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Description

expoisson fits an exact Poisson regression model, which produces more accurate inference in small
samples than standard maximum-likelihood–based Poisson regression. For stratified data, expoisson
conditions on the number of events in each stratum and is an alternative to fixed-effects Poisson
regression.

Quick start
Exact Poisson regression of y on x1, x2, and x3

expoisson y x1 x2 x3

Add exposure variable evar

expoisson y x1 x2 x3, exposure(evar)

Same as above, but condition on values of x3 to save time and memory
expoisson y x1 x2, exposure(evar) condvars(x3)

Same as above, and allow more memory for computing the conditional distribution of sufficient
statistics

expoisson y x1 x2, exposure(evar) condvars(x3) memory(100m)

Report incidence-rate ratios rather than coefficients
expoisson y x1 x2 x3, irr

Report conditional scores tests
expoisson y x1 x2 x3, test(score)

Fit a model with strata identified by svar

expoisson y x1 x2 x3, group(svar)

Menu
Statistics > Exact statistics > Exact Poisson regression
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2 expoisson — Exact Poisson regression

Syntax
expoisson depvar indepvars

[
if
] [

in
] [

weight
] [

, options
]

options Description

Model

condvars(varlistc) condition on variables in varlistc
group(varname) groups or strata are stratified by unique values of varname
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1

Options

memory(#
[
b | k | m | g

]
) set limit on memory usage; default is memory(25m)

saving(filename
[
, replace

]
) save the joint conditional distribution to filename

Reporting

level(#) set confidence level; default is level(95)

irr report incidence-rate ratios
test(testopt) report p-value for observed sufficient statistic, conditional scores

test, or conditional probabilities test
mue(varlistm) compute the median unbiased estimates for varlistm
midp use the mid-p-value rule[
no
]
log display or suppress the enumeration log; default is to display

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics

indepvars, varlistc, and varlistm may contain factor variables; see [U] 11.4.3 Factor variables.
by, collect, and statsby are allowed; see [U] 11.1.10 Prefix commands.
fweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

condvars(varlistc) specifies variables whose parameter estimates are not of interest to you. You
can save substantial computer time and memory by moving such variables from indepvars to
condvars(). Understand that you will get the same results for x1 and x3 whether you type

. expoisson y x1 x2 x3 x4

or
. expoisson y x1 x3, condvars(x2 x4)

group(varname) specifies the variable defining the strata, if any. A constant term is assumed for
each stratum identified in varname, and the sufficient statistics for indepvars are conditioned on
the observed number of successes within each group (as well as other variables in the model).
The group variable must be integer valued.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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exposure(varnamee), offset(varnameo); see [R] Estimation options.

� � �
Options �

memory(#
[
b | k | m | g

]
) sets a limit on the amount of memory expoisson can use when computing

the conditional distribution of the parameter sufficient statistics. The default is memory(25m),
where m stands for megabyte, or 1,048,576 bytes. The following are also available: b stands for
byte; k stands for kilobyte, which is equal to 1,024 bytes; and g stands for gigabyte, which is
equal to 1,024 megabytes. The minimum setting allowed is 1m and the maximum is 2048m or
2g, but do not attempt to use more memory than is available on your computer. Also see the first
technical note under example 3 on counting the conditional distribution.

saving(filename
[
, replace

]
) saves the joint conditional distribution for each independent variable

specified in indepvars. There is one file for each variable, and it is named using the prefix filename
with the variable name appended. For example, saving(mydata) with an independent variable
named X would generate a data file named mydata X.dta. Use replace to replace an existing
file. Each file contains the conditional distribution for one of the independent variables specified in
indepvars conditioned on all other indepvars and those variables specified in condvars(). There
are two variables in each data file: the feasible sufficient statistics for the variable’s parameter and
their associated weights. The weights variable is named w .

� � �
Reporting �

level(#); see [R] Estimation options. The level() option will not work on replay because
confidence intervals are based on estimator-specific enumerations. To change the confidence level,
you must refit the model.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, exp(β) rather than β.
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated or stored. irr may be specified at estimation or when
replaying previously estimated results.

test(sufficient | score | probability) reports the p-value associated with the observed sufficient
statistics, the conditional scores tests, or the conditional probabilities tests, respectively. The default
is test(sufficient). All the statistics are computed at estimation time regardless of which is
specified. Each statistic may thus also be displayed when replaying results after estimation without
having to refit the model; see [R] expoisson postestimation.

mue(varlistm) specifies that median unbiased estimates (MUEs) be reported for the specified variables.
By default, the conditional maximum likelihood estimates (CMLEs) are reported, except for those
parameters for which the CMLEs are infinite. Specify mue( all) if you want MUEs for all the
indepvars.

midp instructs expoisson to use the mid-p-value rule when computing the MUEs, p-values, and
confidence intervals. This adjustment is for the discreteness of the distribution and halves the value
of the discrete probability of the observed statistic before adding it to the p-value. The mid-p-value
rule cannot be applied to MUEs whose corresponding parameter CMLE is infinite.

log and nolog specify whether to display the enumeration log, which shows the progress of computing
the conditional distribution of the sufficient statistics. The enumeration log is displayed by default
unless you used set iterlog off to suppress it; see set iterlog in [R] set iter.

display options: noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
and sformat(% fmt); see [R] Estimation options.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rexpoissonpostestimation.pdf#rexpoissonpostestimation
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rsetiter.pdf#rsetiter
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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Note that the maximum widths for cformat(), pformat(), and sformat() differ from those
widths listed in [R] Estimation options. The maximum width for each format is 9 for expoisson.

