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Description

icc estimates intraclass correlations for one-way random-effects models, two-way random-effects
models, or two-way mixed-effects models for both individual and average measurements. Intraclass
correlations measuring consistency of agreement or absolute agreement of the measurements may be
estimated.

Quick start
Individual and average absolute-agreement intraclass correlation coefficients (ICCs) for ratings y of

targets identified by tid in a one-way random-effects model
icc y tid

Same as above, but test that the individual and average ICCs are equal to 0.5
icc y tid, testvalue(.5)

Absolute-agreement ICCs for targets identified by tid and raters identified by rid in a two-way
random-effects model

icc y tid rid

Same as above, but estimate consistency-of-agreement ICCs
icc y tid rid, consistency

Consistency-of-agreement ICCs when estimating random effects for targets and fixed effects for raters
in a mixed-effects model

icc y tid rid, mixed

Same as above, but estimate absolute-agreement ICCs
icc y tid rid, mixed absolute

Same as above, but report 90% confidence intervals and test that ICCs are equal to 0.3
icc y tid rid, mixed absolute level(90) testvalue(.3)

Menu
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Intraclass correlations
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Syntax

Calculate intraclass correlations for one-way random-effects model

icc depvar target
[

if
] [

in
] [

, oneway options
]

Calculate intraclass correlations for two-way random-effects model

icc depvar target rater
[

if
] [

in
] [

, twoway re options
]

Calculate intraclass correlations for two-way mixed-effects model

icc depvar target rater
[

if
] [

in
]
, mixed

[
twoway me options

]
oneway options Description

Main

absolute estimate absolute agreement; the default
testvalue(#) test whether intraclass correlations equal #;

default is testvalue(0)

Reporting

level(#) set confidence level; default is level(95)

format(% fmt) display format for statistics and confidence intervals;
default is format(%9.0g)

twoway re options Description

Main

absolute estimate absolute agreement; the default
consistency estimate consistency of agreement
testvalue(#) test whether intraclass correlations equal #;

default is testvalue(0)

Reporting

level(#) set confidence level; default is level(95)

format(% fmt) display format for statistics and confidence intervals;
default is format(%9.0g)

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/d.pdf#dformat
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twoway me options Description

Main
∗mixed estimate intraclass correlations for a mixed-effects model
consistency estimate consistency of agreement; the default
absolute estimate absolute agreement
testvalue(#) test whether intraclass correlations equal #;

default is testvalue(0)

Reporting

level(#) set confidence level; default is level(95)

format(% fmt) display format for statistics and confidence intervals;
default is format(%9.0g)

∗ mixed is required.

bootstrap, by, collect, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Options for one-way RE model

� � �
Main �

absolute specifies that intraclass correlations measuring absolute agreement of the measurements
be estimated. This is the default for random-effects models.

testvalue(#) tests whether intraclass correlations equal #. The default is testvalue(0).

� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [R] level.

format(% fmt) specifies how the intraclass correlation estimates and confidence intervals are to be
formatted. The default is format(%9.0g).

Options for two-way RE and ME models

� � �
Main �

mixed is required to calculate two-way mixed-effects models. mixed specifies that intraclass corre-
lations for a mixed-effects model be estimated.

absolute specifies that intraclass correlations measuring absolute agreement of the measurements be
estimated. This is the default for random-effects models. Only one of absolute or consistency
may be specified.

consistency specifies that intraclass correlations measuring consistency of agreement of the mea-
surements be estimated. This is the default for mixed-effects models. Only one of absolute or
consistency may be specified.

testvalue(#) tests whether intraclass correlations equal #. The default is testvalue(0).

https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/rlevel.pdf#rlevel
https://www.stata.com/manuals/d.pdf#dformat
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� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [R] level.

format(% fmt) specifies how the intraclass correlation estimates and confidence intervals are to be
formatted. The default is format(%9.0g).

Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
One-way random effects
Two-way random effects
Two-way mixed effects
Adoption study
Relationship between ICCs
Tests against nonzero values

Introduction

In some disciplines, such as psychology and sociology, data are often measured with error that
can seriously affect statistical interpretation of the results. Thus, it is important to assess the amount
of measurement error by evaluating the consistency or reliability of measurements. The intraclass
correlation coefficient (ICC) is often used to measure the consistency or homogeneity of measurements.

Several versions of ICCs are introduced in the literature depending on the experimental design and
goals of the study (see, for example, Shrout and Fleiss [1979] and McGraw and Wong [1996a]).
Following Shrout and Fleiss (1979), we describe various forms of ICCs in the context of a reliability
study of ratings of different targets (or objects of measurements) by several raters.

Consider n targets (for example, students, patients, athletes) that are randomly sampled from a
population of interest. Each target is rated independently by a set of k raters (for example, teachers,
doctors, judges). One rating per target and rater is obtained. It is of interest to determine the extent
of the agreement of the ratings.

As noted by Shrout and Fleiss (1979) and McGraw and Wong (1996a), you need to answer several
questions to decide what version of ICC is appropriate to measure the agreement in your study:

1. Is a one-way or two-way analysis-of-variance model appropriate for your study?

2. Are differences between raters’ mean ratings relevant to the reliability of interest?

3. Is the unit of analysis an individual rating or the mean rating over several raters?

4. Is the consistency of agreement or the absolute agreement of ratings of interest?

Three types of analysis-of-variance models are considered for the reliability study: one-way random
effects, two-way random effects, and two-way mixed effects. Mixed models contain both fixed effects
and random effects. In the one-way random-effects model, each target is rated by a different set of
k independent raters, who are randomly drawn from the population of raters. The target is the only
random effect in this model; the effects due to raters and possibly due to rater-and-target interaction
cannot be separated from random error. In the two-way random-effects model, each target is rated
by the same set of k independent raters, who are randomly drawn from the population of raters.
The random effects in this model are target and rater and possibly their interaction, although in the
absence of repeated measurements for each rater on each target, the effect of an interaction cannot
be separated from random error. In the two-way mixed-effects model, each target is rated by the

https://www.stata.com/manuals/rlevel.pdf#rlevel
https://www.stata.com/manuals/d.pdf#dformat
http://stata.com
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same set of k independent raters. Because they are the only raters of interest, rater is a fixed effect.
The random effects are target and possibly target-and-rater interaction, but again the interaction effect
cannot be separated from random error without repeated measurements for each rater and target. The
definition of ICC depends on the chosen random-effects model; see Methods and formulas for details.

