intreg postestimation — Postestimation tools for intreg

Postestimation commands predict margins Remarks and examples Also see

Postestimation commands

The following postestimation commands are available after intreg:

Command	Description			
contrast	contrasts and ANOVA-style joint tests of estimates			
estat ic	Akaike's, consistent Akaike's, corrected Akaike's, and Schwarz's Bayesian formation criteria (AIC, CAIC, AICc, and BIC)			
estat summarize	summary statistics for the estimation sample			
estat vce	variance-covariance matrix of the estimators (VCE)			
estat (svy)	postestimation statistics for survey data			
estimates	cataloging estimation results			
etable	table of estimation results			
*hausman	Hausman's specification test			
lincom	point estimates, standard errors, testing, and inference for linear combinations of coefficients			
*lrtest	likelihood-ratio test			
margins	marginal means, predictive margins, marginal effects, and average marginal effects			
marginsplot	graph the results from margins (profile plots, interaction plots, etc.)			
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients			
predict	linear, censored, and truncated predictions			
predictnl	point estimates, standard errors, testing, and inference for generalized predictions			
pwcompare	pairwise comparisons of estimates			
suest	seemingly unrelated estimation			
test	Wald tests of simple and composite linear hypotheses			
testnl	Wald tests of nonlinear hypotheses			

*hausman and lrtest are not appropriate with svy estimation results.

predict

Description for predict

predict creates a new variable containing predictions such as linear predictions, standard errors, probabilities, and expected values.

Menu for predict

Statistics > Postestimation

Syntax for predict

```
predict [type] newvar [if] [in] [, statistic <u>nooff</u>set]
predict [type] stub* [if] [in], scores
                        on
```

statistic	Descriptio
	*

Main		
xb	linear prediction; the default	
stdp	standard error of the prediction	
stdf	standard error of the forecast	
pr(<i>a</i> , <i>b</i>)	$\Pr(a < y_j < b)$	
e(<i>a</i> , <i>b</i>)	$E(y_j a < y_j < b)$	
$\underline{ys}tar(a,b)$	$E(y_j^*), y_j^* = \max\{a, \min(y_j, b)\}$	

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample.

stdf is not allowed with svy estimation results.

where a and b may be numbers or variables; a missing $(a \ge .)$ means $-\infty$, and b missing $(b \ge .)$ means $+\infty$; see [U] 12.2.1 Missing values.

Options for predict

Main

xb, the default, calculates the linear prediction.

- stdp calculates the standard error of the prediction, which can be thought of as the standard error of the predicted expected value or mean for the observation's covariate pattern. The standard error of the prediction is also referred to as the standard error of the fitted value.
- stdf calculates the standard error of the forecast, which is the standard error of the point prediction for 1 observation. It is commonly referred to as the standard error of the future or forecast value. By construction, the standard errors produced by stdf are always larger than those produced by stdp; see Methods and formulas in [R] regress postestimation.
- pr(a,b) calculates $Pr(a < x_j\beta + \epsilon_j < b)$, the probability that $y_j | x_j$ would be observed in the interval (a, b).

a and *b* may be specified as numbers or variable names; *lb* and *ub* are variable names; pr(20,30) calculates $Pr(20 < x_j\beta + \epsilon_j < 30)$; pr(*lb*,*ub*) calculates $Pr(lb < x_j\beta + \epsilon_j < ub)$; and pr(20,*ub*) calculates $Pr(20 < x_j\beta + \epsilon_j < ub)$.

a missing $(a \ge .)$ means $-\infty$; pr(.,30) calculates $Pr(-\infty < \mathbf{x}_j \boldsymbol{\beta} + \epsilon_j < 30)$; pr(*lb*,30) calculates $Pr(-\infty < \mathbf{x}_j \boldsymbol{\beta} + \epsilon_j < 30)$ in observations for which $lb \ge .$ and calculates $Pr(lb < \mathbf{x}_j \boldsymbol{\beta} + \epsilon_j < 30)$ elsewhere.

b missing $(b \ge .)$ means $+\infty$; pr(20,.) calculates Pr($+\infty > \mathbf{x}_j\beta + \epsilon_j > 20$); pr(20,*ub*) calculates Pr($+\infty > \mathbf{x}_j\beta + \epsilon_j > 20$) in observations for which $ub \ge .$ and calculates Pr($20 < \mathbf{x}_j\beta + \epsilon_j < ub$) elsewhere.

