
Title stata.com

lpoly — Kernel-weighted local polynomial smoothing

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

lpoly performs a kernel-weighted local polynomial regression of yvar on xvar and displays a
graph of the smoothed values with (optional) confidence bands.

Quick start
Kernel-weighted local polynomial regression of y on x

lpoly y x

Same as above, but specify a bandwidth of 2
lpoly y x, bwidth(2)

Same as above, but specify a degree of 1
lpoly y x, bwidth(2) degree(1)

Same as above, but use the alternative Epanechnikov kernel
lpoly y x, bwidth(2) degree(1) kernel(epan2)

Same as above, but create a new variable for the smoothing grid g and smoothed values s

lpoly y x, bwidth(2) degree(1) kernel(epan2) generate(g s)

With 95% confidence bands
lpoly y x, ci

Use twoway to graph multiple local polynomial fits
twoway scatter y x || ///

lpoly y x, degree(1) kernel(epan2) || ///
lpoly y x, degree(1) kernel(epan2) bwidth(1) || ///
lpoly y x, degree(1) kernel(epan2) bwidth(7) ||

Menu
Statistics > Nonparametric analysis > Local polynomial smoothing
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Syntax
lpoly yvar xvar

[
if
] [

in
] [

weight
] [

, options
]

options Description

Main

kernel(kernel) specify kernel function; default is kernel(epanechnikov)

bwidth(# | varname) specify kernel bandwidth
degree(#) specify degree of the polynomial smooth; default is degree(0)

generate(
[

newvarx
]

newvars) store smoothing grid in newvarx and smoothed points in
newvars

n(#) obtain the smooth at # points; default is min(N , 50)
at(varname) obtain the smooth at the values specified by varname
nograph suppress graph
noscatter suppress scatterplot only

SE/CI

ci plot confidence bands
level(#) set confidence level; default is level(95)

se(newvar) store standard errors in newvar
pwidth(#) specify pilot bandwidth for standard error calculation
var(# | varname) specify estimates of residual variance

Scatterplot

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Smoothed line

lineopts(cline options) affect rendition of the smoothed line

CI plot

ciopts(cline options) affect rendition of the confidence bands

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_options
https://www.stata.com/manuals/g-3marker_label_options.pdf#g-3marker_label_options
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https://www.stata.com/manuals/g-3twoway_options.pdf#g-3twoway_options
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kernel Description

epanechnikov Epanechnikov kernel function; the default
epan2 alternative Epanechnikov kernel function
biweight biweight kernel function
cosine cosine trace kernel function
gaussian Gaussian kernel function
parzen Parzen kernel function
rectangle rectangle kernel function
triangle triangle kernel function

collect is allowed; see [U] 11.1.10 Prefix commands.
fweights and aweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

kernel(kernel) specifies the kernel function for use in calculating the weighted local polynomial
estimate. The default is kernel(epanechnikov).

bwidth(# | varname) specifies the half-width of the kernel—the width of the smoothing window
around each point. If bwidth() is not specified, a rule-of-thumb (ROT) bandwidth estimator is
calculated and used. A local variable bandwidth may be specified in varname, in conjunction with
an explicit smoothing grid using the at() option.

degree(#) specifies the degree of the polynomial to be used in the smoothing. The default is
degree(0), meaning local-mean smoothing.

generate( [ newvarx ] newvars) stores the smoothing grid in newvarx and the smoothed values in
newvars. If at() is not specified, then both newvarx and newvars must be specified. Otherwise,
only newvars is to be specified.

n(#) specifies the number of points at which the smooth is to be calculated. The default is min(N, 50),
where N is the number of observations.

at(varname) specifies a variable that contains the values at which the smooth should be calculated.
By default, the smoothing is done on an equally spaced grid, but you can use at() to instead
perform the smoothing at the observed x’s, for example. This option also allows you to more easily
obtain smooths for different variables or different subsamples of a variable and then overlay the
estimates for comparison.

nograph suppresses drawing the graph of the estimated smooth. This option is often used with the
generate() option.

noscatter suppresses superimposing a scatterplot of the observed data over the smooth. This option
is useful when the number of resulting points would be so large as to clutter the graph.

� � �
SE/CI �

ci plots confidence bands, using the confidence level specified in level().

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

se(newvar) stores the estimates of the standard errors in newvar. This option requires specifying
generate() or at().

https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u20.pdf#u20.8Specifyingthewidthofconfidenceintervals
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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pwidth(#) specifies the pilot bandwidth to be used for standard error computations. The default is
chosen to be 1.5 times the value of the ROT bandwidth selector. If you specify pwidth() without
specifying se() or ci, then the ci option is assumed.

var(# | varname) specifies an estimate of a constant residual variance or a variable containing estimates
of the residual variances at each grid point required for standard error computation. By default,
the residual variance at each smoothing point is estimated by the normalized weighted residual
sum of squares obtained from locally fitting a polynomial of order p+ 2, where p is the degree
specified in degree(). var(varname) is allowed only if at() is specified. If you specify var()
without specifying se() or ci, then the ci option is assumed.

