fp - Fractional polynomial regression

Description	Quick start	Menu	Syntax
Options	Remarks and examples	Stored results	Methods and formulas
Acknowledgment	References	Also see	

Description

fp <term>: est_cmd fits models with the "best"-fitting fractional polynomial substituted for <term> wherever it appears in est_cmd. fp <weight>: regress mpg <weight> foreign would fit a regression model of mpg on a fractional polynomial in weight and (linear) foreign.

By specifying option $f p()$, you may set the exact powers to be used. Otherwise, a search through all possible fractional polynomials up to the degree set by dimension() with the powers set by powers () is performed.
fp without arguments redisplays the previous estimation results, just as typing est_cmd would. You can type either one. fp will include a fractional polynomial comparison table.
fp generate creates fractional polynomial power variables for a given set of powers. For instance, fp <weight>: regress mpg <weight> foreign might produce the fractional polynomial weight ${ }^{(-2,-1)}$ and store weight ${ }^{-2}$ in weight_1 and weight ${ }^{-1}$ in weight_2. Typing fp generate weight^ $(-2-1)$ would allow you to create the same variables in another dataset.

See $[R] \mathbf{m f p}$ for multivariable fractional polynomial models.

Quick start

Fit models with fractional polynomials
Find optimal second-degree fractional polynomial of $x 1$ in regression of y on $x 2$ and $x 3$
fp <x1>: regress y <x1> x2 x3
Same as above, but search only powers of $-1,-0.5,1$, and 2 .
fp <x1>, power (-1 -. 5 1 2): regress y <x1> x2 x3
Same as above, but allow search to include third-degree fractional polynomials
fp <x1>, power(-1 -. 512) dimension(3): regress y <x1> x2 x3
Fit model including $\mathrm{x} 1^{-2}$ and $\mathrm{x} 1^{2}$ without performing search
fp <x1>, fp(-2 2): regress y <x1> x2 x3
Rescale x 1 to nonextreme positive values when computing fractional polynomials
fp <x1>, scale: regress y <x1> x2 x3
Same as above, and center fractional polynomial of x 1 at its scaled mean
fp <x1>, center scale: regress y <x1> x2 x3
Set fractional polynomial to zero for nonpositive values of x 1
fp <x1>, zero: regress y <x1> x2 x3
Same as above, and include an indicator variable in the model for nonpositive values of x 1
fp <x1>, catzero: regress y <x1> x2 x3

Create variables corresponding to fractional polynomial powers
Generate $\mathrm{x} 1 _1$ and $\mathrm{x} 1 _2$ corresponding to $\mathrm{x} 1^{-2}$ and $\mathrm{x} 1^{2}$
fp generate $\mathrm{x} 1^{\wedge}\left(\begin{array}{ll}-2 & 2\end{array}\right)$
Same as above, but generate fractional polynomial variables with automatic scaling and centering
fp generate $\mathrm{x} 1^{\wedge}(-22)$, center scale

Note: In the above examples, regress could be replaced with any estimation command allowing the fp prefix.

Menu

fp
Statistics $>$ Linear models and related $>$ Fractional polynomials $>$ Fractional polynomial regression

fp generate

Statistics $>$ Linear models and related $>$ Fractional polynomials $>$ Create fractional polynomial variables

Syntax

Estimation

```
fp <term> [, est_options]: est_cmd
```

Specify that fractional powers of varname be calculated during estimation
fp <term>(varname) [, est_options]: est_cmd

Replay estimation results
fp [, replay_options]

Create specified fractional polynomial power variables fp generate [type][newvar =] varname^(numlist) [if] [in] [, gen_options]
est_cmd may be almost any estimation command that stores the e(ll) result. To confirm whether fp works with a specific est_cmd, see the documentation for that est_cmd. est_cmd may not contain other prefix commands; see [U] 11.1.10 Prefix commands.
Instances of <term> (with the angle brackets) that occur within est_cmd are replaced in est_cmd by a varlist containing the fractional powers of the variable term. These variables will be named term_1, term_2,
fp performs est_cmd with this substitution, fitting a fractional polynomial regression in term.

Main
powers (\# \# ... \#) powers to be searched; default is powers ($-2-1-.50 .5123$) dimension(\#) maximum degree of fractional polynomial; default is dimension(2)
fp(\# \# ...\#)

Options
classic
replace
all
scale (\#_a \#_b)
scale
center (\#_c)
center
zero
catzero
perform automatic scaling and centering and omit comparison table
replace existing fractional polynomial power variables named term_1, term_2, ...
generate term_1, term_2, ... in all observations; default is in observations if esample()
use $($ term $+a) / b$; default is to use variable term as is
specify a and b automatically
report centered-on- c results; default is uncentered results
specify c to be the mean of (scaled) term
set term_1, term_2, .. to zero if scaled term ≤ 0; default is to issue an error message
same as zero and include term_0 $=($ term $\leq 0)$ among fractional polynomial power variables

Reporting
replay_options
specify how results are displayed
replay_options
Description
Reporting
nocompare
reporting_options
do not display model-comparison test results
any options allowed by est_cmd for replaying estimation results
gen_options
Description
Main
replace
scale
center (\#_c)
center
zero
catzero
scale $\left(\#-a \# _b\right) \quad$ use $($ term $+a) / b$; default is to use variable term as is
replace existing fractional polynomial power variables named term_1, term_2, ...
specify a and b automatically
report centered-on- c results; default is uncentered results
specify c to be the mean of (scaled) term
set term_1, term_2, .. to zero if scaled term ≤ 0; default is to issue an error message
same as zero and include term_0 $=($ term $\leq 0)$ among fractional polynomial power variables
collect is allowed with $f p$ and $f p$ generate; see [U] 11.1.10 Prefix commands.

Options

Options are presented under the following headings:
Options for $f p$
Options for fp generate

Options for $\mathbf{f p}$

\qquad
powers (\# \# ... \#) specifies that a search be performed and details about the search provided. powers() works with the dimension() option; see below. The default is powers ($-2-1-.50$.5123).
dimension(\#) specifies the maximum degree of the fractional polynomial to be searched. The default is dimension(2).

If the defaults for both powers() and dimension() are used, then the fractional polynomial could be any of the following 44 possibilities:

$$
\begin{gathered}
\text { term }^{(-2)} \\
\text { term }^{(-1)} \\
\vdots \\
\text { term }^{(3)} \\
\text { term }^{(-2)}, \text { term }^{(-2)} \\
\text { term }^{(-2)}, \text { term }^{(-1)} \\
\vdots \\
\text { term }^{(-2)}, \text { term }^{(3)} \\
\text { term }^{(-1)}, \text { term }^{(-2)} \\
\vdots \\
\text { term }^{(3)}, \text { term }^{(3)}
\end{gathered}
$$

fp(\# \# ... \#) specifies that no search be performed and that the fractional polynomial specified be used. fp() is an alternative to powers() and dimension().