In summary, use a one-way model if there are no systematic differences in measurements due to
raters and use a two-way model otherwise. If you want to generalize your results to a population
of raters from which the observed raters are sampled, use a two-way random-effects model, treating
raters as random. If you are interested only in the effects of the observed k raters, use a two-way
mixed-effects model, treating raters as fixed. For example, suppose you compare judges’ ratings of
targets from different groups. If you use the combined data from k judges to compare the groups,
the random-effects model is appropriate. If you compare groups separately for each judge and then
pool the differences, the mixed-effects model is appropriate.

The definition of ICC also depends on the unit of analysis in a study—whether the agreement is
measured between individual ratings (individual ICC) or between the averages of ratings over several
raters (average ICC). The data on individual ratings are more common. The data on average ratings
are typically used when individual ratings are deemed unreliable. The average ICC can also be used
when teams of raters are used to rate a target. For example, the ratings of teams of physicians may
be evaluated in this manner. When the unit of analysis is an average rating, you should remember
that the interpretation of ICC pertains to average ratings and not individual ratings.

Finally, depending on whether consistency of agreement or absolute agreement is of interest, two
types of ICC are used: consistency-of-agreement ICC (CA-ICC) and absolute-agreement ICC (AA-ICC).
Under consistency of agreement, the scores are considered consistent if the scores from any two raters
differ by the same constant value for all targets. This implies that raters give the same ranking to
all targets. Under absolute agreement, the scores are considered in absolute agreement if the scores
from all raters match exactly.

For example, suppose we observe three targets and two raters. The ratings are (2,4), (4,6), and
(6,8), with rater 1 giving the scores (2,4,6) and rater 2 giving the scores (4,6,8), two points higher
than rater 1. The CA-ICC between individual ratings is 1 because the scores from rater 1 and rater 2
differ by a constant value (two points) for all targets. That rater 1 gives lower scores than rater 2 is
deemed irrelevant under the consistency measure of agreement. The raters have the same difference
of opinion on every target, and the variation between raters that is caused by this difference is not
relevant. On the other hand, the AA-ICC between individual ratings is 8/12 = 0.67, where 8 is the
estimated between-target variance and 12 is the estimated total variance of ratings.

Either CA-ICC or AA-ICC can serve as a useful measure of agreement depending on whether rater
variability is relevant for determining the degree of agreement. As McGraw and Wong (1996a) point
out, CA-ICC is useful when comparative judgments are made about objects of measurement. The
CA-ICC represents correlation when the rater is fixed; the AA-ICC represents correlation when the rater
is random.

See Shrout and Fleiss (1979) and McGraw and Wong (1996a) for more detailed guidelines about
the choice of appropriate ICC.

Shrout and Fleiss (1979) and McGraw and Wong (1996a) describe 10 versions of ICCs based on
the concepts above: individual and average AA-ICCs for a one-way model (consistency of agreement is
not defined for this model); individual and average AA-ICCs and CA-ICCs for a two-way random-effects
model; and individual and average AA-ICCs and CA-ICCs for a two-way mixed-effects model. Although
each of these ICCs has its own definition and interpretation, the estimators for some are identical,
leading to the same estimates of those ICCs; see Relationship between ICCs and Methods and formulas
for details.
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The icc command calculates ICCs for each of the three analysis-of-variance models. You can use
option absolute to compute AA-ICCs or option consistency to compute CA-ICCs. By default, icc
computes ICCs corresponding to the correlation between ratings and between average ratings made
on the same target: AA-ICC for a random-effects model and CA-ICC for a mixed-effects model. As
pointed out by Shrout and Fleiss (1979), although the data on average ratings might be needed for
reliability, the generalization of interest might be individuals. For this reason, icc reports ICCs for
both units, individual and average, for each model.

In addition to estimates of ICCs, icc provides confidence intervals and one-sided F tests. The F
test of Ho: ρ = 0 versus Ha: ρ > 0 is the same for the individual and average ICCs, so icc reports
one test. This is not true, however, for nonzero null hypotheses (see Tests against nonzero values for
details), so icc reports a separate test in this case.

The icc command requires data in long form; see [D] reshape for how to convert data in wide form
to long form. The data must also be balanced and contain one observation per target and rater. For
unbalanced data, icc omits all targets with fewer than k ratings from computation. Under one-way
models, k is determined as the largest number of observed ratings for a target. Under two-way models,
k is the number of unique raters. If multiple observations per target and rater are detected, icc issues
an error.

We demonstrate the use of icc using datasets from Shrout and Fleiss (1979) and McGraw and
Wong (1996a). In the next three sections, we use an example from table 2 of Shrout and Fleiss (1979)
with six targets and four judges. For instructional purposes, we analyze these data under each of the
three different models: one-way random effects, two-way random effects, and two-way mixed effects.

One-way random effects

In the one-way random-effects model, we assume that the n targets being rated are randomly
selected from the population of potential targets. Each is rated by a different set of k raters randomly
drawn from the population of potential raters. McGraw and Wong (1996a) describe an example of
this setting, where behavioral genetics data are used to assess familial resemblance. Family units can
be viewed as “targets”, and children can be viewed as “raters”. By taking a measurement on a child
of the family unit, we obtain the “rating” of the family unit by the “child-rater”. In this case, we can
use ICC to assess similarity between children within a family or, in other words, assess if there is a
family effect in these data.

