notes
_dta:
    1. Source: Summary statistics data from Marsh, H. W., and D. Hocevar. 1985.
        Application of confirmatory factor analysis to the study of self-concept:
        First- and higher order factor models and their invariance across groups.
        Psychological Bulletin 97: 562-582.
        http://doi.org/10.1037/0033-2909.97.3.562.
    2. Summary statistics based on }134\mathrm{ students in grade 4 and 251 students in
        grade 5 from Sydney, Australia.
    3. Group 1 is grade 4, group 2 is grade 5.
    4. Data collected using the Self-Description Questionnaire and includes
        sixteen subscales designed to measure nonacademic status: four intended
        to measure physical ability, four intended to measure physical
        appearance, four intended to measure relations with peers, and four
        intended to measure relations with parents.
```


Remarks and examples

Remarks are presented under the following headings:

Background
Fitting the model with all the data
Fitting the model with the group() option
Fitting the model with the Builder

Background

See [SEM] Intro 6 for background on sem's group() option.
We will fit the model

which in command syntax can be written as

```
(Peer -> peerrel1 peerrel2 peerrel3 peerrel4) ///
(Par -> parrel1 parrel2 parrel3 parrel4)
```

We are using the same data used in [SEM] Example 15, but we are using more of the data and fitting a different model. To remind you, those data were collected from students in grade 5 . The dataset we are using, however, has data for students from grade 4 and from grade 5 , which was created in [SEM] Example 19. We have the following observed variables:

1. Four measures of physical ability.
2. Four measures of appearance.
3. Four measures of quality of relationship with peers.
4. Four measures of quality of relationship with parents.

In this example, we will consider solely the measurement problem, and include only the measurement variables for the two kinds of relationship quality. We are going to treat quality of relationship with peers as measures of underlying factor Peer and quality of relationship with parents as measures of underlying factor Par.

Below we will

1. Fit the model with all the data. This amounts to assuming that the students in grades 4 and 5 are identical in terms of this measurement problem.
2. Fit the model with sem's group() option, which will constrain some parameters to be the same for students in grades 4 and 5 and leave free of constraint the others.

Fitting the model with all the data

Throughout this example, we want you to appreciate that we are using SSD and that matters not at all. Not one command would have a different syntax or option, or produce a different result, if we had the real data.

We begin by fitting the model with all the data:

```
. sem (Peer -> peerrel1 peerrel2 peerrel3 peerrel4)
> (Par -> parrel1 parrel2 parrel3 parrel4)
Endogenous variables
    Measurement: peerrel1 peerrel2 peerrel3 peerrel4 parrel1 parrel2 parrel3
    parrel4
Exogenous variables
    Latent: Peer Par
Fitting target model:
Iteration 0: Log likelihood = -5559.545
Iteration 1: Log likelihood = -5558.609
Iteration 2: Log likelihood = -5558.6017
Iteration 3: Log likelihood = -5558.6017
```

Structural equation model Number of obs $=385$
Estimation method: ml
Log likelihood $=-5558.6017$
(1) [peerrel1]Peer $=1$
(2) [parrel1]Par = 1

	Coefficient	$\begin{gathered} \text { OIM } \\ \text { std. err. } \end{gathered}$	z	$P>\|z\|$	[95\% con	interval]