Options

classic performs automatic scaling and centering and omits the comparison table. Specifying classic is equivalent to specifying scale, center, and nocompare.
replace replaces existing fractional polynomial power variables named term_1, term_2,
all specifies that term_1, term_2, .. be filled in for all observations in the dataset rather than just for those in e(sample).
scale (\#_a \#_b) specifies that term be scaled in the way specified, namely, that $($ term $+a) / b$ be calculated. All values of the scaled term are required to be greater than zero unless you specify options zero or catzero. Values should not be too large or too close to zero, because by default, cubic powers and squared reciprocal powers will be considered. When scale $(a b)$ is specified, values in the variable term are not modified; fp merely remembers to scale the values whenever powers are calculated.

You will probably not use scale $(a b)$ for values of a and b that you create yourself, although you could. It is usually easier just to generate a scaled variable. For instance, if term is age, and age in your data is required to be greater than or equal to 20 , you might generate an age 5 variable, for use as term:

```
. generate age5 = (age-19)/5
```

scale ($a b$) is useful when you previously fit a model using automatic scaling (option scale) in one dataset and now want to create the fractional polynomials in another. In the first dataset, fp with scale added notes to the dataset concerning the values of a and b. You can see them by typing

```
. notes
```

You can then use fp generate, $\operatorname{scale}(a b)$ in the second dataset.
The default is to use term as it is used in calculating fractional powers; thus, term's values are required to be greater than zero unless you specify options zero or catzero. Values should not be too large, because by default, cubic powers will be considered.
scale specifies that term be scaled to be greater than zero and not too large in calculating fractional powers. See Scaling for more details. When scale is specified, values in the variable term are not modified; fp merely remembers to scale the values whenever powers are calculated.
center (\#_c) reports results for the fractional polynomial in (scaled) term, centered on c. The default is to perform no centering.
$\operatorname{term}^{\left(p_{1}, p_{2}, \ldots, p_{m}\right)}-c^{\left(p_{1}, p_{2}, \ldots, p_{m}\right)}$ is reported. This makes the constant coefficient (intercept) easier to interpret. See Centering for more details.
center performs center (c), where c is the mean of (scaled) term.
zero and catzero specify how nonpositive values of term are to be handled. By default, nonpositive values of term are not allowed, because we will be calculating natural logarithms and fractional powers of term. Thus, an error message is issued.
zero sets the fractional polynomial value to zero for nonpositive values of (scaled) term.
catzero sets the fractional polynomial value to zero for nonpositive values of (scaled) term and includes a dummy variable indicating where nonpositive values of (scaled) term appear in the model.

Reporting

nocompare suppresses display of the comparison tests.
reporting_options are any options allowed by est_cmd for replaying estimation results.

Options for $\mathfrak{f p}$ generate

Main
replace replaces existing fractional polynomial power variables named term_1, term_2, ...
scale(\#_a \#_b) specifies that term be scaled in the way specified, namely, that (term+a) $/ b$ be calculated. All values of the scaled term are required to be greater than zero unless you specify options zero or catzero. Values should not be too large or too close to zero, because by default, cubic powers and squared reciprocal powers will be considered. When scale ($a b$) is specified, values in the variable term are not modified; fp merely remembers to scale the values whenever powers are calculated.

You will probably not use scale $(a b$) for values of a and b that you create yourself, although you could. It is usually easier just to generate a scaled variable. For instance, if term is age, and age in your data is required to be greater than or equal to 20 , you might generate an age 5 variable, for use as term:

```
. generate age5 = (age-19)/5
```

scale ($a b$) is useful when you previously fit a model using automatic scaling (option scale) in one dataset and now want to create the fractional polynomials in another. In the first dataset, fp with scale added notes to the dataset concerning the values of a and b. You can see them by typing

```
. notes
```

You can then use fp generate, $\operatorname{scale}(a b)$ in the second dataset.
The default is to use term as it is used in calculating fractional powers; thus, term's values are required to be greater than zero unless you specify options zero or catzero. Values should not be too large, because by default, cubic powers will be considered.
scale specifies that term be scaled to be greater than zero and not too large in calculating fractional powers. See Scaling for more details. When scale is specified, values in the variable term are not modified; fp merely remembers to scale the values whenever powers are calculated.
center (\#_c) reports results for the fractional polynomial in (scaled) term, centered on c. The default is to perform no centering.
term ${ }^{\left(p_{1}, p_{2}, \ldots, p_{m}\right)}-c^{\left(p_{1}, p_{2}, \ldots, p_{m}\right)}$ is reported. This makes the constant coefficient (intercept) easier to interpret. See Centering for more details.
center performs center (c), where c is the mean of (scaled) term.
zero and catzero specify how nonpositive values of term are to be handled. By default, nonpositive values of term are not allowed, because we will be calculating natural logarithms and fractional powers of term. Thus, an error message is issued.
zero sets the fractional polynomial value to zero for nonpositive values of (scaled) term.
catzero sets the fractional polynomial value to zero for nonpositive values of (scaled) term and includes a dummy variable indicating where nonpositive values of (scaled) term appear in the model.

Remarks and examples

Remarks are presented under the following headings:
Fractional polynomial regression
Scaling
Centering
Examples

Fractional polynomial regression

Regression models based on fractional polynomial functions of a continuous covariate are described by Royston and Altman (1994).

Fractional polynomials increase the flexibility afforded by the family of conventional polynomial models. Although polynomials are popular in data analysis, linear and quadratic functions are limited in their range of curve shapes, whereas cubic and higher-order curves often produce undesirable artifacts such as edge effects and waves.

Fractional polynomials differ from regular polynomials in that 1) they allow logarithms, 2) they allow noninteger powers, and 3) they allow powers to be repeated.

We will write a fractional polynomial in x as

$$
x^{\left(p_{1}, p_{2}, \ldots, p_{m}\right)^{\prime}} \boldsymbol{\beta}
$$

We will write $x^{(p)}$ to mean a regular power except that $x^{(0)}$ is to be interpreted as meaning $\ln (x)$ rather than $x^{(0)}=1$.

