Title stata.com

heckpoisson postestimation — Postestimation tools for heckpoisson

Postestimation commands predict margins Remarks and examples Methods and formulas Also see

Postestimation commands

The following postestimation commands are available after heckpoisson:

Command	Description		
contrast	contrasts and ANOVA-style joint tests of estimates		
estat ic	Akaike's, consistent Akaike's, corrected Akaike's, and Schwarz's Bayesian information criteria (AIC, CAIC, AICc, and BIC)		
estat summarize	summary statistics for the estimation sample		
estat vce	variance-covariance matrix of the estimators (VCE)		
estat (svy)	postestimation statistics for survey data		
estimates	cataloging estimation results		
etable	table of estimation results		
*forecast	dynamic forecasts and simulations		
*hausman	Hausman's specification test		
lincom	point estimates, standard errors, testing, and inference for linear combinations of coefficients		
*lrtest	likelihood-ratio test		
margins	marginal means, predictive margins, marginal effects, and average marginal effects		
marginsplot	graph the results from margins (profile plots, interaction plots, etc.)		
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients		
predict	number of events, incidence rates, probabilities, etc.		
predictnl	point estimates, standard errors, testing, and inference for generalized predictions		
pwcompare	pairwise comparisons of estimates		
suest	seemingly unrelated estimation		
test	Wald tests of simple and composite linear hypotheses		
testnl	Wald tests of nonlinear hypotheses		

^{*}forecast, hausman, and lrtest are not appropriate with svy estimation results.

predict

Description for predict

predict creates new variables containing predictions such as number of events, incidence rates, conditional predicted number of events, probabilities, linear predictions, and equation-level scores.

Menu for predict

Statistics > Postestimation

Syntax for predict

statistic	Description				
Main					
n	number of events; the default				
ir	incidence rate				
$\underline{\mathtt{nc}}\mathtt{ond}$	predicted number of events conditional on y_j being observed				
pr(n)	$\Pr(y_j = n)$				
pr(a,b)	$\Pr(a \le y_i \le b)$				
psel	$Pr(y_j \text{ observed})$				
xb	linear prediction				
<u>xbs</u> el	linear prediction for selection equation				

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample.

Options for predict

Main

- n, the default, calculates the predicted number of events, which is $\exp(\mathbf{x}_j\beta + \sigma^2/2)$ if neither offset() nor exposure() was specified when the model was fit; is $\exp(\mathbf{x}_j\beta + \sigma^2/2 + \text{offset}_j)$ if offset() was specified; or is $\exp(\mathbf{x}_j\beta + \sigma^2/2) \times \text{exposure}_i$ if exposure() was specified.
- ir calculates the incidence rate $\exp(\mathbf{x}_j\beta + \sigma^2/2)$, which is the predicted number of events when exposure is 1. Specifying ir is equivalent to specifying n when neither offset() nor exposure() was specified when the model was fit.
- ncond calculates the predicted number of events conditional on y_j being observed, which is $\exp(\mathbf{x}_j \boldsymbol{\beta} + \sigma^2/2) \Phi(\mathbf{w}_j \gamma + \rho \sigma) / \Phi(\mathbf{w}_j \gamma)$.
- pr(n) calculates the probability $Pr(y_j = n)$, where n is a nonnegative integer that may be specified as a number or a variable.

pr(a,b) calculates the probability $Pr(a \le y_i \le b)$, where a and b are nonnegative integers that may be specified as numbers or variables;

b missing $(b \ge .)$ means $+\infty$;

pr(20,.) calculates $Pr(y_i \ge 20)$;

pr(20,b) calculates $Pr(y_i \ge 20)$ in observations for which $b \ge .$ and calculates

 $Pr(20 \le y_j \le b)$ elsewhere.

pr(.,b) produces a syntax error. A missing value in an observation of the variable a causes a missing value in that observation for pr(a,b).

psel calculates the probability of selection (or being observed):

$$Pr(y_j \text{ observed}) = Pr(\mathbf{w}_j \gamma + \epsilon_{2j} > 0)$$

xb calculates the linear prediction for the dependent count variable, which is $x_i\beta$ if neither offset() nor exposure() was specified; $\mathbf{x}_j \boldsymbol{\beta} + \text{offset}_i^{\beta}$ if offset() was specified; or $\mathbf{x}_j \boldsymbol{\beta} + \ln(\text{exposure}_j)$ if exposure() was specified.

xbsel calculates the linear prediction for the selection equation, which is $\mathbf{w}_{i}\gamma$ if offset() was not specified in select() and is $\mathbf{w}_j \gamma + \text{offset}_i^{\gamma}$ if offset() was specified in select().

nooffset is relevant only if you specified offset() or exposure() when you fit the model. It modifies the calculations made by predict so that they ignore the offset or exposure variable; the linear prediction is treated as $\mathbf{x}_i \boldsymbol{\beta}$ rather than as $\mathbf{x}_i \boldsymbol{\beta} + \text{offset}_i$ or $\mathbf{x}_i \boldsymbol{\beta} + \text{ln}(\text{exposure}_i)$.

scores calculates equation-level score variables.

The first new variable will contain ∂ ln $L/\partial(\mathbf{x}_i\boldsymbol{\beta})$.

The second new variable will contain ∂ ln $L/\partial(\mathbf{w}_i\gamma)$.

The third new variable will contain $\partial \ln L/\partial \operatorname{atanh} \rho$.