Measurement peerrel1 Peer _cons	$\begin{array}{rl} 1 & \text { (constrained) } \\ 8.681221 & .0937197 \end{array}$		92.63	0.000	8.497534	8.864908
peerrel2 Peer _cons	$\begin{aligned} & 1.113865 \\ & 7.828623 \end{aligned}$	$\begin{array}{r} .09796 \\ .1037547 \end{array}$	$\begin{aligned} & 11.37 \\ & 75.45 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & .9218666 \\ & 7.625268 \end{aligned}$	$\begin{aligned} & 1.305863 \\ & 8.031979 \end{aligned}$
peerrel3 Peer _cons	$\begin{array}{r} 1.42191 \\ 7.359896 \end{array}$	$\begin{array}{r} .114341 \\ .1149905 \end{array}$	$\begin{aligned} & 12.44 \\ & 64.00 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 1.197806 \\ & 7.134519 \end{aligned}$	$\begin{aligned} & 1.646014 \\ & 7.585273 \end{aligned}$
peerrel4 Peer _cons	$\begin{aligned} & 1.204146 \\ & 8.150779 \end{aligned}$	$\begin{aligned} & .0983865 \\ & .1023467 \end{aligned}$	$\begin{aligned} & 12.24 \\ & 79.64 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 1.011312 \\ & 7.950183 \end{aligned}$	$\begin{array}{r} 1.39698 \\ 8.351375 \end{array}$
$\begin{array}{r} \text { parrel1 } \\ \text { Par } \\ \text { _cons } \end{array}$	$\begin{array}{r} 1 \\ 9.339558 \end{array}$	$\begin{aligned} & \text { (constrain } \\ & .0648742 \end{aligned}$	d) 143.96	0.000	9.212407	9.46671
parrel2 Par _cons	$\begin{aligned} & 1.112383 \\ & 9.220494 \end{aligned}$	$\begin{aligned} & .1378687 \\ & .0742356 \end{aligned}$	$\begin{array}{r} 8.07 \\ 124.21 \end{array}$	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & .8421655 \\ & 9.074994 \end{aligned}$	$\begin{aligned} & 1.382601 \\ & 9.365993 \end{aligned}$
parrel3 $\begin{array}{r} \text { Par } \\ \text { _cons } \end{array}$	$\begin{aligned} & 2.037924 \\ & 8.676961 \end{aligned}$	$\begin{array}{r} .204617 \\ .088927 \end{array}$	$\begin{array}{r} 9.96 \\ 97.57 \end{array}$	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 1.636882 \\ & 8.502667 \end{aligned}$	$\begin{aligned} & 2.438966 \\ & 8.851255 \end{aligned}$
parrel4 Par _cons	$\begin{array}{r} 1.52253 \\ 9.045247 \end{array}$	$\begin{aligned} & .1536868 \\ & .0722358 \end{aligned}$	$\begin{array}{r} 9.91 \\ 125.22 \end{array}$	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 1.221309 \\ & 8.903667 \end{aligned}$	$\begin{array}{r} 1.82375 \\ 9.186826 \end{array}$
$\operatorname{var}(\mathrm{e} . \mathrm{peer} \sim 1)$	1.809309	. 1596546			1.521956	2.150916
$\operatorname{var}\left(\mathrm{e}\right.$. peer $\left.{ }^{\sim} 2\right)$	2.193804	. 194494			1.843884	2.610129
$\operatorname{var}(\mathrm{e} . \mathrm{peer} \sim 3)$	1.911874	. 214104			1.535099	2.381126
$\operatorname{var}(\mathrm{e}$. peer $\sim 4)$	1.753037	. 1749613			1.441575	2.131792
$\operatorname{var}(\mathrm{e} . \operatorname{parr} \sim 1)$	1.120333	. 0899209			. 9572541	1.311193
$\operatorname{var}(\mathrm{e} . \operatorname{parr} \sim 2)$	1.503003	. 1200739			1.285162	1.757769
var (e.parr ${ }^{\text {3 }}$)	. 9680081	. 1419777			. 7261617	1.290401
$\operatorname{var}(\mathrm{e} . \operatorname{parr} \sim 4)$. 8498834	. 0933687			. 685245	1.054078
var(Peer)	1.572294	. 2255704			1.186904	2.082822
var (Par)	. 5000022	. 093189			. 3469983	. 7204709
cov(Peer, Par)	. 4226706	. 0725253	5.83	0.000	. 2805236	. 5648176

Note:

1. We are using SSD with data for two separate groups. There is no hint of that in the output above because sem combined the summary statistics and produced overall results just as if we had the real data.