Then if there are no repeated powers in $\left(p_{1}, p_{2}, \ldots, p_{m}\right)$,

$$
x^{\left(p_{1}, p_{2}, \ldots, p_{m}\right) \prime} \boldsymbol{\beta}=\beta_{0}+\beta_{1} x^{\left(p_{1}\right)}+\beta_{2} x^{\left(p_{2}\right)}+\cdots+\beta_{m} x^{\left(p_{m}\right)}
$$

Powers are allowed to repeat in fractional polynomials. Each time a power repeats, it is multiplied by another $\ln (x)$. As an extreme case, consider the fractional polynomial with all-repeated powers, say, m of them,

$$
x^{(p, p, \ldots, p) \prime} \boldsymbol{\beta}=\beta_{0}+\beta_{1} x^{(p)}+\beta_{2} x^{(p)} \ln (x)+\cdots+\beta_{m} x^{(p)}\{\ln (x)\}^{m-1}
$$

Thus, the fractional polynomial $x^{(0,0,2) \prime} \boldsymbol{\beta}$ would be

$$
\begin{aligned}
x^{(0,0,2) \prime} \boldsymbol{\beta} & =\beta_{0}+\beta_{1} x^{(0)}+\beta_{2} x^{(0)} \ln (x)+\beta_{3} x^{(2)} \\
& =\beta_{0}+\beta_{1} \ln (x)+\beta_{2}\{\ln (x)\}^{2}+\beta_{3} x^{2}
\end{aligned}
$$

With this definition, we can obtain a much wider range of shapes than can be obtained with regular polynomials. The following graphs appeared in Royston and Sauerbrei (2008, sec. 4.5). The first graph shows the shapes of differing fractional polynomials.

The second graph shows some of the curve shapes available with different $\beta \mathrm{s}$ for the degree-2 fractional polynomial, $x^{(-2,2)}$.

In modeling a fractional polynomial, Royston and Sauerbrei (2008) recommend choosing powers from among $\{-2,-1,-0.5,0,0.5,1,2,3\}$. By default, fp chooses powers from this set, but other powers can be explicitly specified in the powers() option.
fp <term> : est_cmd fits models with the terms of the best-fitting fractional polynomial substituted for <term> wherever it appears in est_cmd. We will demonstrate with auto.dta, which contains repair records and other information about a variety of vehicles in 1978.

We use $f p$ to find the best fractional polynomial in automobile weight (lbs.) (weight) for the linear regression of miles per gallon (mpg) on weight and an indicator of whether the vehicle is foreign (foreign).

By default, fp will fit degree-2 fractional polynomial (FP2) models and choose the fractional powers from the set $\{-2,-1,-0.5,0,0.5,1,2,3\}$. Because car weight is measured in pounds and will have a cubic transformation applied to it, we shrink it to a smaller scale before estimation by dividing by 1,000 .

We modify the existing weight variable for conciseness and to facilitate the comparison of tables. When applying a data transformation in practice, rather than modifying the existing variables, you should create new variables that hold the transformed values.

```
. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. replace weight = weight/1000
variable weight was int now float
(74 real changes made)
. fp <weight>: regress mpg <weight> foreign
(fitting 44 models)
( . . . 10% . . . 20% . . . . 30% . . . 40% . . . . 50% . . . . 60% . . . . 70% . . . . 80% . . . . 90% . . . . 100%%)
```

Fractional polynomial comparisons:

	Test		Residual weight df	Deviance	Deviance std.	diff.
omitted	4	456.347	5.356	75.216	0.000	
linear	3	388.366	3.407	7.236	0.082	1
m $=1$	2	381.806	3.259	0.675	0.733	-.5
m $=2$	0	381.131	3.268	0.000	--	$-2-2$

Note: Test df is degrees of freedom, and $\mathbf{P}=\mathrm{P}>\mathrm{F}$ is sig. level for tests comparing models vs. model with $m=2$ based on deviance difference, F (df , 68) .

Source	SS	df	MS	Number of obs	=	74
				F (3, 70)	=	52.95
Model	1696.05949	3	565.353163	Prob > F	=	0.0000
Residual	747.399969	70	10.6771424	R -squared	=	0.6941
				Adj R-squared	=	0.6810
Total	2443.45946	73	33.4720474	Root MSE	=	3.2676

mpg	Coefficient	Std. err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% conf. interval]	
weight_1	15.88527	20.60329	0.77	0.443	-25.20669	56.97724
weight_2	127.9349	47.53106	2.69	0.009	33.13723	222.7326
foreign	-2.222515	1.053782	-2.11	0.039	-4.324218	-.1208131
_cons	3.705981	3.367949	1.10	0.275	-3.011182	10.42314

fp begins by showing the model-comparison table. This table shows the best fractional polynomial model of weight for each examined degree, m, which is obtained by searching through all possible power combinations. The row labeled omitted describes the null model, which entirely omits weight from the model. A separate row is provided for the model with a linear function of weight because it is often the default when including a predictor in the model.

The fractional powers of the models are shown in the Powers column. An estimate of the residual standard error is given in the Residual std. dev. column. The model deviance, which we define as twice the negative log likelihood, is given in the Deviance column. The Deviance diff. column reports the difference in deviance compared with the model with the lowest deviance, which is always the model with the highest-degree fractional polynomial.

The Test df column displays the degrees of freedom used when testing a model's fit against the fit of the model with the lowest deviance. For normal error models such as linear regression, a partial F test is performed, and Test df is the numerator degrees of freedom of the F test. In other settings, a likelihood-ratio test is performed, and Test df is the degrees of freedom of the χ^{2} statistic. In both cases, the p-value for the test is reported in column P.

Under robust variance estimation and some other cases (see [R] Irtest), the likelihood-ratio test cannot be performed. When the likelihood-ratio test cannot be performed on the model specified in est_cmd, fp still reports the model-comparison table, but the comparison tests are not performed.
fp reports the "best" model as the model with the lowest deviance; however, users may choose a more efficient model based on the comparison table. They may choose the lowest degree model that the partial F test (or likelihood-ratio test) fails to reject in favor of the lowest deviance model.

After the comparison table, the results of the estimation command for the lowest deviance model are shown. Here the best model has terms weight ${ }^{(-2,-2)}$. However, based on the model-comparison table, we can reject the model without weight and the linear model at the 0.1 significance level. We fail to reject the $m=1$ model at any reasonable level. We will choose the FP1 model, which includes weight ${ }^{(-.5)}$.