� � �
Scatterplot �

marker options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3] marker label options.

� � �
Smoothed line �

lineopts(cline options) affects the rendition of the smoothed line; see [G-3] cline options.

� � �
CI plot �

ciopts(cline options) affects the rendition of the confidence bands; see [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
Local polynomial smoothing
Choice of a bandwidth
Confidence bands

Introduction

The last 25 years or so has seen a significant outgrowth in the literature on scatterplot smoothing,
otherwise known as univariate nonparametric regression. Of most appeal is the idea of making no
assumptions about the functional form for the expected value of a response given a regressor, but
instead allowing the data to “speak for themselves”. Various methods and estimators fall into the
category of nonparametric regression, including local mean smoothing as described independently
by Nadaraya (1964) and Watson (1964), the Gasser and Müller (1979) estimator, locally weighted
scatterplot smoothing (LOWESS) as described by Cleveland (1979), wavelets (for example, Donoho

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_options
https://www.stata.com/manuals/g-3marker_label_options.pdf#g-3marker_label_options
https://www.stata.com/manuals/g-3cline_options.pdf#g-3cline_options
https://www.stata.com/manuals/g-3cline_options.pdf#g-3cline_options
https://www.stata.com/manuals/g-3addplot_option.pdf#g-3addplot_option
https://www.stata.com/manuals/g-3twoway_options.pdf#g-3twoway_options
https://www.stata.com/manuals/g-3title_options.pdf#g-3title_options
https://www.stata.com/manuals/g-3saving_option.pdf#g-3saving_option
http://stata.com
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[1995]), and splines (Eubank 1999), to name a few. Much of the vast literature focuses on automating
the amount of smoothing to be performed and dealing with the bias/variance tradeoff inherent to
this type of estimation. For example, for Nadaraya–Watson the amount of smoothing is controlled by
choosing a bandwidth.

Smoothing via local polynomials is by no means a new idea but instead one that has been rediscovered
in recent years in articles such as Fan (1992). A natural extension of the local mean smoothing of
Nadaraya–Watson, local polynomial regression involves fitting the response to a polynomial form of
the regressor via locally weighted least squares. Higher-order polynomials have better bias properties
than the zero-degree local polynomials of the Nadaraya–Watson estimator; in general, higher-order
polynomials do not require bias adjustment at the boundary of the regression space. For a definitive
reference on local polynomial smoothing, see Fan and Gijbels (1996).

Local polynomial smoothing

Consider a set of scatterplot data {(x1, y1), . . . , (xn, yn)} from the model

yi = m(xi) + σ(xi)εi (1)

for some unknown mean and variance functions m(·) and σ2(·), and symmetric errors εi with
E(εi) = 0 and Var(εi) = 1. The goal is to estimate m(x0) = E[Y |X = x0], making no assumption
about the functional form of m(·).

lpoly estimates m(x0) as the constant term (intercept) of a regression, weighted by the kernel
function specified in kernel(), of yvar on the polynomial terms (xvar−x0), (xvar−x0)2, . . . , (xvar−
x0)

p for each smoothing point x0. The degree of the polynomial, p, is specified in degree(), the
amount of smoothing is controlled by the bandwidth specified in bwidth(), and the chosen kernel
function is specified in kernel().

Example 1

Consider the motorcycle data as examined (among other places) in Fan and Gijbels (1996). The
data consist of 133 observations and measure the acceleration (accel measured in grams [g]) of
a dummy’s head during impact over time (time measured in milliseconds). For these data, we use
lpoly to fit a local cubic polynomial with the default bandwidth (obtained using the ROT method)
and the default Epanechnikov kernel.
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. use https://www.stata-press.com/data/r18/motorcycle
(Motorcycle data from Fan & Gijbels (1996))

. lpoly accel time, degree(3)
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The default bandwidth and kernel settings do not provide a satisfactory fit in this example. To
improve the fit, we can either supply a different bandwidth by using the bwidth() option or specify
a different kernel by using the kernel() option. For example, using the alternative Epanechnikov
kernel, kernel(epan2), below provides a better fit for these data.