As we mentioned in the introduction, only AA-ICC is defined for a one-way model. The consistency
of agreement is not defined in this case, as each target is evaluated by a different set of raters. Thus,
there is no between-rater variability in this model.

In a one-way model, the AA-ICC corresponds to the correlation coefficient between ratings within
a target. It is also a ratio of the between-target variance of ratings to the total variance of ratings, the
sum of the between-target and error variances.

Example 1: One-way random-effects ICCs

Consider data from table 2 of Shrout and Fleiss (1979) stored in judges.dta. The data contain
24 ratings of n = 6 targets by k = 4 judges. We list the first eight observations:

https://www.stata.com/manuals/dreshape.pdf#dreshape
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. use https://www.stata-press.com/data/r18/judges
(Ratings of targets by judges)

. list in 1/8, sepby(target)

rating target judge

1. 9 1 1
2. 2 1 2
3. 5 1 3
4. 8 1 4

5. 6 2 1
6. 1 2 2
7. 3 2 3
8. 2 2 4

For a moment, let’s ignore that targets are rated by the same set of judges. Instead, we assume that
a different set of four judges is used to rate each target. In this case, the only systematic variation in
the data is due to targets, so the one-way random-effects model is appropriate.

We use icc to estimate the intraclass correlations for these data. To compute ICCs for a one-way
model, we specify the dependent variable rating followed by the target variable target:

. icc rating target

Intraclass correlations
One-way random-effects model
Absolute agreement

Random effects: target Number of targets = 6
Number of raters = 4

rating ICC [95% conf. interval]

Individual .1657418 -.1329323 .7225601
Average .4427971 -.8844422 .9124154

F test that
ICC=0.00: F(5.0, 18.0) = 1.79 Prob > F = 0.165

Note: ICCs estimate correlations between individual measurements
and between average measurements made on the same target.

icc reports the AA-ICCs for both individual and average ratings. The individual AA-ICC corresponds
to ICC(1) in McGraw and Wong (1996a) or ICC(1,1) in Shrout and Fleiss (1979). The average AA-ICC
corresponds to ICC(k) in McGraw and Wong (1996a) or ICC(1,k) in Shrout and Fleiss (1979).

The estimated correlation between individual ratings is 0.17, indicating little similarity between
ratings within a target, low reliability of individual target ratings, or no target effect. The estimated
intraclass correlation between ratings averaged over k = 4 judges is higher, 0.44. (The average ICC
will typically be higher than the individual ICC.) The estimated intraclass correlation measures the
similarity or reliability of mean ratings from groups of four judges. We do not have statistical evidence
that either ICC is different from zero based on reported confidence intervals and the one-sided F test.

Note that although the estimates of ICCs cannot be negative in this setting, the lower bound of the
computed confidence interval may be negative. A common ad-hoc way of handling this is to truncate
the lower bound at zero.

The estimates of both the individual and the average AA-ICC are also computed by the loneway
command (see [R] loneway), which performs a one-way analysis of variance.

https://www.stata.com/manuals/rloneway.pdf#rloneway
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Technical note
Mean rating is commonly used when individual rating is unreliable because the reliability of a

mean rating is always higher than the reliability of the individual rating when the individual reliability
is positive.

In the previous example, we estimated low reliability of the individual ratings of a target, 0.17.
The reliability increased to 0.44 for the ratings averaged over four judges. What if we had more
judges?

We can use the Spearman–Brown formula (Spearman 1910; Brown 1910) to compute them-average
ICC based on the individual ICC:

ICC(m) =
mICC(1)

1 + (m− 1)ICC(1)

Using this formula for the previous example, we find that the mean reliability over, say, 10 judges
is 10× 0.17/(1 + 9× 0.17) = 0.67.

Alternatively, we can invert the Spearman–Brown formula to determine the number of judges (or
the number of ratings of a target) we need to achieve the desired reliability. Suppose we would like
an average reliability of 0.9, then

m =
ICC(m){(1− ICC(1))}
ICC(1){1− ICC(m)}

=
0.9(1− 0.17)

0.17(1− 0.9)
= 44

See, for example, Bliese (2000) for other examples.

Two-way random effects

As before, we assume that the targets being rated are randomly selected from the population of
potential targets. We now also assume that each target is evaluated by the same set of k raters, who
have been randomly sampled from the population of raters. In this scenario, we want to generalize
our findings to the population of raters from which the observed k raters were sampled. For example,
suppose we want to estimate the reliability of doctors’ evaluations of patients with a certain condition.
Unless the reliability at a specific hospital is of interest, the doctors may be interchanged with others
in the relevant population of doctors.

As for a one-way model, the AA-ICC corresponds to the correlation between measurements on the
same target and is also a ratio of the between-target variance to the total variance of measurements in a
two-way random-effects model. The total variance is now the sum of the between-target, between-rater,
and error variances. Unlike a one-way model, the CA-ICC can be computed for a two-way random-
effects model when the consistency of agreement is of interest rather than the absolute agreement.
The CA-ICC is also the ratio of the between-target variance to the total variance, but the total variance
does not include the between-rater variance because the between-rater variability is irrelevant for the
consistency of agreement.

Again, the two versions, individual and average, are available for each ICC.
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Example 2: Two-way random-effects ICCs

Continuing with example 1, recall that we previously ignored that each target is rated by the same
set of four judges and instead assumed different sets of judges. We return to the original data setting.
We want to evaluate the agreement between judges’ ratings of targets in a population represented by
the observed set of four judges.

In a two-way model, we must specify both the target and the rater variables. In icc, we now
additionally specify the rater variable judge following the target variable target; the random-effects
model is assumed by default.

. icc rating target judge

Intraclass correlations
Two-way random-effects model
Absolute agreement

Random effects: target Number of targets = 6
Random effects: judge Number of raters = 4

rating ICC [95% conf. interval]

Individual .2897638 .0187865 .7610844
Average .6200505 .0711368 .927232

F test that
ICC=0.00: F(5.0, 15.0) = 11.03 Prob > F = 0.000

Note: ICCs estimate correlations between individual measurements
and between average measurements made on the same target.