We use $f p$ again to estimate the parameters for this model. We use the $f p()$ option to specify what powers we want to use; this option specifies that we do not want to perform a search for the best powers. We also specify the replace option to overwrite the previously created fractional polynomial power variables.

```
. fp <weight>, fp(-.5) replace: regress mpg <weight> foreign
-> regress mpg weight_1 foreign
```

Source	SS	df	MS	Number of obs	=	74
				$\mathrm{F}(2,71)$		79.51
Model	1689.20865	2	844.604325	Prob > F	=	0.0000
Residual	754.25081	71	10.6232508	R-squared	=	0.6913
				Adj R-squared		0.6826
Total	2443.45946	73	33.4720474	Root MSE	=	3.2593

mpg	Coefficient	Std. err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% conf. interval]	
weight_1	66.89665	6.021749	11.11	0.000	54.88963	78.90368
foreign	-2.095622	1.043513	-2.01	0.048	-4.176329	-.0149157
_cons	-17.58651	3.397992	-5.18	0.000	-24.36192	-10.8111

Alternatively, we can use fp generate to create the fractional polynomial variable corresponding to weight ${ }^{(-.5)}$ and then use regress. We store weight ${ }^{(-.5)}$ in the new variable wgt_nsqrt.

```
. fp generate wgt_nsqrt=weight^(-.5)
```

. regress mpg wgt_nsqrt foreign

Source	SS	df	MS	Number of obs	=	74
				$\mathrm{F}(2,71)$	=	79.51
Model	1689.20874	2	844.604371	Prob > F	=	0.0000
Residual	754.250718	71	10.6232495	R -squared	=	0.6913
				Adj R-squared	=	0.6826
Total	2443.45946	73	33.4720474	Root MSE	=	3.2593

mpg	Coefficient	Std. err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% conf. interval]	
wgt_nsqrt_1	66.89665	6.021748	11.11	0.000	54.88963	78.90368
foreign	-2.095622	1.043513	-2.01	0.048	-4.176328	-.0149155
_cons	-17.58651	3.397991	-5.18	0.000	-24.36191	-10.8111

Scaling

Fractional polynomials are defined only for positive term variables. By default, fp will assume that the variable x is positive and attempt to compute fractional powers of x. If the positive value assumption is incorrect, an error will be reported and estimation will not be performed.

If the values of the variable are too large or too small, the reported results of $f p$ may be difficult to interpret. By default, cubic powers and squared reciprocal powers will be considered in the search for the best fractional polynomial in term.

We can scale the variable x to 1) make it positive and 2) ensure its magnitude is not too large or too small.

Suppose you have data on hospital patients with age as a fractional polynomial variable of interest. age is required to be greater than or equal to 20 , so you might generate an age 5 variable by typing

```
. generate age5 = (age-19)/5
```

A unit change in age5 is equivalent to a five-year change in age, and the minimum value of age 5 is $1 / 5$ instead of 20 .

In the automobile example of Fractional polynomial regression, our term variable was automobile weight (lbs.). Cars weigh in the thousands of pounds, so cubing their weight figures results in large numbers. We prevented this from being a problem by shrinking the weight by 1,000 ; that is, we typed

```
. replace weight = weight/1000
```

Calendar year is another type of variable that can have a problematically large magnitude. We can shrink this by dividing by 10 , making a unit change correspond to a decade.

```
. generate decade = calendar_year/10
```

You may also have a variable that measures deviation from zero. Perhaps x has already been demeaned and is symmetrically about zero. The fractional polynomial in x will be undefined for half of its domain. We can shift the location of x, making it positive by subtracting its minimum and adding a small number to it. Suppose x ranges from -4 to 4 ; we could use

```
. generate newx = x+5
```

Rescaling ourselves provides easily communicated results. We can tell exactly how the scaling was performed and how it should be performed in similar applications.

Alternatively, fp can scale the fractional polynomial variable so that its values are positive and the magnitude of the values are not too large. This can be done automatically or by directly specifying the scaling values.

Scaling can be automatically performed with $f p$ by specifying the scale option. If term has nonpositive values, the minimum value of term is subtracted from each observation of term. In this case, the counting interval, the minimum distance between the sorted values of term, is also added to each observation of term.

After adjusting the location of term so that its minimum value is positive, creating term*, automatic scaling will divide each observation of term by a power of ten. The exponent of this scaling factor is given by

$$
\begin{aligned}
p & =\log _{10}\left\{\max \left(\text { term }^{*}\right)-\min \left(\text { term }^{*}\right)\right\} \\
p^{*} & =\operatorname{sign}(p) \text { floor }(|p|)
\end{aligned}
$$

Rather than letting fp automatically choose the scaling of term, you may specify adjustment and scale factors a and b by using the scale $(a b)$ option. Fractional powers are then calculated using the $($ term $+a) / b$ values.

When scale or scale $(a b)$ is specified, values in the variable term are not modified; fp merely remembers to scale the values whenever powers are calculated.

In addition to fp , both scale and scale $(a b)$ may be used with fp generate.
You will probably not use scale $(a b)$ with fp for values of a and b that you create yourself, although you could. As we demonstrated earlier, it is usually easier just to generate a scaled variable.
scale ($a b$) is useful when you previously fit a model using scale in one dataset and now want to create the fractional polynomials in another. In the first dataset, fp with scale added notes to the dataset concerning the values of a and b. You can see them by typing

```
. notes
```

You can then use fp generate, $\operatorname{scale}(a b)$ in the second dataset.
When you apply the scaling rules of a previously fit model to new data with the scale $(a b)$ option, it is possible that the scaled term may have nonpositive values. $f p$ will be unable to calculate the fractional powers of the term in this case and will issue an error.

The options zero and catzero cause $f p$ and $f p$ generate to output zero values for each fractional polynomial variable when the input (scaled) fractional polynomial variable is nonpositive. Specifying catzero causes a dummy variable indicating nonpositive values of the (scaled) fractional polynomial variable to be included in the model. A detailed example of the use of catzero and zero is shown in example 3 below.

Using the scaling options, we can fit our previous model again using the auto.dta. We specify scale (0 1000) so that $f p$ will shrink the magnitude of weight in estimating the regression. This is done for demonstration purposes because our scaling rule is simple. As mentioned before, in practice, you would probably only use scale $(a b)$ when applying the scaling rules from a previous analysis. Allowing fp to scale does have the advantage of not altering the original variable, weight.

```
. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
```

. fp <weight>, fp(-.5) scale(0 1000) : regress mpg <weight> foreign
-> regress mpg weight_1 foreign

Source	SS	df	MS	Number of obs	=	74
				$\mathrm{F}(2,71)$	=	79.51
Model	1689.20861	2	844.604307	Prob > F	=	0.0000
Residual	754.250846	71	10.6232514	R -squared	=	0.6913
				Adj R-squared	=	0.6826
Total	2443.45946	73	33.4720474	Root MSE	=	3.2593

mpg	Coefficient	Std. err.	t	$\mathrm{P}>\|\mathrm{t}\|$	$[95 \%$ conf. interval]	
weight_1	66.89665	6.021749	11.11	0.000	54.88963	78.90368
foreign	-2.095622	1.043513	-2.01	0.048	-4.176329	-.0149159
_cons	-17.58651	3.397992	-5.18	0.000	-24.36192	-10.81111

The scaling is clearly indicated in the variable notes for the generated variable weight_1.

```
. notes weight_1
weight_1:
    1. fp term 1 of }\mp@subsup{x}{}{\wedge}(-.5), where x is weight scaled.
    2. Scaling was user specified: x = (weight+a)/b where a=0 and b=1000
    3. Fractional polynomial variables created by fp <weight>, fp(-.5)
        scale(0 1000): regress mpg <weight> foreign
    4. To re-create the fractional polynomial variables, for instance, in
        another dataset, type fp gen double weight^(-.5), scale(0 1000)
```


Centering

The fractional polynomial of term, centered on c is

$$
\left(\operatorname{term}^{\left(p_{1}, \ldots, p_{m}\right)}-c^{\left(p_{1}, \ldots, p_{m}\right)}\right)^{\prime} \boldsymbol{\beta}
$$

The intercept of a centered fractional polynomial can be interpreted as the effect at zero for all the covariates. When we center the fractional polynomial terms using c, the intercept is now interpreted as the effect at term $=c$ and zero values for the other covariates.