Fitting the model with the group() option

```
. sem (Peer -> peerrel1 peerrel2 peerrel3 peerrel4)
> (Par -> parrel1 parrel2 parrel3 parrel4), group(grade)
Endogenous variables
    Measurement: peerrel1 peerrel2 peerrel3 peerrel4 parrel1 parrel2 parrel3
                    parrel4
Exogenous variables
    Latent: Peer Par
Fitting target model:
Iteration 0: Log likelihood = -13049.77 (not concave)
Iteration 1: Log likelihood = -10819.682 (not concave)
Iteration 2: Log likelihood = -8873.4568 (not concave)
Iteration 3: Log likelihood = -6119.7114 (not concave)
Iteration 4: Log likelihood = -5949.354 (not concave)
Iteration 5: Log likelihood = -5775.6085 (not concave)
Iteration 6: Log likelihood = -5713.9178 (not concave)
Iteration 7: Log likelihood = -5638.1208 (not concave)
Iteration 8: Log likelihood = -5616.6335 (not concave)
Iteration 9: Log likelihood = -5595.7507 (not concave)
Iteration 10: Log likelihood = -5589.9802 (not concave)
Iteration 11: Log likelihood = -5578.8701 (not concave)
Iteration 12: Log likelihood = -5574.0162 (not concave)
Iteration 13: Log likelihood = -5568.0786
Iteration 14: Log likelihood = -5551.7349
Iteration 15: Log likelihood = -5544.0052
Iteration 16: Log likelihood = -5542.7113
Iteration 17: Log likelihood = -5542.6775
Iteration 18: Log likelihood = -5542.6774
Structural equation model
Grouping variable: grade
```

Estimation method: ml
Log likelihood = -5542.6774
(1) [peerrel1] 1 bn .grade\#c.Peer $=1$
(2) [peerrel2]1bn.grade\#c.Peer - [peerrel2]2.grade\#c.Peer $=0$
(3) [peerrel3]1bn.grade\#c.Peer - [peerrel3]2.grade\#c.Peer $=0$
(4) [peerrel4]1bn.grade\#c.Peer - [peerrel4]2.grade\#c.Peer $=0$
(5) [parrel1]1bn.grade\#c.Par $=1$
(6) [parrel2]1bn.grade\#c.Par - [parrel2]2.grade\#c.Par $=0$
(7) [parrel3]1bn.grade\#c.Par - [parrel3]2.grade\#c.Par $=0$
(8) [parrel4]1bn.grade\#c.Par - [parrel4]2.grade\#c.Par $=0$
(9) [peerrel1]1bn.grade - [peerrel1]2.grade $=0$
(10) [peerrel2]1bn.grade - [peerrel2]2.grade $=0$
(11) [peerrel3]1bn.grade - [peerrel3]2.grade $=0$
(12) [peerrel4]1bn.grade - [peerrel4]2.grade $=0$
(13) [parrel1]1bn.grade - [parrel1]2.grade $=0$
(14) [parrel2]1bn.grade - [parrel2]2.grade $=0$
(15) [parrel3]1bn.grade - [parrel3]2.grade $=0$
(16) [parrel4]1bn.grade - [parrel4]2.grade $=0$
(17) [peerrel1]2.grade\#c.Peer $=1$
(18) [parrel1]2.grade\#c.Par $=1$
(19) [/]mean(Peer)\#1bn.grade $=0$
(20) [/]mean(Par)\#1bn.grade $=0$

	Coefficient	$\begin{gathered} \text { OIM } \\ \text { std. err. } \end{gathered}$	z	$P>\|z\|$	[95\% conf	interval]
Measurement peerrel1 Peer _cons	$\begin{array}{r} 1 \\ 8.466539 \end{array}$	$\begin{aligned} & \text { (constrained) } \\ & .1473448 \end{aligned}$	57.46	0.000	8.177748	8.755329
peerrel2 Peer _cons	$\begin{aligned} & 1.109234 \\ & 7.589872 \end{aligned}$	$\begin{aligned} & .0975279 \\ & .1632145 \end{aligned}$	$\begin{aligned} & 11.37 \\ & 46.50 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{array}{r} .9180833 \\ 7.269977 \end{array}$	$\begin{aligned} & 1.300385 \\ & 7.909766 \end{aligned}$
peerrel3 Peer _cons	$\begin{aligned} & 1.409361 \\ & 7.056996 \end{aligned}$	$\begin{aligned} & .1138314 \\ & .1964299 \end{aligned}$	$\begin{aligned} & 12.38 \\ & 35.93 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 1.186256 \\ & 6.672001 \end{aligned}$	$\begin{aligned} & 1.632467 \\ & 7.441992 \end{aligned}$