As for a one-way random-effects model, icc by default reports AA-ICCs that correspond to the
correlation between ratings on a target. Notice that both individual and average ICCs are larger in
the two-way random-effects model than in the previous one-way model—0.29 versus 0.17 and 0.62
versus 0.44, respectively. We also have statistical evidence to reject the null hypothesis that neither
ICC is zero based on confidence intervals and the F test. If a one-way model is used when a two-way
model is appropriate, the true ICC will generally be underestimated.

The individual AA-ICC corresponds to ICC(A,1) in McGraw and Wong (1996a) or ICC(2,1) in Shrout
and Fleiss (1979). The average AA-ICC corresponds to ICC(A,k) in McGraw and Wong (1996a) or
ICC(2,k) in Shrout and Fleiss (1979).

Instead of the absolute agreement, we can also assess the consistency of agreement. The individual
and average CA-ICCs are considered in McGraw and Wong (1996a) and denoted as ICC(C,1) and
ICC(C,k), respectively. These ICCs are not considered in Shrout and Fleiss (1979) because they are not
correlations in the strict sense. Although CA-ICCs do not estimate correlation, they can provide useful
information about the reliability of the raters. McGraw and Wong (1996a) note that the practical
value of the individual and average CA-ICCs in the two-way random-effects model setting is well
documented in measurement theory, citing Hartmann (1982) and Suen (1988).
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To estimate the individual and average CA-ICCs, we specify the consistency option:

. icc rating target judge, consistency

Intraclass correlations
Two-way random-effects model
Consistency of agreement

Random effects: target Number of targets = 6
Random effects: judge Number of raters = 4

rating ICC [95% conf. interval]

Individual .7148407 .3424648 .9458583
Average .9093155 .6756747 .9858917

F test that
ICC=0.00: F(5.0, 15.0) = 11.03 Prob > F = 0.000

We estimate that the consistency of agreement of ratings in the considered population of raters is
high, 0.71, based on the individual CA-ICC. On the other hand, the absolute agreement of ratings is
low, 0.29, based on the individual AA-ICC from the previous output.

The measure of consistency of agreement among means, the average CA-ICC, is equivalent to
Cronbach’s alpha (Cronbach 1951); see [MV] alpha. The individual CA-ICC can also be equivalent to
the Pearson’s correlation coefficient between raters when k = 2; see McGraw and Wong (1996a) for
details.

In the next example, we will see that the actual estimates of the individual and average AA-ICCs
and CA-ICCs are the same whether we examine a random-effects model or a mixed-effects model.
The differences between these ICCs are in their definitions and interpretations.

Two-way mixed effects

As in a two-way random-effects model, we assume that the targets are randomly selected from the
population of potential targets and that each is evaluated by the same set of k raters. In a mixed-effects
model, however, we assume that these raters are the only raters of interest. So as before, the targets
are random, but now the raters are fixed.

In the two-way mixed-effects model, the fixed effect of the rater does not contribute to the between-
rater random variance component to the total variance. As such, the definitions and interpretations of
ICCs are different in a mixed-effects model than in a random-effects model. However, the estimates
of ICCs as well as test statistics and confidence intervals are the same. The only exceptions are
average AA-ICCs and CA-ICCs. These are not estimable in a two-way mixed-effects model including an
interaction term between target and rater; see Relationship between ICCs and Methods and formulas
for details.

In a two-way mixed-effects model, the CA-ICC corresponds to the correlation between measurements
on the same target. As pointed out by Shrout and Fleiss (1979), when the rater variance is ignored, the
correlation coefficient is interpreted in terms of rater consistency rather than rater absolute agreement.
Formally, the CA-ICC is the ratio of the covariance between measurements on the target to the total
variance of the measurements. The AA-ICC corresponds to the same ratio, but includes a variance of
the fixed factor, rater, in its denominator.

https://www.stata.com/manuals/mvalpha.pdf#mvalpha
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Example 3: Two-way mixed-effects ICCs

Continuing with example 2, suppose that we are now interested in assessing the agreement of
ratings from only the observed four judges. The judges are now fixed effects, and the appropriate
model is a two-way mixed-effects model.

To estimate ICCs for a two-way mixed-effects model, we specify the mixed option with icc:

. icc rating target judge, mixed

Intraclass correlations
Two-way mixed-effects model
Consistency of agreement

Random effects: target Number of targets = 6
Fixed effects: judge Number of raters = 4

rating ICC [95% conf. interval]

Individual .7148407 .3424648 .9458583
Average .9093155 .6756747 .9858917

F test that
ICC=0.00: F(5.0, 15.0) = 11.03 Prob > F = 0.000

Note: ICCs estimate correlations between individual measurements
and between average measurements made on the same target.

As we described in the introduction, icc by default reports ICCs corresponding to the correlations.
So, for a mixed-effects model, icc reports CA-ICCs by default. The individual and average CA-ICCs
are denoted as ICC(3,1) and ICC(3,k) in Shrout and Fleiss (1979) and ICC(C,1) and ICC(C ,k) in McGraw
and Wong (1996a).

Our estimates of the individual and average CA-ICCs are identical to the CA-ICC estimates obtained
under the two-way random-effects model in example 2, but our interpretation of the results is different.
Under a mixed-effects model, 0.71 and 0.91 are the estimates, respectively, of the correlation between
individual measurements and the correlation between average measurements made on the same target.

We can also estimate the AA-ICCs in this setting by specifying the absolute option:

. icc rating target judge, mixed absolute

Intraclass correlations
Two-way mixed-effects model
Absolute agreement

Random effects: target Number of targets = 6
Fixed effects: judge Number of raters = 4

rating ICC [95% conf. interval]

Individual .2897638 .0187865 .7610844
Average .6200505 .0711368 .927232

F test that
ICC=0.00: F(5.0, 15.0) = 11.03 Prob > F = 0.000

The intraclass correlation estimates match the individual and average AA-ICCs obtained under the
two-way random-effects model in example 2; but in a mixed-effects model, they do not represent
correlations. We demonstrate the use of an individual AA-ICC in a mixed-effects setting in the next
example.