Suppose we wanted to center the fractional polynomial of x with powers $(0,0,2)$ at $x=c$.

$$
\begin{aligned}
& \left(x^{(0,0,2)}-c^{(0,0,2)}\right)^{\prime} \boldsymbol{\beta} \\
& =\beta_{0}+\beta_{1}\left(x^{(0)}-c^{(0)}\right)+\beta_{2}\left\{x^{(0)} \ln (x)-c^{(0)} \ln (c)\right\}+\beta_{3}\left(x^{(2)}-c^{(2)}\right) \\
& =\beta_{0}+\beta_{1}\{\ln (x)-\ln (c)\}+\beta_{2}\left[\{\ln (x)\}^{2}-\{\ln (c)\}^{2}\right]+\beta_{3}\left(x^{2}-c^{2}\right)
\end{aligned}
$$

When center is specified, fp centers based on the sample mean of (scaled) term. A previously chosen value for centering, c, may also be specified in center (c). This would be done when applying the results of a previous model fitting to a new dataset.

The center and center (c) options may be used in fp or fp generate.
Returning to the model of mileage per gallon based on automobile weight and foreign origin, we refit the model with the fractional polynomial of weight centered at its scaled mean.

```
. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. fp <weight>, fp(-.5) scale(0 1000) center: regress mpg <weight> foreign
-> regress mpg weight_1 foreign
```

Source	SS	df	MS	Number of obs	=	74
				$\mathrm{F}(2,71)$	=	79.51
Model	1689.20861	2	844.604307	Prob > F	=	0.0000
Residual	754.250846	71	10.6232514	R -squared	=	0.6913
				Adj R-squared	=	0.6826
Total	2443.45946	73	33.4720474	Root MSE	=	3.2593

mpg	Coefficient	Std. err.	t	$\mathrm{P}>\|\mathrm{t}\|$	$[95 \%$ conf. interval]	
weight_1	66.89665	6.021749	11.11	0.000	54.88963	78.90368
foreign	-2.095622	1.043513	-2.01	0.048	-4.176329	-.0149159
_cons	20.91163	.4624143	45.22	0.000	19.9896	21.83366

Note that the coefficients for weight_1 and foreign do not change. Only the intercept _cons changes. It can be interpreted as the estimated average miles per gallon of an American-made car of average weight.

Examples

> Example 1: Linear regression
Consider the serum immunoglobulin G (IgG) dataset from Isaacs et al. (1983), which consists of 298 independent observations in young children. The dependent variable sqrtigg is the square root of the IgG concentration, and the independent variable age is the age of each child. (Preliminary Box-Cox analysis shows that a square root transformation removes the skewness in IgG.)

The aim is to find a model that accurately predicts the mean of sqrtigg given age. We use $f p$ to find the best FP2 model (the default option). We specify center for automatic centering. The age of each child is small in magnitude and positive, so we do not use the scaling options of $f p$ or scale ourselves.

```
. use https://www.stata-press.com/data/r18/igg, clear
(Immunoglobulin in children)
. fp <age>, scale center: regress sqrtigg <age>
(fitting 44 models)
(. . . . 10% . . . 20% . . . . 30% . . . 40% . . . . 50% . . . 60% . . . . 70% . . . . 80% . . . . 90% . . . . 100%)
```

Fractional polynomial comparisons:

age	Test df	Deviance	Residual std. dev.	Deviance diff.	P	Powers
omitted	4	427.539	0.497	108.090	0.000	
linear	3	337.561	0.428	18.113	0.000	1
$m=1$	2	327.436	0.421	7.987	0.020	0
$\mathrm{~m}=2$	0	319.448	0.416	0.000	--	-22

Note: Test df is degrees of freedom, and $\mathbf{P}=\mathrm{P}>\mathrm{F}$ is sig. level for tests
comparing models vs. model with $m=2$ based on deviance difference,
F (df, 293) .

Source	SS	df	MS	Number of obs	=	298
				F (2, 295)		64.49
Model	22.2846976	2	11.1423488	Prob > F	=	0.0000
Residual	50.9676492	295	. 172771692	R -squared	=	0.3042
				Adj R-squared		0.2995
Total	73.2523469	297	. 246640898	Root MSE		. 41566

sqrtigg	Coefficient	Std. err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% conf. interval]	
age_1	-.1562156	.027416	-5.70	0.000	-.2101713	-.10226
age_2	.0148405	.0027767	5.34	0.000	.0093757	.0203052
_cons	2.283145	.0305739	74.68	0.000	2.222974	2.343315

The new variables created by fp contain the best-fitting fractional polynomial powers of age, as centered by $f p$. For example, age_1 is centered by subtracting the mean of age raised to the power -2 .

The variables created by $f p$ and $f p$ generate are centered or scaled as specified by the user, which is reflected in the estimated regression coefficients and intercept. Centering does have its advantages (see Centering earlier in this entry). By default, $f p$ will not perform scaling or centering. For a more detailed discussion, see Royston and Sauerbrei (2008, sec. 4.11).

The fitted curve has an asymmetric S shape. The best model has powers $(-2,2)$ and deviance 319.448. We reject lesser degree models: the null, linear, and natural \log power models at the 0.05 level. As many as 44 models have been fit in the search for the best powers. Now let's look at
models of degree ≤ 4. The highest allowed degree is specified in dimension(). We overwrite the previously generated fractional polynomial power variables by including replace.

```
. fp <age>, dimension(4) center replace: regress sqrtigg <age>
(fitting 494 models)
( . . . 10% . . . 20% . . . . 30% . . . . 40% . . . 50% . . . . 60% . . . . 70% . . . . 80% . . . . 90% . . . . 100%%)
Fractional polynomial comparisons:
```

age	Test df	Deviance	Residual std. dev.	Deviance diff.	P	Powers
omitted	8	427.539	0.497	109.795	0.000	
linear	7	337.561	0.428	19.818	0.007	1
$m=1$	6	327.436	0.421	9.692	0.149	0
$m=2$	4	319.448	0.416	1.705	0.798	-22
$m=3$	2	319.275	0.416	1.532	0.476	-211
$m=4$	0	317.744	0.416	0.000	--	0333

Note: Test df is degrees of freedom, and $\mathbf{P}=P>F$ is sig. level for tests comparing models vs. model with $m=4$ based on deviance difference, F(df, 289).