peerrel4 Peer _cons	$\begin{array}{r} 1.195982 \\ 7.89358 \end{array}$	$\begin{array}{r} .0980272 \\ .169158 \end{array}$	$\begin{aligned} & 12.20 \\ & 46.66 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 1.003852 \\ & 7.562036 \end{aligned}$	$\begin{aligned} & 1.388112 \\ & 8.225123 \end{aligned}$
parrel1 Par _cons	9.368654	$\begin{gathered} \text { (constrain } \\ .0819489 \end{gathered}$) 114.32	0.000	9.208037	9.529271
parrel2 Par _cons	$\begin{aligned} & 1.104355 \\ & 9.287629 \end{aligned}$	$\begin{aligned} & .1369365 \\ & .0903296 \end{aligned}$	$\begin{array}{r} 8.06 \\ 102.82 \end{array}$	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & .8359649 \\ & 9.110587 \end{aligned}$	$\begin{aligned} & 1.372746 \\ & 9.464672 \end{aligned}$
parrel3 Par cons _cons	$\begin{array}{r} 2.05859 \\ 8.741898 \end{array}$	$\begin{array}{r} .2060583 \\ .136612 \end{array}$	$\begin{array}{r} 9.99 \\ 63.99 \end{array}$	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 1.654723 \\ & 8.474144 \end{aligned}$	$\begin{aligned} & 2.462457 \\ & 9.009653 \end{aligned}$
parrel4 Par _cons	$\begin{aligned} & 1.526706 \\ & 9.096609 \end{aligned}$	$\begin{aligned} & .1552486 \\ & .1061607 \end{aligned}$	$\begin{array}{r} 9.83 \\ 85.69 \end{array}$	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 1.222424 \\ & 8.888538 \end{aligned}$	$\begin{array}{r} 1.830987 \\ 9.30468 \end{array}$
$\begin{gathered} \text { mean (Peer) } \\ \text { mean (Par) } \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	(constrain (constrain				
var (e.peer ~ 1)	1.824193	. 2739446			1.359074	2.448489
$\operatorname{var}(\mathrm{e}$. peer $\sim 2)$	2.236974	. 3310875			1.673699	2.989817
$\operatorname{var}(\mathrm{e}$. peer $\sim 3)$	1.907009	. 3383293			1.346908	2.700023
$\operatorname{var}(\mathrm{e} . \mathrm{peer} \sim 4)$	1.639881	. 272764			1.18367	2.271925
var(e.parr~1)	. 9669121	. 1302489			. 7425488	1.259067
var (e.parr~2)	. 9683878	. 133192			. 7395628	1.268012
var(e.parr~3)	. 8377567	. 1986089			. 526407	1.333258
var (e.parr ~ 4)	. 8343032	. 1384649			. 6026352	1.15503
var(Peer)	2.039297	. 3784544			1.41747	2.933912
var (Par)	. 4492996	. 1011565			. 2889976	. 6985183
cov(Peer, Par)	. 5012091	. 1193333	4.20	0.000	. 2673201	. 7350982

Notes:

1. In Which parameters vary by default, and which do not in [SEM] Intro 6, we wrote that, generally speaking, when we specify group (groupvar), the measurement part of the model is constrained by default to be the same across the groups, whereas the remaining parts will have separate parameters for each group.

More precisely, we revealed that sem classifies each parameter into one of nine classes, which are the following:

Class description	Class name
1. structural coefficients	scoef
2. structural intercepts	scons
3. measurement coefficients	mcoef
4. measurement intercepts	mcons
5. covariances of structural errors	serrvar
6. covariances of measurement errors	merrvar
7. covariances between structural and measurement errors	smerrcov
8. means of exogenous variables	meanex
9. covariances of exogenous variables	covex
10. all the above	all
11. none of the above	none

(*) Be aware that classes 8,9 , and 10 (meanex, covex, and all) exclude the observed exogenous variables-include only the latent exogenous variables-unless you specify option noxconditional or the noxconditional option is otherwise implied; see [SEM] sem option noxconditional. This is what you would desire in most cases.