The AA-ICCs under a mixed-effects model are not considered by Shrout and Fleiss (1979). They
are denoted as ICC(A,1) and ICC(A,k) in McGraw and Wong (1996a).
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Adoption study

In this section, we consider the adoption study described in McGraw and Wong (1996a). Adoption
studies commonly include two effects of interest. One is the mean difference between the adopted
child and its biological parents. It is used to determine if characteristics of adopted children differ on
average from those of their biological parents. Another effect of interest is the correlation between
genetically paired individuals and genetically unrelated individuals who live together. This effect is
used to evaluate the impact of genetic differences on individual differences.

As discussed in McGraw and Wong (1996a), a consistent finding from adoption research using IQ
as a trait characteristic is that while adopted children typically have higher IQs than their biological
parents, their IQs correlate better with those of their biological parents than with those of their adoptive
parents. Both effects are important, and there is additional need to reconcile the two findings. McGraw
and Wong (1996a) propose to use the individual AA-ICC for this purpose.

Example 4: Absolute-agreement ICC in a mixed-effects model

The adoption.dta dataset contains the data from table 6 of McGraw and Wong (1996a) on IQ
scores:

. use https://www.stata-press.com/data/r18/adoption
(Biological mother and adopted child IQ scores)

. describe

Contains data from https://www.stata-press.com/data/r18/adoption.dta
Observations: 20 Biological mother and adopted

child IQ scores
Variables: 5 15 May 2022 13:50

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

family byte %9.0g Adoptive family ID
mc byte %9.0g mcvalues Whether mother or child
iq3 int %9.0g IQ scores, mother-child

difference of 3 pts
iq9 int %9.0g IQ scores, mother-child

difference of 9 pts
iq15 int %9.0g IQ scores, mother-child

difference of 15 pts

Sorted by:

The family variable contains adoptive family identifiers, the mc variable records a mother or a child,
and the iq3, iq9, and iq15 variables record IQ scores with differences between mother and child
mean IQ scores of 3, 9, and 15 points, respectively.
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. by mc, sort: summarize iq*

-> mc = Mother

Variable Obs Mean Std. dev. Min Max

iq3 10 97 15.0037 62 116
iq9 10 91 15.0037 56 110

iq15 10 85 15.0037 50 104

-> mc = Child

Variable Obs Mean Std. dev. Min Max

iq3 10 100 15.0037 65 119
iq9 10 100 15.0037 65 119

iq15 10 100 15.0037 65 119

The variances of the mother and child IQ scores are the same.

Children are fixed effects, so the mixed-effects model is appropriate for these data. We want to
compare individual CA-ICC with individual AA-ICC for each of the three IQ variables. We could issue a
separate icc command for each of the three IQ variables to obtain the intraclass correlations. Instead,
we use reshape to convert our data to long form with one iq variable and the new diff variable
recording mean differences:

. reshape long iq, i(family mc) j(diff)
(j = 3 9 15)

Data Wide -> Long

Number of observations 20 -> 60
Number of variables 5 -> 4
j variable (3 values) -> diff
xij variables:

iq3 iq9 iq15 -> iq

We can now use the by prefix with icc to estimate intraclass correlations for the three groups of
interest:
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. by diff, sort: icc iq family mc, mixed

-> diff = 3

Intraclass correlations
Two-way mixed-effects model
Consistency of agreement

Random effects: family Number of targets = 10
Fixed effects: mc Number of raters = 2

iq ICC [95% conf. interval]

Individual .7142152 .1967504 .920474
Average .8332853 .3288078 .9585904

F test that
ICC=0.00: F(9.0, 9.0) = 6.00 Prob > F = 0.007

Note: ICCs estimate correlations between individual measurements
and between average measurements made on the same target.

-> diff = 9

Intraclass correlations
Two-way mixed-effects model
Consistency of agreement

Random effects: family Number of targets = 10
Fixed effects: mc Number of raters = 2

iq ICC [95% conf. interval]

Individual .7142152 .1967504 .920474
Average .8332853 .3288078 .9585904

F test that
ICC=0.00: F(9.0, 9.0) = 6.00 Prob > F = 0.007

Note: ICCs estimate correlations between individual measurements
and between average measurements made on the same target.

-> diff = 15

(output omitted )

The estimated CA-ICCs are the same in all three groups and are equal to the corresponding estimates
of the Pearson’s correlation coefficients because mothers’ and childrens’ IQ scores have the same
variability. The scores differ only in means, and mean differences are irrelevant when measuring the
consistency of agreement.
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The AA-ICCs, however, differ across the three groups:

. by diff, sort: icc iq family mc, mixed absolute

-> diff = 3

Intraclass correlations
Two-way mixed-effects model
Absolute agreement

Random effects: family Number of targets = 10
Fixed effects: mc Number of raters = 2

iq ICC [95% conf. interval]

Individual .7204023 .2275148 .9217029
Average .8374812 .3706917 .9592564

F test that
ICC=0.00: F(9.0, 9.0) = 6.00 Prob > F = 0.007

-> diff = 9

Intraclass correlations
Two-way mixed-effects model
Absolute agreement

Random effects: family Number of targets = 10
Fixed effects: mc Number of raters = 2

iq ICC [95% conf. interval]

Individual .6203378 .0293932 .8905025
Average .7656895 .0571077 .9420802

F test that
ICC=0.00: F(9.0, 9.0) = 6.00 Prob > F = 0.007

-> diff = 15

Intraclass correlations
Two-way mixed-effects model
Absolute agreement

Random effects: family Number of targets = 10
Fixed effects: mc Number of raters = 2

iq ICC [95% conf. interval]

Individual .4854727 -.1194157 .8466905
Average .6536272 -.2712191 .9169815

F test that
ICC=0.00: F(9.0, 9.0) = 6.00 Prob > F = 0.007

As the mean differences increase, the AA-ICCs decrease. Their attenuation reflects the difference in
means between biological mother and child IQs while still measuring their agreement. Notice that for
small mean differences, the estimates of AA-ICCs and CA-ICCs are very similar.