Source	SS	df	MS	Number of obs	=	298
				$\mathrm{F}(4,293)$	=	32.63
Model	22.5754541	4	5.64386353	Prob > F	=	0.0000
Residual	50.6768927	293	. 172958678	R -squared	=	0.3082
				Adj R-squared	=	0.2987
Total	73.2523469	297	. 246640898	Root MSE	=	. 41588

sqrtigg	Coefficient	Std. err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% conf. interval]	
age_1	.8761824	.1898721	4.61	0.000	.5024962	1.249869
age_2	-.1922029	.0684934	-2.81	0.005	-.3270044	-.0574015
age_3	.2043794	.074947	2.73	0.007	.0568767	.3518821
age_4	-.0560067	.0212969	-2.63	0.009	-.097921	-.0140924
_cons	2.238735	.0482705	46.38	0.000	2.143734	2.333736

It appears that the FP4 model is not significantly different from the other fractional polynomial models (at the 0.05 level).

Let's compare the curve shape from the $m=2$ model with that from a conventional quartic polynomial whose fit turns out to be significantly better than a cubic (not shown). We use the ability of $f p$ both to generate the required powers of age, namely, $(1,2,3,4)$ for the quartic and $(-2,2)$ for the second-degree fractional polynomial, and to fit the model. The fp() option is used to specify the powers. We use predict to obtain the fitted values of each regression. We fit both models with fp and graph the resulting curves with twoway scatter.

- predict fit1
(option xb assumed; fitted values)
. label variable fit1 "Quartic"
. fp <age>, center fp(-2 2) replace: regress sqrtigg <age>
-> regress sqrtigg age_1 age_2

Source	SS	df	MS	Number of obs	=	298
				F (2, 295)	=	64.49
Model	22.2846976	2	11.1423488	Prob > F	=	0.0000
Residual	50.9676492	295	. 172771692	R -squared	=	0.3042
				Adj R-squared	=	0.2995
Total	73.2523469	297	. 246640898	Root MSE	=	. 41566

sqrtigg	Coefficient	Std. err.	t	$\mathrm{P}>\mid \mathrm{t\mid}$	[95\% conf. interval]	
age_1	-.1562156	.027416	-5.70	0.000	-.2101713	-.10226
age_2	.0148405	.0027767	5.34	0.000	.0093757	.0203052
_cons	2.283145	.0305739	74.68	0.000	2.222974	2.343315

```
. predict fit2
(option xb assumed; fitted values)
. label variable fit2 "FP 2"
. scatter sqrtigg fit1 fit2 age, c(. l l) m(o i i) msize(small)
> lpattern(. __.) ytitle("Square root of IgG") xtitle("Age (years)")
```


The quartic curve has an unsatisfactory wavy appearance that is implausible for the known behavior of IgG, the serum level of which increases throughout early life. The fractional polynomial curve (FP2) increases monotonically and is therefore biologically the more plausible curve. The two models have approximately the same deviance.

> Example 2: Cox regression

Data from Smith et al. (1992) contain times to complete healing of leg ulcers in a randomized, controlled clinical trial of two treatments in 192 elderly patients. Several covariates were available, of which an important one is mthson, the number of months since the recorded onset of the ulcer. This time is recorded in whole months, not fractions of a month; therefore, some zero values are recorded.

Because the response variable is time to an event of interest and some (in fact, about one-half) of the times are censored, using Cox regression to analyze the data is appropriate. We consider fractional polynomials in mthson, adjusting for four other covariates: age; ulcarea, the area of tissue initially affected by the ulcer; deepppg, a binary variable indicating the presence or absence of deep vein involvement; and treat, a binary variable indicating treatment type.

We fit fractional polynomials of degrees 1 and 2 with fp . We specify scale to perform automatic scaling on mthson. This makes it positive and ensures that its magnitude is not too large. (See Scaling for more details.) The display option nohr is specified before the colon so that the coefficients and not the hazard ratios are displayed.

The center option is specified to obtain automatic centering. age and ulcarea are also demeaned by using summarize and then subtracting the returned result r (mean).

In Cox regression, there is no constant term, so we cannot see the effects of centering in the table of regression estimates. The effects would be present if we were to graph the baseline hazard or survival function because these functions are defined with all predictors set equal to 0 .

In these graphs, we will see the estimated baseline hazard or survival function under no deep vein involvement or treatment and under mean age, ulcer area, and number of months since the recorded onset of the ulcer.
. use https://www.stata-press.com/data/r18/legulcer2, clear
(Leg ulcer clinical trial)
. stset ttevent, fail(healed)
Survival-time data settings
Failure event: healed!=0 \& healed<.
Observed time interval: (0, ttevent]
Exit on or before: failure

Fractional polynomial comparisons:

The best-fitting fractional polynomial of degree 2 has powers $(0.5,0.5)$ and deviance 736.709 . However, this model does not fit significantly better than the fractional polynomial of degree 1 (at the 0.05 level), which has power -0.5 and deviance 738.969. We prefer the model with $m=1$.

-> stcox mthson_1 age ulcarea deepppg treat						
Cox regression with Breslow method for ties						
No. of subjects $=192$ No. of failures $=9$ Time at risk $=13,825$					Number of obs $=192$	
					LR chi2(5)	$=106.33$
Log likelihoo	$=-369.48426$				Prob > chi2	$=0.0000$
_t	Coefficient	Std. err.	z	$\mathrm{P}>\|z\|$	[95\% conf.	interval]
mthson_1	. 1985592	. 0493922	4.02	0.000	. 1017523	. 2953662
age	-. 02691	. 0087875	-3.06	0.002	-. 0441331	-. 0096868
ulcarea	-. 0017416	. 0003482	-5.00	0.000	-. 0024241	-. 0010591
deepppg	-. 5740759	. 2185134	-2.63	0.009	-1.002354	-. 1457975
treat	-. 1798575	. 2175726	-0.83	0.408	-. 6062921	. 246577

The hazard for healing is much higher for patients whose ulcer is of recent onset than for those who have had an ulcer for many months.

A more appropriate analysis of this dataset, if one wanted to model all the predictors, possibly with fractional polynomial functions, would be to use $m f p$; see $[R] \mathbf{m f p}$.