The following option is available with expoisson but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples stata.com

Exact Poisson regression estimates the model parameters by using the conditional distributions
of the parameters’ sufficient statistics, and the resulting parameter estimates are known as CMLEs.
Exact Poisson regression is a small-sample alternative to the maximum-likelihood Poisson model.
See [R] poisson and [XT] xtpoisson to obtain maximum likelihood estimates (MLEs) for the Poisson
model and the fixed-effects Poisson model.

Let Yi denote a Poisson random variable where we observe the outcome Yi = yi, i = 1, . . . , n.
Associated with each independent observation is a 1 × p vector of covariates, xi. We will denote
µi = E [Yi | xi] and use the log-linear model to model the relationship between Yi and xi,

log (µi) = θ + xiβ

where the constant term, θ, and the p × 1 vector of regression parameters, β, are unknown. The
probability of observing Yi = yi, i = 1, . . . , n, is

Pr(Y = y) =

n∏
i=1

µyii e
−µi

yi!

where Y = (Y1, . . . , Yn) and y = (y1, . . . , yn). The MLEs for θ and β maximize the log of this
function.

The sufficient statistics for θ and βj , j = 1, . . . , p, are M =
∑n
i=1 Yi and Tj =

∑n
i=1 Yixij ,

respectively, and we observe M = m and Tj = tj . expoisson tallies the conditional distribution
for each Tj , given the other sufficient statistics Tl = tl, l 6= j and M = m. Denote one of these
values to be t(k)j , k = 1, . . . , N , with weight wk that accounts for all the generated Y vectors that

give rise to t(k)j . The conditional probability of observing Tj = tj has the form

Pr(Tj = tj | Tl = tl, l 6= j,M = m) =
w etjβj∑
k wke

t
(k)
j
βj

(1)

where the sum is over the subset of T vectors such that (T (k)
1 = t1, . . . , T

(k)
j = t

(k)
j , . . . , T

(k)
p = tp)

and w is the weight associated with the observed t. The CMLE for βj maximizes the log of this
function.

Specifying nuisance variables in condvars() prevents expoisson from estimating their associated
regression coefficients. These variables are still conditional variables when tallying the conditional
distribution for the variables in indepvars.

Inferences from MLEs rely on asymptotics, and if your sample size is small, these inferences may
not be valid. On the other hand, inferences from the CMLEs are exact in that they use the conditional
distribution of the sufficient statistics outlined above.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
http://stata.com
https://www.stata.com/manuals/rpoisson.pdf#rpoisson
https://www.stata.com/manuals/xtxtpoisson.pdf#xtxtpoisson
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For small datasets, the dependent variable can be completely determined by the data. Here the MLEs
and the CMLEs are unbounded. When this occurs, expoisson will compute the MUE, the regression
estimate that places the observed sufficient statistic at the median of the conditional distribution.

See [R] exlogistic for a more thorough discussion of exact estimation and related statistics.

Example 1

Armitage, Berry, and Matthews (2002, 499–501) fit a log-linear model to data containing the
number of cerebrovascular accidents experienced by 41 men during a fixed period, each of whom
had recovered from a previous cerebrovascular accident and was hypertensive. Sixteen men received
treatment, and in the original data, there are three age groups (40–49, 50–59, ≥60), but we pool the
first two age groups to simplify the example. Armitage, Berry, and Matthews point out that this was
not a controlled trial, but the data are useful to inquire whether there is evidence of fewer accidents
for the treatment group and if age may be an important factor. The dependent variable count contains
the number of accidents, variable treat is an indicator for the treatment group (1 = treatment, 0 =
control), and variable age is an indicator for the age group (0 = 40−59; 1 = ≥60).

First, we load the dataset, list it, and tabulate the cerebrovascular accident counts by treatment and
age group.

. use https://www.stata-press.com/data/r18/cerebacc
(Cerebrovascular accidents in hypotensive-treated and control groups)

. list

treat count age

1. Control 0 40/59
2. Control 0 >=60
3. Control 1 40/59
4. Control 1 >=60
5. Control 2 40/59

6. Control 2 >=60
7. Control 3 40/59

(output omitted )
35. Treatment 0 40/59

36. Treatment 0 40/59
37. Treatment 0 40/59
38. Treatment 0 40/59
39. Treatment 1 40/59
40. Treatment 1 40/59

41. Treatment 1 40/59

. tabulate treat age [fw=count]

Hypotensiv
e drug Age group

treatment 40/59 >=60 Total

Control 15 10 25
Treatment 4 0 4

Total 19 10 29

https://www.stata.com/manuals/rexlogistic.pdf#rexlogistic
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Next, we estimate the CMLE with expoisson and, for comparison, the MLE with poisson.