Note that our estimates match those given in McGraw and Wong (1996b), who correct the original
table 6 of McGraw and Wong (1996a).
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Relationship between ICCs

In examples 2 and 3, we saw that the estimates of AA-ICCs and CA-ICCs are the same for two-
way random-effects and two-way mixed-effects models. In this section, we consider the relationship
between various forms of ICCs in more detail; also see Methods and formulas.

There are 10 different versions of ICCs, but only 6 different estimators are needed to compute them.
These estimators include the two estimators for the individual and average AA-ICCs in a one-way
model, the two estimators for the individual and average AA-ICCs in two-way models, and the two
estimators for the individual and average CA-ICCs in two-way models.

Only individual and average AA-ICCs are defined for the one-way model. The estimates of AA-ICCs
based on the one-way model will typically be smaller than individual and average estimates of AA-ICCs
and CA-ICCs based on two-way models. The estimates of individual and average CA-ICCs will typically
be larger than the estimates of individual and average AA-ICCs.

Although AA-ICCs and CA-ICCs have the same respective estimators in two-way random-effects
and mixed-effects models, their definitions and interpretations are different. The AA-ICCs based on
a random-effects model contain the between-rater variance component in the denominator of the
variance ratio. The AA-ICCs based on a mixed-effects model contain the variance of the fixed-factor
rater instead of the random between-rater variability. The AA-ICCs in a random-effects model represent
correlations between any two measurements made on a target. The AA-ICCs in a mixed-effects model
measure absolute agreement of measurements treating raters as fixed. The CA-ICCs for random-effects
and mixed-effects models have the same definition but different interpretations. The CA-ICCs represent
correlations between any two measurements made on a target in a mixed-effects model but estimate the
degree of consistency among measurements treating raters as random in a random-effects model. The
difference in the definitions of AA-ICCs and CA-ICCs is that CA-ICCs do not contain the between-rater
variance in the denominator of the variance ratio.

For two-way models, the definitions and interpretations (but not the estimators) of ICCs also
depend on whether the model contains an interaction between target and rater. For two-way models
with interaction, ICCs include an additional variance component for the target-rater interaction in the
denominator of the variance ratio. This component cannot be separated from random error because
there is only one observation per target and rater.

Also, under a two-way mixed-effects model including interaction, the interaction components are
not mutually independent, as they are in a two-way random-effects model. The considered version
of the mixed-effects model places a constraint on the interaction effects—the sum of the interaction
effects over levels of the fixed factor is zero; see, for example, chapter 7 in Kuehl (2000) for an
introductory discussion of mixed models. In this version of the model, there is a correlation between
the interaction effects. Specifically, the two interaction effects for the same target and two different
raters are negatively correlated. As a result, the estimated intraclass correlation can be negative under
a two-way mixed-effects model with interaction. Also, average AA-ICC and average CA-ICC cannot
be estimated in a two-way mixed-effects model including interaction; see Methods and formulas and
McGraw and Wong (1996a) for details.

Tests against nonzero values

It may be of interest to test whether the intraclass correlation is equal to a value other than zero.
icc supports testing against positive values through the use of the testvalue() option. Specifying
testvalue(#) provides a one-sided hypothesis test of Ho: ρ = # versus Ha: ρ > #. The test is
provided separately for both individual and average ICCs.
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Example 5: Testing ICC against a nonzero value

We return to the two-way random-effects model for the judge and target data from Shrout and
Fleiss (1979). Suppose we want to test whether the individual and average AA-ICCs are each equal
to 0.2. We specify the testvalue(0.2) option with icc:

. use https://www.stata-press.com/data/r18/judges, clear
(Ratings of targets by judges)

. icc rating target judge, testvalue(0.2)

Intraclass correlations
Two-way random-effects model
Absolute agreement

Random effects: target Number of targets = 6
Random effects: judge Number of raters = 4

rating ICC [95% conf. interval]

Individual .2897638 .0187865 .7610844
Average .6200505 .0711368 .927232

F test that
ICC(1)=0.20: F(5.0, 5.3) = 1.54 Prob > F = 0.317
ICC(k)=0.20: F(5.0, 9.4) = 4.35 Prob > F = 0.026

Note: ICCs estimate correlations between individual measurements
and between average measurements made on the same target.

We reject the null hypothesis that the average AA-ICC, labeled as ICC(k) in the output, is equal to
0.2, but we do not have statistical evidence to reject the null hypothesis that the individual AA-ICC,
labeled as ICC(1), is equal to 0.2.

Stored results
icc stores the following in r():
Scalars

r(N target) number of targets
r(N rater) number of raters
r(icc i) intraclass correlation for individual measurements
r(icc i F) F test statistic for individual ICC
r(icc i df1) numerator degrees of freedom for r(icc i F)
r(icc i df2) denominator degrees of freedom for r(icc i F)
r(icc i p) p-value for F test of individual ICC
r(icc i lb) lower endpoint for confidence intervals of individual ICC
r(icc i ub) upper endpoint for confidence intervals of individual ICC
r(icc avg) intraclass correlation for average measurements
r(icc avg F) F test statistic for average ICC
r(icc avg df1) numerator degrees of freedom for r(icc avg F)
r(icc avg df2) denominator degrees of freedom for r(icc avg F)
r(icc avg p) p-value for F test of average ICC
r(icc avg lb) lower endpoint for confidence intervals of average ICC
r(icc avg ub) upper endpoint for confidence intervals of average ICC
r(testvalue) null hypothesis value
r(level) confidence level

Macros
r(model) analysis-of-variance model
r(depvar) name of dependent variable
r(target) target variable
r(rater) rater variable
r(type) type of ICC estimated (absolute or consistency)
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Methods and formulas
We observe yij , where i = 1, . . . , n and j = 1, . . . , k. yij is the jth rating on the ith target. Let

α = 1− l/100, where l is the significance level specified by the user.