> Example 3: Logistic regression

The zero option permits fitting a fractional polynomial model to the positive values of a covariate, taking nonpositive values as zero. An application is the assessment of the effect of cigarette smoking as a risk factor. Whitehall 1 is an epidemiological study, which was examined in Royston and Sauerbrei (2008), of 18,403 male British Civil Servants employed in London. We examine the data collected in Whitehall 1 and use logistic regression to model the odds of death based on a fractional polynomial in the number of cigarettes smoked.

Nonsmokers may be qualitatively different from smokers, so the effect of smoking (regarded as a continuous variable) may not be continuous between zero cigarettes and one cigarette. To allow for this possibility, we model the risk as a constant for the nonsmokers and as a fractional polynomial function of the number of cigarettes for the smokers, adjusted for age.

The dependent variable all 10 is an indicator of whether the individual passed away in the 10 years under study. cigs is the number of cigarettes consumed per day. After loading the data, we demean age and create a dummy variable, nonsmoker. We then use $f p$ to fit the model.

```
. use https://www.stata-press.com/data/r18/smoking, clear
(Smoking and mortality data)
. quietly sum age
. replace age = age - r(mean)
variable age was byte now float
(17,260 real changes made)
. generate byte nonsmoker = cond(cigs==0, 1, 0) if cigs < .
. fp <cigs>, zero: logit all10 <cigs> nonsmoker age
(fitting 44 models)
(. . . . 10% . . . 20% . . . . 30% . . . 40% . . . . 50% . . . . 60% . . . . 70% . . . . 80% . . . . 90% . . . . 100%%)
```

Fractional polynomial comparisons:

cigs	Test df	Deviance	Deviance diff.	P	Powers
omitted	4	9990.804	46.096	0.000	
linear	3	9958.801	14.093	0.003	1
m $=1$	2	9946.603	1.895	0.388	0
$\mathrm{~m}=2$	0	9944.708	0.000	--	$-1-1$

Note: Test df is degrees of freedom, and $\mathbf{P}=\mathrm{P}>\mathrm{chi2}$ is sig. level for tests comparing models vs. model with $m=2$ based on deviance difference, chi2.

Logistic regression

Log likelihood $=-4972.3539$

Number of obs $=17,260$
LR chi2(4) $=1029.03$
Prob > chi2 $=0.0000$
Pseudo R2 $=0.0938$

all10	Coefficient	Std. err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% conf. interval]	
cigs_1	-1.285867	.3358483	-3.83	0.000	-1.944117	-.6276162
cigs_2	-1.982424	.572109	-3.47	0.001	-3.103736	-.8611106
nonsmoker	-1.223749	.1119583	-10.93	0.000	-1.443183	-1.004315
age	.1194541	.0045818	26.07	0.000	.1104739	.1284343
_cons	-1.591489	.1052078	-15.13	0.000	-1.797693	-1.385286

Omission of the zero option would cause $f p$ to halt with an error message because nonpositive covariate values (for example, values of cigs) are invalid unless the scale option is specified.

A closely related approach involves the catzero option. Here we no longer need to have nonsmoker in the model, because $f p$ creates its own dummy variable cigs_0 to indicate whether the individual does not smoke on that day.

```
. fp <cigs>, catzero replace: logit all10 <cigs> age
(fitting 44 models)
( . . . 10% . . . 20% . . . . 30% . . . 40% . . . 50% . . . . 60% . . . 70% . . . . 80% . . . 90% . . . 100%)
```

Fractional polynomial comparisons:

cigs	Test df	Deviance	Deviance diff.	P	Powers
omitted	5	10175.75	231.047	0.000	
linear	3	9958.80	14.093	0.003	1
$\mathrm{~m}=1$	2	9946.60	1.895	0.388	0
$\mathrm{~m}=2$	0	9944.71	0.000	--	$-1-1$

Note: Test df is degrees of freedom, and $\mathbf{P}=P>$ chi2 is sig. level
for tests comparing models vs. model with $m=2$ based on deviance difference, chi2.
Logistic regression \quad Number of obs $=17,260$
LR chi2(4) $=1029.03$
Prob > chi2 $=0.0000$
Log likelihood = -4972.3539
Pseudo R2 $=0.0938$

all10	Coefficient	Std. err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% conf. interval]	
cigs_0	-1.223749	.1119583	-10.93	0.000	-1.443183	-1.004315
cigs_1	-1.285867	.3358483	-3.83	0.000	-1.944117	-.6276162
cigs_2	-1.982424	.572109	-3.47	0.001	-3.103736	-.8611106
age	.1194541	.0045818	26.07	0.000	.1104739	.1284343
_cons	-1.591489	.1052078	-15.13	0.000	-1.797693	-1.385286

Under both approaches, the comparison table suggests that we can accept the FP1 model instead of the FP2 model. We estimate the parameters of the accepted model-that is, the one that uses the natural logarithm of cigs-with fp .

all10	Coefficient	Std. err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% conf. interval]	
cigs_0	.1883732	.1553093	1.21	0.225	-.1160274	.4927738
cigs_1	.3469842	.0543552	6.38	0.000	.2404499	.4535185
age	.1194976	.0045818	26.08	0.000	.1105174	.1284778
_cons	-3.003767	.1514909	-19.83	0.000	-3.300683	-2.70685

The high p-value for cigs_0 in the output indicates that we cannot reject that there is no extra effect at zero for nonsmokers.

Stored results

In addition to the results that est_cmd stores, fp stores the following in e():
Scalars
e(fp_dimension)
e(fp_center_mean)
e(fp_scale_a)
e(fp_scale_b)
e(fp_compare_df2)
Macros
e(fp_cmd)
e(fp_cmdline)
e(fp_variable)
e(fp_terms)
e(fp_gen_cmdline)
e(fp_catzero)
e(fp_zero)
e(fp_compare_type)
Matrices

$$
e\left(f p _f p\right)
$$

e(fp_compare)
e(fp_compare_stat)
e(fp_compare_df1)
e(fp_compare_fp)
e(fp_compare_length)
e(fp_powers)
degree of fractional polynomial
value used for centering or .
value used for scaling or .
value used for scaling or .
denominator degree of freedom in F test
fp, search(): or fp, powers():
full $f p$ command as typed
fractional polynomial variable
generated $f p$ variables
fp generate command to re-create e(fp_terms) variables
catzero, if specified
zero, if specified
F or chi2
powers used in fractional polynomial
results of model comparisons
F test statistics
chi2 degrees of freedom or numerator degrees of freedom of F test powers of comparison models encoded string for display of row titles powers that are searched
fp generate stores the following in $r()$:
Scalars
r (fp_center_mean) value used for centering or .
$r\left(f p _s c a l e _a\right) \quad$ value used for scaling or .
$r\left(f p _s c a l e _b\right) \quad$ value used for scaling or .
Macros
r (fp_cmdline)
$r\left(f p _v a r i a b l e\right)$
r (fp_terms)
r(fp_catzero)
r(fp_zero)
full $f p$ generate command as typed
fractional polynomial variable
generated $f p$ variables
catzero, if specified
zero, if specified
Matrices
$r\left(f p _f p\right) \quad$ powers used in fractional polynomial