The fourth new variable will contain $\partial \ln L/\partial \ln \sigma$.

margins

Description for margins

margins estimates margins of response for number of events, incidence rates, conditional predicted number of events, probabilities, and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

```
margins [marginlist] [, options]
margins [marginlist] , predict(statistic ...) [predict(statistic ...) ...] [options]
```

statistic	Description
n	number of events; the default
ir	incidence rate
<u>nc</u> ond	predicted number of events conditional on y_j being observed
pr(n)	$\Pr(y_j = n)$
pr(a,b)	$\Pr(a \le y_j \le b)$
psel	$Pr(y_j \text{ observed})$
xb	linear prediction
<u>xbs</u> el	linear prediction for selection equation

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples

stata.com

Example 1: Obtaining margins for a count model with selection

In example 1 of [R] **heckpoisson**, we fit a model for the number of patents. In that example, we are interested in the effect of R&D expenditures on the number of patents received by a firm. We continue that example to determine the magnitude of the effect of R&D expenditures on the number of patents and compare this effect for IT and non-IT sectors.

After reading in the data and fitting the model, we use margins to estimate the effect of an increase of a million dollars in R&D expenditures (expenditure) on the number of patents (npatents) for firms in the IT and non-IT sectors (tech).

To do this, we use the at() option of margins. We use the observed values in our first scenario, so we tell margins to set expenditure equal to itself. For our second scenario, we tell margins to set expenditure equal to the observed value plus 1 because expenditures are measured in millions of dollars. We include the post option so that we can perform additional calculations later.

Number of obs = 10,000

1

```
. use https://www.stata-press.com/data/r18/patent
(Fictional data on patents and R&D)
```

- . quietly heckpoisson npatents expenditure i.tech,
- > select(applied = expenditure size i.tech)
- . margins i.tech, at(expenditure = generate(expenditure))
- > at(expenditure = generate(expenditure+1)) post

Model VCE: OIM Expression: Predicted number of events, predict()

1._at: expenditure = expenditure

2._at: expenditure = expenditure+1

Predictive margins

	Margin	Delta-method std. err.	z	P> z	[95% conf.	interval]
_at#tech						
1 #						
Non-IT se	1.276213	.0556644	22.93	0.000	1.167112	1.385313
1#IT sector	2.287013	.080119	28.55	0.000	2.129983	2.444044
2 #						
Non-IT se	2.099539	.131364	15.98	0.000	1.84207	2.357007
2#IT sector	3.76244	.2226221	16.90	0.000	3.326109	4.198771

The output indicates that the expected number of patents for non-IT firms is about 1.28 compared with 2.29 for firms in the IT sector.

The second scenario shows the expected number of patents after our hypothetical increase in R&D expenditures. In the non-IT sector, the expected number of patents received would be about 2.10 compared with 3.76 in the IT sector. It appears that increasing expenditures may have a larger effect for IT firms—the difference between the two scenarios is 1.47 for IT firms and only 0.82 for non-IT firms. We can test whether the effect of increasing expenditures is different for IT and non-IT firms. We use lincom to obtain an estimate of the difference in the differences between scenarios for the two sectors and a test of its significance. We ask for the differences by referring to the scenarios as 1._at and 2._at and by referring to the sector using the value that corresponds to the IT sector indicator, 1.tech for IT firms and 0.tech otherwise.

- . lincom (_b[2._at#1.tech] _b[1._at#1.tech]) -
- > (_b[2._at#0.tech] _b[1._at#0.tech])
 - (1) 1bn._at#0bn.tech 1bn._at#1.tech 2._at#0bn.tech + 2._at#1.tech = 0

	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
(1)	.6521006	.0917299	7.11	0.000	.4723134	.8318878

We find that the expected effect of increasing R&D expenditures by one million dollars is 0.65 patents larger for IT firms than for non-IT firms, and this difference is significantly different from 0.

Methods and formulas

Suppose that the count outcome y_j has covariates \mathbf{x}_j and the selection outcome s_j has covariates \mathbf{w}_i , y_i is assumed to have a Poisson distribution, conditional on \mathbf{x}_i , with conditional mean

$$E(y_j|\mathbf{x}_j,\epsilon_{1j}) = \mu_j = \exp(\mathbf{x}_j\boldsymbol{\beta} + \epsilon_{1j})$$

 s_i is a binary outcome from a latent-variable model:

$$s_j = \begin{cases} 1, & \text{if } \mathbf{w}_i \gamma + \epsilon_{2j} > 0 \\ 0, & \text{otherwise} \end{cases}$$

The expectation of y_i conditional on covariates \mathbf{x}_j for the whole population is

$$E(y_j|\mathbf{x}_j) = \exp(\mathbf{x}_j\boldsymbol{\beta} + \sigma^2/2)$$

Furthermore, if we want the expectation of y_i only if it was observed, then the formula is

$$E(y_j|\mathbf{x}_j, \mathbf{w}_j, s_j = 1) = \exp(\mathbf{x}_j \boldsymbol{\beta} + \sigma^2/2) \frac{\Phi(\mathbf{w}_j \gamma + \rho \sigma)}{\Phi(\mathbf{w}_j \gamma)}$$

We note that if $\rho = 0$, this expectation is the same as its population version.

We can also predict the probability of y_i conditional on \mathbf{x}_i . Note that although y_i is Poissondistributed conditional on ϵ_1 and \mathbf{x}_j , the distribution of y_j is unknown unconditional on ϵ_1 .

$$\Pr(y_j = n | \mathbf{x}_j) = \int_{-\infty}^{\infty} \Pr(y_j = n | \mathbf{x}_j, \epsilon_1) \phi(\epsilon_1 / \sigma) d\epsilon_1$$

As in the implementation of log likelihood, we approximate this integral by Gauss-Hermite quadrature.

Also see

- [R] **heckpoisson** Poisson regression with sample selection
- [U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985–2023 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.