Methods and formulas are presented under the following headings:

Mean squares
One-way random effects
Two-way random effects
Two-way mixed effects

Mean squares

The mean squares within targets are

WMS =
∑
i

∑
j

(yij − yi·)2

n(k − 1)

where yi· =
∑
j yij/k.

The mean squares between targets are

BMS =
∑
i

(yi· − y··)2

n− 1

where y·· =
∑
i yi·/n.

These are the only mean squares needed to estimate ICC in the one-way random-effects model.
For the two-way models, we need two additional mean squares.

The mean squares between raters are

JMS =
∑
j

(y·j − y··)2

k − 1

where y·j =
∑
i yij/n and y·· =

∑
j y·j/k.

The residual or error mean square is

EMS =

∑
i

∑
j(yij − y)2 − (k − 1)JMS− (n− 1)BMS

(n− 1)(k − 1)
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One-way random effects
Under the one-way random-effects model, we observe

yij = µ+ ri + εij (M1)

where µ is the mean rating, ri is the target random effect, and εij is random error. The ris are
i.i.d. N(0, σ2

r); εijs are i.i.d. N(0, σ2
ε ) and are independent of ris. There is no rater effect separate

from the residual error because each target is evaluated by a different set of raters.

The individual AA-ICC is the correlation between individual measurements on the same target:

ρ1 = ICC(1) = Corr(yij , yij′) =
σ2
r

σ2
r + σ2

ε

The average AA-ICC is the correlation between average measurements of size k made on the same
target:

ρk = ICC(k) = Corr(yi., y
′
i.) =

σ2
r

σ2
r + σ2

ε /k

They are estimated by

ρ̂1 = ̂ICC(1) =
BMS−WMS

BMS + (k − 1)WMS

ρ̂k = ̂ICC(k) =
BMS−WMS

BMS

Confidence intervals. Let Fobs = BMS/WMS, let Fl be the (1 − α/2) × 100th percentile of the
Fn−1,n(k−1) distribution, and let Fu be the (1 − α/2) × 100th percentile of the Fn(k−1),n−1
distribution. Let FL = Fobs/Fl and FU = FobsFu.

A (1− α)× 100% confidence interval for ρ1 is(
FL − 1

Fl + k − 1
,

FU − 1

FU + k − 1

)
(1)

A (1− α)× 100% confidence interval for ρk is(
1− 1

FL
, 1− 1

FU

)
(2)

Hypothesis tests. Consider a one-sided hypothesis test of Ho: ICC = ρ0 versus Ha: ICC > ρ0.

The test statistic for ρ1 is

Fρ1 =
BMS

WMS

1− ρ0
1 + (k − 1)ρ0

(3)

The test statistic for ρk is

Fρk =
BMS

WMS
(1− ρ0) (4)

Under the null hypothesis, both Fρ1 and Fρk have the Fn−1,n(k−1) distribution. When ρ0 = 0,
the two test statistics coincide.
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Two-way random effects

In this setting, the target is evaluated by the same set of raters, who are randomly drawn from the
population of raters. The underlying models with and without interaction are

yij = µ+ ri + cj + (rc)ij + εij (M2)

yij = µ+ ri + cj + εij (M2A)

where yij is the rating of the ith target by the jth rater, µ is the mean rating, ri is the target
random effect, cj is the rater random effect, (rc)ij is the target-rater random effect, and εij is random
error. The ris are i.i.d. N(0, σ2

r), cjs are i.i.d. N(0, σ2
c ), (rc)ijs are i.i.d. N(0, σ2

rc), and εijs are
i.i.d. N(0, σ2

ε ). Each effect is mutually independent of the others.

Below, we provide formulas for ICCs for model (M2). The corresponding ICCs for model (M2A)
can be obtained by setting σ2

rc = 0.

The individual AA-ICC is the correlation between individual measurements on the same target:

ρA,1 = ICC(A,1) = Corr(yij , yij′) =
σ2
r

σ2
r + σ2

c + (σ2
rc + σ2

ε )

The average AA-ICC is the correlation between average measurements of size k made on the same
target:

ρA,k = ICC(A,k) = Corr(yi., y
′
i.) =

σ2
r

σ2
r + (σ2

c + σ2
rc + σ2

ε )/k

The consistency-of-agreement intraclass correlation for individual measurements, individual CA-ICC,
is

ρC,1 = ICC(C ,1) =
σ2
r

σ2
r + (σ2

rc + σ2
ε )

The consistency-of-agreement intraclass correlation for average measurements of size k, average
CA-ICC, is

ρC,k = ICC(C ,k) =
σ2
r

σ2
r + (σ2

rc + σ2
ε )/k

With one observation per target and rater, σ2
rc and σ2

ε cannot be estimated separately.
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The estimators of intraclass correlations, confidence intervals, and test statistics are the same for
models (M2) and (M2A). The estimators of ICCs are

ρ̂A,1 = ̂ICC(A,1) =
BMS− EMS

BMS + (k − 1)EMS + k
n (JMS− EMS)

ρ̂A,k = ̂ICC(A,k) =
BMS− EMS

BMS + 1
n (JMS− EMS)

ρ̂C,1 = ̂ICC(C ,1) =
BMS− EMS

BMS + (k − 1)EMS

ρ̂C,k = ̂ICC(C ,k) =
BMS− EMS

BMS

Confidence intervals. Let a = kρ̂A,1/{n(1− ρ̂A,1)}, b = 1 + kρ̂A,1(n− 1)/{n(1− ρ̂A,1)}, and

v =
(aJMS + bEMS)2

a2JMS2

k−1 + b2EMS2

(n−1)(k−1)

(5)

Let Fl be the (1−α/2)×100th percentile of the Fn−1,v distribution and Fu be the (1−α/2)×100th
percentile of the Fv,n−1 distribution.