. lpoly accel time, degree(3) kernel(epan2)
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Technical note
lpoly allows specifying in degree() both odd and even orders of the polynomial to be used for

the smoothing. However, the odd-order, 2k+1, polynomial approximations are preferable. They have
an extra parameter compared with the even-order, 2k, approximations, which leads to a significant
bias reduction and there is no increase of variability associated with adding this extra parameter.
Using an odd order when estimating the regression function is therefore usually sufficient. For a more
thorough discussion, see Fan and Gijbels (1996).
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Choice of a bandwidth
The choice of a bandwidth is crucial for many smoothing techniques, including local polynomial

smoothing. In general, using a large bandwidth gives smooths with a large bias, whereas a small
bandwidth may result in highly variable smoothed values. Various techniques exist for optimal
bandwidth selection. By default, lpoly uses the ROT method to estimate the bandwidth used for the
smoothing; see Methods and formulas for details.

Example 2

Using the motorcycle data, we demonstrate how a local linear polynomial fit changes using
different bandwidths.

. lpoly accel time, degree(1) kernel(epan2) bwidth(1)
> generate(at smooth1) nograph

. lpoly accel time, degree(1) kernel(epan2) bwidth(7) at(at)
> generate(smooth2) nograph

. label variable smooth1 "Smooth: width = 1"

. label variable smooth2 "Smooth: width = 7"

. lpoly accel time, degree(1) kernel(epan2) at(at) addplot(line smooth* at)
> legend(label(2 "Smooth: width = 3.42 (ROT)") cols(2) pos(6))
> note("kernel = epan2, degree = 1")
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From this graph, we can see that the local linear polynomial fit with larger bandwidth (width =
7) corresponds to a smoother line but fails to fit the curvature of the scatterplot data. The smooth
obtained using the width equal to one seems to fit most data points, but the corresponding line has
several spikes indicating larger variability. The smooth obtained using the ROT bandwidth estimator
seems to have a good tradeoff between the fit and variability in this example.

In the above, we also demonstrated how the generate() and addplot() options may be used to
produce overlaid plots obtained from lpoly with different options. The nograph option saves time
when you need to save only results with generate().
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However, to avoid generating variables manually, one can use twoway lpoly instead; see [G-2] graph
twoway lpoly for more details.

. twoway scatter accel time ||
> lpoly accel time, degree(1) kernel(epan2) lpattern(solid) ||
> lpoly accel time, degree(1) kernel(epan2) bwidth(1) ||
> lpoly accel time, degree(1) kernel(epan2) bwidth(7) ||
> , legend(label(2 "Smooth: width = 3.42 (ROT)")
> label(3 "Smooth: width = 1")
> label(4 "Smooth: width = 7") cols(2) pos(6))
> title("Local polynomial smooth") note("kernel = epan2, degree = 1")
> xtitle("Time (msec)") ytitle("Acceleration (g)")
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The ROT estimate is commonly used as an initial guess for the amount of smoothing; this approach
may be sufficient when the choice of a bandwidth is less important. In other cases, you can pick
your own bandwidth.

When the shape of the regression function has a combination of peaked and flat regions, a variable
bandwidth may be preferable over the constant bandwidth to allow for different degrees of smoothness
in different regions. The bwidth() option allows you to specify the values of the local variable
bandwidths as those stored in a variable in your data.

Similar issues with bias and variability arise when choosing a pilot bandwidth (the pwidth()
option) used to compute standard errors of the local polynomial smoother. The default value is chosen
to be 1.5× ROT. For a review of methods for pilot bandwidth selection, see Fan and Gijbels (1996).

Confidence bands
The established asymptotic normality of the local polynomial estimators under certain conditions

allows the construction of approximate confidence bands. lpoly offers the ci option to plot these
bands.

https://www.stata.com/manuals/g-2graphtwowaylpoly.pdf#g-2graphtwowaylpoly
https://www.stata.com/manuals/g-2graphtwowaylpoly.pdf#g-2graphtwowaylpoly
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Example 3

Let us plot the confidence bands for the local polynomial fit from example 1.

. lpoly accel time, degree(3) kernel(epan2) ci legend(cols(2) pos(6))
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You can obtain graphs with overlaid confidence bands by using twoway lpolyci; see [G-2] graph
twoway lpolyci for examples.

Constructing the confidence intervals involves computing standard errors obtained by taking a
square root of the estimate of the conditional variance of the local polynomial estimator at each
grid point x0. Estimating the conditional variance requires fitting a polynomial of a higher order
locally by using a different bandwidth, the pilot bandwidth. The value of the pilot bandwidth may
be supplied by using pwidth(). By default, the value of 1.5× ROT is used. Also, estimates of the
residual variance σ2(x0) at each grid point, x0, are required to obtain the estimates of the conditional
variances. These estimates may be supplied by using the var() option. By default, they are computed
using the normalized weighted residual sum of squares from a local polynomial fit of a higher order.
See Methods and formulas for details. The standard errors may be saved by using se().

