Title stata.com

linktest — Specification link test for single-equation models

Description Quick start Menu Syntax

Option Remarks and examples Stored results Methods and formulas

References Also see

Description

linktest performs a link test for model specification.

Quick start

Specification link test after a single-equation estimation command without options linktest

After tobit estimated with right-censoring limit at 24 linktest, ul(24)

After stcox estimated with Efron method for tied failures linktest, efron

Perform test on full dataset when estimation used a subset of observations linktest if e(sample) < .

Menu

Statistics > Postestimation

Syntax

```
linktest [if] [in] [, cmd\_options]
```

When if and in are not specified, the link test is performed on the same sample as the previous estimation. collect is allowed; see [U] 11.1.10 Prefix commands.

Option

__ Main

cmd_options must be the same options specified with the underlying estimation command, except the display_options may differ.

Remarks and examples

stata.com

The form of the link test implemented here is based on an idea of Tukey (1949), which was further described by Pregibon (1980), elaborating on work in his unpublished thesis (Pregibon 1979). See Methods and formulas below for more details.

Example 1

We want to explain the mileage ratings of cars in our automobile dataset by using the weight, engine displacement, and whether the car is manufactured outside the United States:

- . use https://www.stata-press.com/data/r18/auto (1978 automobile data)
- . regress mpg weight displ foreign

Source	SS	df	MS		er of obs	; =	74
Model Residual	1619.71935 823.740114	3 70	539.906448 11.7677159	R-sq	-	= = = 1 =	45.88 0.0000 0.6629 0.6484
Total	2443.45946	73	33.4720474		-	=	3.4304
mpg	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
weight displacement foreign _cons	0067745 .0019286 -1.600631 41.84795	.0011665 .0100701 1.113648 2.350704	-5.81 0.19 -1.44 17.80	0.000 0.849 0.155 0.000	00910 01815 -3.8217 37.159	556 '32	0044479 .0220129 .6204699 46.53628

On the basis of the R^2 , we are reasonably pleased with this model.

If our model really is specified correctly, then if we were to regress mpg on the prediction and the prediction squared, the prediction squared would have no explanatory power. This is what linktest does:

linktest

Source	SS	df	MS	Number of ob	s =	74
				F(2, 71)	=	76.75
Model	1670.71514	2	835.357572	Prob > F	=	0.0000
Residual	772.744316	71	10.8837228	R-squared	=	0.6837
				Adj R-square	d =	0.6748
Total	2443.45946	73	33.4720474	Root MSE	=	3.299
mpg	Coefficient	Std. err.	t l	P> t [95%	conf.	interval]
	Coefficient	Std. err.		P> t [95% 0.532 -1.724		interval]
mpg _hat _hatsq			-0.63		283	
hat	4127198	.6577736	-0.63 (2.16 (0.532 -1.724	283 664	.8988434

We find that the prediction squared does have explanatory power, so our specification is not as good as we thought.

Although linktest is formally a test of the specification of the dependent variable, it is often interpreted as a test that, conditional on the specification, the independent variables are specified incorrectly. We will follow that interpretation and now include weight squared in our model:

. regress mpg weight c.weight#c.weight displ foreign

Source	SS	df	MS	Number F(4, 6	r of obs =	
Model Residual	1699.02634 744.433124	4 69	424.756584 10.7888859	Prob R-squa	> F = ared =	0.0000
Total	2443.45946	73	33.4720474		bquarou	
mpg	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
weight	0173257	.0040488	-4.28	0.000	0254028	0092486
<pre>c.weight# c.weight</pre>	1.87e-06	6.89e-07	2.71	0.008	4.93e-07	3.24e-06
displacement foreign _cons	0101625 -2.560016 58.23575	.0106236 1.123506 6.449882	-2.28	0.342 0.026 0.000	031356 -4.801349 45.36859	.011031 3186832 71.10291

Now, we perform the link test on our new model:

. linktest

Source	SS	df	MS		er of obs	=	74 81.08
Model Residual	1699.39489 744.06457	2 71	849.697445 10.4797827	7 R-sq	-	= =	0.0000 0.6955 0.6869
Total	2443.45946	73	33.4720474		-	=	3.2372
mpg	Coefficient	Std. err.	t	P> t	[95% cd	onf.	interval]
_hat _hatsq _cons	1.141987 0031916 -1.50305	.7612218 .0170194 8.196444	1.50 -0.19 -0.18	0.138 0.852 0.855	375845 037127 -17.8462	72	2.659821 .0307441 14.84019

We now pass the link test.

Example 2

Above, we followed a standard misinterpretation of the link test—when we discovered a problem, we focused on the explanatory variables of our model. We might consider varying exactly what the link test tests. The link test told us that our dependent variable was misspecified. For those with an engineering background, mpg is indeed a strange measure. It would make more sense to model energy consumption—gallons per mile—in terms of weight and displacement:

- . gen gpm = 1/mpg
- . regress gpm weight displ foreign

Source	SS	df	MS	Number of obs	=	74
				F(3, 70)	=	76.33
Model	.009157962	3	.003052654	Prob > F	=	0.0000
Residual	.002799666	70	.000039995	R-squared	=	0.7659
				Adj R-squared	=	0.7558
Total	.011957628	73	.000163803	Root MSE	=	.00632
gpm	Coefficient	Std. err.	t i	P> t [95% c	onf.	interval]
weight	.0000144	2.15e-06	6.72	0.000 .00001	02	.0000187
weight displacement	.0000144	2.15e-06 .0000186		0.000 .00001 0.31900001		.0000187
O			1.00		84	
displacement	.0000186	.0000186	1.00	0.31900001	84 34	.0000557

This model looks every bit as reasonable as our original model:

		k۱		

Source	SS	df	MS	Number of obs	3 =	74
Model Residual Total	.009175219 .002782409 .011957628	2 71 73	.004587609	R-squared Adj R-squared	= = = 1 = =	117.06 0.0000 0.7673 0.7608 .00626
gpm	Coefficient	Std. err.	t	P> t [95% o	conf.	interval]
_hat _hatsq _cons	.6608413 3.275857 .008365	.515275 4.936655 .0130468	0.66	0.20436658 0.509 -6.5679 0.52301764	553	1.68827 13.11927 .0343795

Specifying the model in terms of gallons per mile also solves the specification problem and results in a more parsimonious specification.