By default, classes 3 and 4 are constrained to be equal and the rest are allowed to vary.
2. Thus you might expect that most of the parameters of our model would have been left unconstrained until you remember that we are fitting a measurement model. That is why sem listed 20 constraints at the top of the estimation results. Some of the constraints are substantive and some are normalization.
3. In the output, we have a separate table of parameter estimates for each level of grade.

In our data, group 1 corresponds with students in grade 4, and group 2 corresponds with students in grade 5 .
4. It may surprise you that the output contains estimates for the means of the latent variables. Usually, sem does not report this.
Usually, you are running on only one group of data and those means cannot be estimated, at least not without additional identifying constraints. When you are running on two or more groups, the means for all the groups except one can be estimated.

In [SEM] Example 21, we use estat ggof to evaluate goodness of fit group by group.
In [SEM] Example 22, we use estat ginvariant to test whether parameters that are constrained across groups should not be and whether parameters that are not constrained could be.

In [SEM] Example 23, we show how to constrain the parameters we choose to be equal across groups.

Fitting the model with the Builder

Use the diagram above for reference.

1. Open the dataset.

In the Command window, type
. use https://www.stata-press.com/data/r18/sem_2fmmby
2. Open a new Builder diagram.

Select menu item Statistics > SEM (structural equation modeling) > Model building and estimation.
3. Create the measurement component for relationships with peers.

Select the Add measurement component tool, 향, and then click in the diagram about halfway down from the top and about one-third of the way in from the left.
In the resulting dialog box,
a. change the Latent variable name to Peer;
b. select peerrel1, peerrel2, peerrel3, and peerrel4 by using the Measurement variables control;
c. select Left in the Measurement direction control;
d. click on OK.

If you wish, move the component by clicking on any variable and dragging it.
4. Create the measurement component for relationships with parents.

Select the Add measurement component tool, 咢, and then click in the diagram about halfway down from the top and about one-third of the way in from the right.

In the resulting dialog box,
a. change the Latent variable name to Par;
b. select parrel1, parrel2, parrel3, and parrel4 by using the Measurement variables control;
c. select Right in the Measurement direction control;
d. click on OK.

If you wish, move the component by clicking on any variable and dragging it.
5. Correlate the latent variables.
a. Select the Add covariance tool, \frown.
b. Click in the upper-right quadrant of the Peer oval (it will highlight when you hover over it), and drag a covariance to the upper-left quadrant of the Par oval (it will highlight when you can release to connect the covariance).
6. Clean up.

If you do not like where a covariance has been connected to its variable, use the Select tool, * , to click on the covariance, and then simply click on where it connects to an oval and drag the endpoint. You can also change the bow of the covariance by dragging the control point that extends from one end of the selected covariance.
7. Estimate.

Click on the Estimate button, in the Standard Toolbar.
In the resulting dialog box, do the following:
a. Select the Group tab.
b. Select the Group analysis radio button. The variable grade should appear in the Group variable control.
c. Click on OK.
d. In the Standard Toolbar, use the Group control to toggle between results for group 1 and group 2.

You can open a completed diagram in the Builder by typing

```
. webgetsem sem_2fmmby
```


Reference

Acock, A. C. 2013. Discovering Structural Equation Modeling Using Stata. Rev. ed. College Station, TX: Stata Press.

Also see

[SEM] Example 3 - Two-factor measurement model
[SEM] Example 19 - Creating multiple-group summary statistics data
[SEM] Example 21 - Group-level goodness of fit
[SEM] Example 22 - Testing parameter equality across groups
[SEM] Example 23 - Specifying parameter constraints across groups
[SEM] Intro 6 - Comparing groups
[SEM] sem - Structural equation model estimation command
[SEM] sem group options - Fitting models on different groups

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985-2023 StataCorp LLC, College Station, TX,
 USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.