- e(a,b) calculates $E(\mathbf{x}_j \boldsymbol{\beta} + \epsilon_j | a < \mathbf{x}_j \boldsymbol{\beta} + \epsilon_j < b)$, the expected value of $y_j | \mathbf{x}_j$ conditional on $y_j | \mathbf{x}_j$ being in the interval (a, b), meaning that $y_j | \mathbf{x}_j$ is truncated. a and b are specified as they are for pr().
- ystar(*a*,*b*) calculates $E(y_j^*)$, where $y_j^* = a$ if $\mathbf{x}_j \boldsymbol{\beta} + \epsilon_j \leq a$, $y_j^* = b$ if $\mathbf{x}_j \boldsymbol{\beta} + \epsilon_j \geq b$, and $y_j^* = \mathbf{x}_j \boldsymbol{\beta} + \epsilon_j$ otherwise, meaning that y_j^* is censored. *a* and *b* are specified as they are for pr().
- nooffset is relevant only if you specified offset(*varname*). It modifies the calculations made by predict so that they ignore the offset variable; the linear prediction is treated as $\mathbf{x}_j\beta$ rather than as $\mathbf{x}_j\beta$ + offset_j.

scores calculates equation-level score variables.

The first new variable will contain $\partial \ln L / \partial (\mathbf{x}_i \boldsymbol{\beta})$.

The second new variable will contain $\partial \ln L / \partial \ln \sigma$.

margins

Description for margins

margins estimates margins of response for linear predictions, probabilities, and expected values.

Menu for margins

 ${\rm Statistics}\,>\,{\rm Postestimation}$

Syntax for margins

margins	[marginlist] [, options]
margins	[marginlist], predict(statistic) [predict(statistic)] [options]
statistic	Description
xb	linear prediction; the default
pr(<i>a</i> , <i>b</i>)	$\Pr(a < y_j < b)$
e(<i>a</i> , <i>b</i>)	$E(y_j a < y_j < b)$
ystar(a,b)	$E(y_j^*), y_j^* = \max\{a, \min(y_j, b)\}$
 stdp	not allowed with margins
stdf	not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b). For the full syntax, see [R] margins.

Number of obs = 488

Remarks and examples

stata.com

Example 1: Marginal predictions

Continuing with example 1 of [R] intreg, we compute women's expected wages conditional on a woman's wage being higher than \$5,000. To do this, we can use the e(a,b) option.

```
. use https://www.stata-press.com/data/r18/womenwage2
(Wages of women, fictional data)
. intreg wage1 wage2 age c.age#c.age i.nev_mar i.rural school tenure
 (output omitted)
. predict w1, e(5,.)
. summarize w1
    Variable
                      Obs
                                          Std. dev.
                                                          Min
                                 Mean
                                                                     Max
                      488
                             18.02362
                                          4.583738
                                                     8.717687
                                                                 35.31161
          w1
```

The predicted wages range from \$8,718 to \$35,312.

We can also examine whether the probability of earning more than \$5,000 varies with age. We can use margins to compute the marginal means of the predicted probabilities at different ages.

```
. margins, predict(pr(5,.)) at(age=(20(5)50))
Predictive margins
Model VCE: OIM
Expression: Pr(y>5), predict(pr(5,.))
1._at: age = 20
2._at: age = 25
3._at: age = 30
4._at: age = 35
5._at: age = 40
6._at: age = 45
7._at: age = 50
```

	Margin	Delta-method std. err.	z	P> z	[95% conf.	interval]
at						
1	.8912598	.0151773	58.72	0.000	.8615127	.9210068
2	.9104568	.0103467	87.99	0.000	.8901775	.930736
3	.9160005	.0120025	76.32	0.000	.892476	.9395251
4	.9096667	.0136693	66.55	0.000	.8828753	.9364581
5	.8894289	.0206992	42.97	0.000	.8488593	.9299985
6	.8491103	.0447429	18.98	0.000	.7614159	.9368048
7	.7781644	.0970557	8.02	0.000	.5879387	.9683902

We can visualize these results by using marginsplot:

```
. marginsplot
Variables that uniquely identify margins: age
```


The probability increases until age 30 and decreases thereafter.

Also see

- [R] intreg Interval regression
- [U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2023 StataCorp LLC, College Station, TX, USA. All rights reserved.