1

Example 3

The link test can be used with any single-equation estimation procedure, not solely regression. Let's turn our problem around and attempt to explain whether a car is manufactured outside the United States by its mileage rating and weight. To save paper, we will specify logit's nolog option, which suppresses the iteration log:

. logit foreign mpg weight, nolog Logistic regression Number of obs = 74 LR chi2(2) = 35.72Prob > chi2 = 0.0000Pseudo R2 = 0.3966Log likelihood = -27.175156Coefficient Std. err. P>|z| [95% conf. interval] foreign 7. -.1685869 .0919175 -1.830.067 -.3487418 .011568 mpg weight -.0039067 .0010116 -3.860.000 -.0058894 -.001924 _cons 13.70837 4.518709 3.03 0.002 4.851859 22,56487

When we run linktest after logit, the result is another logit specification:

. linktest, nolog Logistic regression Number of obs = 74 LR chi2(2) 36.83 Prob > chi2 = 0.0000Log likelihood = -26.615714Pseudo R2 = 0.4090foreign Coefficient Std. err. P>|z| [95% conf. interval] .2738759 .3070661 .8438531 3.08 0.002 1.38064 _hat _hatsq -.1559115 .1568642 -0.990.320 -.4633596 .1515366 .2630557 .4299598 0.61 0.541 -.57965 1.105761 cons

The link test reveals no problems with our specification.

If there had been a problem, we would have been virtually forced to accept the misinterpretation of the link test—we would have reconsidered our specification of the independent variables. When using logit, we have no control over the specification of the dependent variable other than to change likelihood functions.

We admit to having seen a dataset once for which the link test rejected the logit specification. We did change the likelihood function, refitting the model using probit, and satisfied the link test. Probit has thinner tails than logit. In general, however, you will not be so lucky.

□ Technical note

You should specify the same options with linktest that you do with the estimation command, although you do not have to follow this advice as literally as we did in the preceding example. logit's nolog option merely suppresses a part of the output, not what is estimated. We specified nolog both times to save space.

If you are testing a tobit model, you must specify the censoring points just as you do with the tobit command.

If you are not sure which options are important, duplicate exactly what you specified on the estimation command.

1

If you do not specify if *exp* or in *range* with linktest, Stata will by default perform the link test on the same sample as the previous estimation. Suppose that you omitted some data when performing your estimation but want to calculate the link test on all the data, which you might do if you believe the model is appropriate for all the data. You would type linktest if e(sample) < . to do this.

Stored results

linktest stores the following in r():

Scalars

r(t) t statistic on _hatsq r(df) degrees of freedom

linktest is *not* an estimation command in the sense that it leaves previous estimation results unchanged. For instance, after running a regression and performing the link test, typing regress without arguments after the link test still replays the original regression.

For integrating an estimation command with linktest, linktest assumes that the name of the estimation command is stored in e(cmd) and that the name of the dependent variable is stored in e(depvar). After estimation, it assumes that the number of degrees of freedom for the t test is given by $e(df_m)$ if the macro is defined.

If the estimation command reports z statistics instead of t statistics, linktest will also report z statistics. The z statistic, however, is still returned in r(t), and r(df) is set to a missing value.

Methods and formulas

The link test is based on the idea that if a regression or regression-like equation is properly specified, you should be able to find no additional independent variables that are significant except by chance. One kind of specification error is called a link error. In regression, this means that the dependent variable needs a transformation or "link" function to properly relate to the independent variables. The idea of a link test is to add an independent variable to the equation that is especially likely to be significant if there is a link error.

Let

$$\mathbf{y} = f(\mathbf{X}\boldsymbol{\beta})$$

be the model and \widehat{eta} be the parameter estimates. linktest calculates

$$_\mathtt{hat} = \mathbf{X} \widehat{oldsymbol{eta}}$$

and

$$_\mathtt{hatsq} = _\mathtt{hat}^2$$

The model is then refit with these two variables, and the test is based on the significance of _hatsq. This is the form suggested by Pregibon (1979) based on an idea of Tukey (1949). Pregibon (1980) suggests a slightly different method that has come to be known as "Pregibon's goodness-of-link test". We prefer the older version because it is universally applicable, straightforward, and a good second-order approximation. It can be applied to any single-equation estimation technique, whereas Pregibon's more recent tests are estimation-technique specific.

References

Pregibon, D. 1979. Data analytic methods for generalized linear models. PhD diss., University of Toronto.

-. 1980. Goodness of link tests for generalized linear models. Applied Statistics 29: 15-24. https://doi.org/10.2307/2346405.

Tukey, J. W. 1949. One degree of freedom for non-additivity. Biometrics 5: 232–242. https://doi.org/10.2307/3001938.

Also see

[R] regress postestimation — Postestimation tools for regress

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985-2023 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.