Stored results
lpoly stores the following in r():

Scalars
r(degree) smoothing polynomial degree r(bwidth) bandwidth of the smooth
r(ngrid) number of successful regressions r(pwidth) pilot bandwidth
r(N) sample size

Macros
r(kernel) name of kernel

https://www.stata.com/manuals/g-2graphtwowaylpolyci.pdf#g-2graphtwowaylpolyci
https://www.stata.com/manuals/g-2graphtwowaylpolyci.pdf#g-2graphtwowaylpolyci
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Methods and formulas
Consider model (1), written in matrix notation,

y = m(x) + ε

where y and x are the n× 1 vectors of scatterplot values, ε is the n× 1 vector of errors with zero
mean and covariance matrix Σ = diag{σ(xi)}In, and m() and σ() are some unknown functions.
Define m(x0) = E[Y |X = x0] and σ2(x0) = Var[Y |X = x0] to be the conditional mean and
conditional variance of random variable Y (residual variance), respectively, for some realization x0
of random variable X .

The method of local polynomial smoothing is based on the approximation of m(x) locally by a
pth order polynomial in (x − x0) for some x in the neighborhood of x0. For the scatterplot data
{(x1, y1), . . . , (xn, yn)}, the pth-order local polynomial smooth m̂(x0) is equal to β̂0, an estimate
of the intercept of the weighted linear regression,

β̂ = (XTWX)−1XTWy (2)

where β̂ = (β̂0, β̂1, . . . , β̂p)
T is the vector of estimated regression coefficients (with {β̂j =

(j!)−1m̂(j)(x)|x=x0
, j = 0, . . . , p} also representing estimated coefficients from a corresponding

Taylor expansion); X = {(xi − x0)j}n,pi,j=1,0 is a design matrix; and W = diag{Kh(xi − x0)}n×n
is a weighting matrix with weights Kh(·) defined as Kh(x) = h−1K(x/h), with K(·) being a
kernel function and h defining a bandwidth. The kernels are defined in Methods and formulas of
[R] kdensity.

The default bandwidth is obtained using the ROT method of bandwidth selection. The ROT bandwidth
is the plugin estimator of the asymptotically optimal constant bandwidth. This is the bandwidth that
minimizes the conditional weighted mean integrated squared error. The ROT plugin bandwidth selector
for the smoothing bandwidth h is defined as follows; assuming constant residual variance σ2(x0) = σ2

and odd degree p:

ĥ = C0,p(K)

[
σ̂2
∫
w0(x)dx

n
∫
{m̂(p+1)(x)}2w0(x)f(x)dx

]1/(2p+3)

(3)

where C0,p(K) is a constant, as defined in Fan and Gijbels (1996), that depends on the kernel function
K(·), and the degree of a polynomial p and w0 is chosen to be an indicator function on the interval
[minx + 0.05× rangex,maxx− 0.05× rangex] with minx, maxx, and rangex being, respectively, the
minimum, maximum, and the range of x. To obtain the estimates of a constant residual variance, σ̂2,
and (p+ 1)th order derivative of m(x), denoted as m̂(p+1)(x), a polynomial in x of order (p+ 3)
is fit globally to y. σ̂2 is estimated as a standardized residual sum of squares from this fit.

The expression for the asymptotically optimal constant bandwidth used in constructing the ROT
bandwidth estimator is derived for the odd-order polynomial approximations. For even-order polynomial
fits the expression would depend not only on m(p+1)(x) but also on m(p+2)(x) and the design density
and its derivative, f(x) and f ′(x). Therefore, the ROT bandwidth selector would require estimation
of these additional quantities. Instead, for an even-degree p of the local polynomial, lpoly uses the
value of the ROT estimator (3) computed using degree p+ 1. As such, for even degrees this is not a
plugin estimator of the asymptotically optimal constant bandwidth.

The estimates of the conditional variance of local polynomial estimators are obtained using

V̂ar{m̂(x0)|X = x0} = σ̂2
m(x0) = (XTWX)−1(XTW2X)(XTWX)−1σ̂2(x0) (4)

https://www.stata.com/manuals/rkdensity.pdf#rkdensityMethodsandformulas
https://www.stata.com/manuals/rkdensity.pdf#rkdensity
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where σ̂2(x0) is estimated by the normalized weighted residual sum of squares from the (p+ 2)th
order polynomial fit using pilot bandwidth h?.

When the bias is negligible the normal-approximation method yields a (1−α)×100% confidence
interval for m(x0), {

m̂(x0)− z(1−α/2)σ̂m(x0), m̂(x0) + z(1−α/2)σ̂m(x0)
}

where z(1−α/2) is the (1 − α/2)th quantile of the standard Gaussian distribution, and m̂(x0) and
σ̂m(x0) are as defined in (2) and (4), respectively.
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