Methods and formulas

The general definition of a fractional polynomial, accommodating possible repeated powers, may be written for functions $H_{1}(x), \ldots, H_{m}(x)$ of $x>0$ as

$$
\beta_{0}+\sum_{j=1}^{m} \beta_{j} H_{j}(x)
$$

where $H_{1}(x)=x^{\left(p_{1}\right)}$ and for $j=2, \ldots, m$,

$$
H_{j}(x)= \begin{cases}x^{\left(p_{j}\right)} & \text { if } p_{j} \neq p_{j-1} \\ H_{j-1}(x) \ln (x) & \text { if } p_{j}=p_{j-1}\end{cases}
$$

For example, a fractional polynomial of degree 3 with powers $(1,3,3)$ has $H_{1}(x)=x, H_{2}(x)=x^{3}$, and $H_{3}(x)=x^{3} \ln (x)$ and equals $\beta_{0}+\beta_{1} x+\beta_{2} x^{3}+\beta_{3} x^{3} \ln (x)$.

We can express a fractional polynomial in vector notation by using $\mathbf{H}(x)=\left[H_{1}(x), \ldots, H_{d}(x)\right]^{\prime}$. We define $x^{\left(p_{1}, p_{2}, \ldots, p_{m}\right)}=\left[\mathbf{H}(x)^{\prime}, 1\right]^{\prime}$. Under this notation, we can write

$$
x^{(1,3,3) \prime} \boldsymbol{\beta}=\beta_{0}+\beta_{1} x+\beta_{2} x^{3}+\beta_{3} x^{3} \ln (x)
$$

The fractional polynomial may be centered so that the intercept can be more easily interpreted. When centering the fractional polynomial of x at c, we subtract $c^{\left(p_{1}, p_{2}, \ldots, p_{m}\right)}$ from $x^{\left(p_{1}, p_{2}, \ldots, p_{m}\right)}$, where $c^{\left(p_{1}, p_{2}, \ldots, p_{d}\right)}=\left[\mathbf{H}(x)^{\prime}, 0\right]^{\prime}$. The centered fractional polynomial is

$$
\left(x^{\left(p_{1}, \ldots, p_{d}\right)}-c^{\left(p_{1}, \ldots, p_{d}\right)}\right)^{\prime} \boldsymbol{\beta}
$$

The definition may be extended to allow $x \leq 0$ values. For these values, the fractional polynomial is equal to the intercept β_{0} or equal to a zero-offset term α_{0} plus the intercept β_{0}.

The deviance D of a model is defined as -2 times its maximized log likelihood. For normal error models, we use the formula

$$
D=n\left(1-\bar{l}+\ln \frac{2 \pi \mathrm{RSS}}{n}\right)
$$

where n is the sample size, \bar{l} is the mean of the lognormalized weights ($\bar{l}=0$ if the weights are all equal), and RSS is the residual sum of squares as fit by regress.

When $f p$ is used to search for the best combination of powers, it reports a table comparing fractional polynomial models of degree $k<m$ with the degree m fractional polynomial model, which will have the lowest deviance. The comparison table also includes the linear model, in which <term> is not raised to a power, and the null model, in which <term> is omitted.

The Test df column of the model comparison table does not correspond to the model degrees of freedom for the individual models but rather to the degrees of freedom of a test comparing that model with the model with the lowest deviance. For normal error models, this is the numerator degrees of freedom of a partial F test; for other models, it is the degrees of freedom of the likelihood-ratio χ^{2} test. When calculating the test degrees of freedom, the command accounts for the two types of parameters that are being estimated by fp : coefficients $\left(\beta_{j}\right)$ and powers. Because the powers in a fractional polynomial are chosen from a finite set rather than from the entire real line, the degrees of freedom defined in this way are approximate and generally yield somewhat conservative tests (Royston and Altman 1994).

The p-values reported by fp are calculated differently for normal error models than for other models. Let D_{k} and D_{m} be the deviances of the models with degrees k and m, respectively. For normal error models, a variance ratio F is calculated as

$$
F=\frac{d_{2}}{d_{1}}\left\{\exp \left(\frac{D_{k}-D_{m}}{n}\right)-1\right\}
$$

where d_{1} is the numerator df, the number of additional parameters estimated by the degree m model over the degree k model. d_{2} is the denominator degrees of freedom and equals the residual degrees of freedom of the degree m model minus the number of powers estimated, m. The p-value is obtained by referring F to an F distribution on $\left(d_{1}, d_{2}\right) \mathrm{df}$.

For nonnormal models, the p-value is obtained by referring $D_{k}-D_{m}$ to a χ^{2} distribution on d_{1} degrees of freedom, with d_{1} defined as above.

Acknowledgment

We thank Patrick Royston of the MRC Clinical Trials Unit, London, and coauthor of the Stata Press book Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model for writing fracpoly and fracgen, the commands on which $f p$ and $f p$ generate are based. We also thank Professor Royston for his advice on and review of the new $f p$ commands.

References

Isaacs, D., D. G. Altman, C. E. Tidmarsh, H. B. Valman, and A. D. Webster. 1983. Serum immunoglobulin concentrations in preschool children measured by laser nephelometry: Reference ranges for $\operatorname{IgG}, \operatorname{IgA}, \mathrm{IgM}$. Journal of Clinical Pathology 36: 1193-1196. https://doi.org/10.1136/jcp.36.10.1193.
Libois, F., and V. Verardi. 2013. Semiparametric fixed-effects estimator. Stata Journal 13: 329-336.
Royston, P., and D. G. Altman. 1994. Regression using fractional polynomials of continuous covariates: Parsimonious parametric modelling. Applied Statistics 43: 429-467. https://doi.org/10.2307/2986270.
Royston, P., and W. Sauerbrei. 2008. Multivariable Model-Building: A Pragmatic Approach to Regression Analysis Based on Fractional Polynomials for Modelling Continuous Variables. Chichester, UK: Wiley.

Smith, J. M., C. J. Dore, A. Charlett, and J. D. Lewis. 1992. A randomized trial of Biofilm dressing for venous leg ulcers. Phlebology 7: 108-113. https://doi.org/10.1177/026835559200700307.

Also see

[R] fp postestimation - Postestimation tools for fp
[R] mfp - Multivariable fractional polynomial models
[U] 20 Estimation and postestimation commands

[^0]

[^0]: Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985-2023 StataCorp LLC, College Station, TX, USA. All rights reserved.