A (1− α)× 100% confidence interval for ρA,1 is given by (L,U), where

L =
n(BMS− FlEMS)

Fl {kJMS + (kn− k − n)EMS}+ nBMS

U =
n(FuBMS− EMS)

kJMS + (kn− k − n)EMS + nFuBMS

(6)

A (1 − α) × 100% confidence intervals for ρA,k is a special case of (6) with k = 1, where
a = ρ̂A,k/{n(1− ρ̂A,k)}, b = 1 + ρ̂A,k(n− 1)/{n(1− ρ̂A,k)}, and v is defined in (5).

To define confidence intervals for ρC,1 and ρC,k, let Fobs = BMS/EMS, Fl be the (1−α/2)×100th
percentile of the Fn−1,(n−1)(k−1) distribution, and Fu be the (1 − α/2) × 100th percentile of the
F(n−1)(k−1),n−1 distribution. Let FL = Fobs/Fl and FL = FobsFu.

A (1 − α) × 100% confidence intervals for ρC,1 and ρC,k are then as given by (1) and (2) for
model (M1).

Hypothesis tests. Consider a one-sided hypothesis test of Ho: ICC = ρ0 versus Ha: ICC > ρ0. Let
a = kρ0/{n(1− ρ0)} and b = 1 + kρ0(n− 1)/{n(1− ρ0)}.

The test statistic for ρA,1 is

FρA,1
=

BMS

aJMS + bEMS

Under the null hypothesis, FρA,1
has the Fn−1,v distribution, where v is defined in (5).

The test statistic for ρA,k is defined similarly, except a = ρ0/{n(1 − ρ0)} and b = 1 +
ρ0(n− 1)/{n(1 − ρ0)}. Under the null hypothesis, FρA,k

has the Fn−1,v distribution, where v is
defined in (5). When ρ0 = 0, then a = 0, b = 1, and the two test statistics coincide.

The test statistics for ρC,1 and ρC,k are defined by (3) and (4), respectively, with WMS replaced by
EMS. Under the null hypothesis, both FρC,1

and FρC,k
have the Fn−1,(n−1)(k−1) distribution. They

also both have the same value when ρ0 = 0.
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Two-way mixed effects

In this setting, every target is evaluated by the same set of judges, who are the only judges of
interest. The underlying models with and without interaction are

yij = µ+ ri + cj + (rc)ij + εij (M3)

yij = µ+ ri + cj + εij (M3A)

where yij is the rating of the ith target by the jth rater, µ is the mean rating, ri is the target random
effect, cj is the rater random effect, (rc)ij is an interaction effect between target and rater, and εij is
random error. The ris are i.i.d. N(0, σ2

r), (rc)ijs are N(0, σ2
rc), and εijs are i.i.d. N(0, σ2

ε ). Each
random effect is mutually independent of the others. The cjs are fixed such that

∑
j cj = 0. The

variance of cjs is θ2c =
∑
c2j/(k − 1).

In the presence of an interaction, two versions of a mixed-effects model may be considered.
One assumes that (rc)ijs are i.i.d. N(0, σ2

rc). Another assumes that (rc)ijs are N(0, σ2
rc) with an

additional constraint that
∑
j(rc)ij = 0 (for example, Kuehl [2000]), so only interaction terms

involving different targets are independent. The latter model is considered here.

We now define the intraclass correlations for individual measurements for model (M3).

The individual CA-ICC, the correlation between individual measurements on the same target, is

ρC,1 = ICC(C ,1) = Corr(yij , yij′) =
σ2
r − σ2

rc/(k − 1)

σ2
r + (σ2

rc + σ2
ε )

The absolute-agreement intraclass correlation for individual measurements, individual AA-ICC, is

ρA,1 = ICC(A,1) =
σ2
r − σ2

rc/(k − 1)

σ2
r + θ2c + (σ2

rc + σ2
ε )

Shrout and Fleiss (1979) show that the individual ICC could be negative in this case—a phenomenon
first pointed out by Sitgreaves (1960). This can happen when the interaction term has a high variance
relative to the targets and there are not many raters.

The individual intraclass correlations for model (M3A) have similar definitions with σ2
rc = 0. The

individual CA-ICC is the correlation between individual measurements on the same target, Corr(yij , yij′).

We now discuss the intraclass correlations that correspond to average measurements. Neither
average AA-ICC, ρA,k, nor average CA-ICC, ρC,k, can be estimated under model (M3) (Shrout and
Fleiss 1979; McGraw and Wong 1996a). The problem is that in this model, σ2

r , which is the covariance
between two means based on k raters, cannot be estimated.

Specifically, the parameter σ2
r appears only in the expectation of the between-target mean squares

BMS. Under the restriction
∑
j(rc)ij = 0,

E(BMS) = kσ2
r + σ2

ε

Note that σ2
rc does not appear in the expectation of between-target mean squares. With one

observation per target and rater, σ2
rc and σ2

ε cannot be estimated separately (only their sum σ2
rc+ σ2

ε
can be estimated), so BMS alone cannot be used to estimate σ2

r .
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Under model (M3A), however, there is no interaction (and thus no interaction variance component
σ2
rc), so ρA,k or ρC,k can be estimated.

The average AA-ICC, the absolute-agreement intraclass correlation for average measurements of
size k, is

ρA,k = ICC(A,k) =
σ2
r

σ2
r + (θ2c + σ2

ε )/k

The average CA-ICC, the correlation between average measurements of size k made on the same
target, is

ρC,k = ICC(C ,k) = Corr(yi., y
′
i.) =

σ2
r

σ2
r + σ2

ε /k

The estimators of ICCs, their confidence intervals, and hypothesis tests are as described for two-way
random-effects models, except ρA,k and ρC,k are not defined under model (M3).
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