. expoisson count i.treat i.age

Estimating: 1.treat
Enumerating sample-space combinations:
Observation 1: Enumerations = 11
Observation 2: Enumerations = 11
Observation 3: Enumerations = 11

(output omitted )
Observation 39: Enumerations = 410
Observation 40: Enumerations = 410
Observation 41: Enumerations = 30

Estimating: 1.age
Enumerating sample-space combinations:
Observation 1: Enumerations = 5
Observation 2: Enumerations = 15
Observation 3: Enumerations = 15

(output omitted )
Observation 39: Enumerations = 455
Observation 40: Enumerations = 455
Observation 41: Enumerations = 30

Exact Poisson regression
Number of obs = 41

count Coefficient Suff. 2*Pr(Suff.) [95% conf. interval]

treat
Treatment -1.594306 4 0.0026 -3.005089 -.4701708

age
>=60 -.5112067 10 0.2794 -1.416179 .3429232

. poisson count i.treat i.age, nolog

Poisson regression Number of obs = 41
LR chi2(2) = 10.64
Prob > chi2 = 0.0049

Log likelihood = -38.97981 Pseudo R2 = 0.1201

count Coefficient Std. err. z P>|z| [95% conf. interval]

treat
Treatment -1.594306 .5573614 -2.86 0.004 -2.686714 -.5018975

age
>=60 -.5112067 .4043525 -1.26 0.206 -1.303723 .2813096
_cons .233344 .2556594 0.91 0.361 -.2677391 .7344271

expoisson generates an enumeration log for each independent variable in indepvars. The con-
ditional distribution of the parameter sufficient statistic is tallied for each independent variable. The
conditional distribution for treat, for example, has 30 records containing the weights, wk, and
feasible sufficient statistics, t(k)treat. In essence, the set of points (wk, t

(k)
treat), k = 1, . . . , 30, tallied

by expoisson now become the data to estimate the regression coefficient for treat, using (1) as
the likelihood. Remember that 1 of the 30 (wk, t

(k)
treat) must contain the observed sufficient statistic,

ttreat =
∑41
i=1 treati × counti = 4, and its relative position in the sorted set of points (sorted

by t(k)treat) is how the sufficient-statistic p-value is computed. This algorithm is repeated for the age
variable.
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The regression coefficients for treat and age are numerically identical for both Poisson models.
Both models provide evidence that the treatment reduces the rate of cerebrovascular accidents,
≈ e−1.59 ≈ 0.204, or a reduction of about 80%. There is no evidence that age plays a role in the
rate of accidents.

The results based on the sufficient statistic provide stronger evidence that treatment reduces the
rate of cerebrovascular accidents than the corresponding asymptotic statistics. However, the exact
confidence intervals are wider than their asymptotic counterparts.

Example 2

Agresti (2013, 129) used the data from Laird and Olivier (1981) to demonstrate the Poisson model
for modeling rates. The data consist of patient survival after heart valve replacement operations. The
sample consists of 109 patients that are classified by type of heart valve (aortic, mitral) and by age
(<55, ≥55). Follow-up observations cover lengths from 3 to 97 months, and the time at risk, or
exposure, is stored in the variable TAR. The response is whether the subject died. First, we take a
look at the data and then estimate the incidence rates (IRs) with expoisson and poisson.

. use https://www.stata-press.com/data/r18/heartvalve
(Heart valve replacement data)

. list

age valve deaths TAR

1. <55 Aortic 4 1259
2. <55 Mitral 1 2082
3. >=55 Aortic 7 1417
4. >=55 Mitral 9 1647

The age variable is coded 0 for age <55 and 1 for age ≥55, and the valve variable is coded 0 for
the aortic valve and 1 for the mitral valve. The total number of deaths, M = 21, is small enough that
enumerating the conditional distributions for age and valve type is feasible and asymptotic inferences
associated with standard maximum-likelihood Poisson regression may be questionable.
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. expoisson deaths i.age i.valve, exposure(TAR) irr

Estimating: 1.age
Enumerating sample-space combinations:
Observation 1: Enumerations = 11
Observation 2: Enumerations = 11
Observation 3: Enumerations = 132
Observation 4: Enumerations = 22

Estimating: 1.valve
Enumerating sample-space combinations:
Observation 1: Enumerations = 17
Observation 2: Enumerations = 17
Observation 3: Enumerations = 102
Observation 4: Enumerations = 22

Exact Poisson regression
Number of obs = 4

deaths IRR Suff. 2*Pr(Suff.) [95% conf. interval]

age
>=55 3.390401 16 0.0194 1.182297 11.86935

valve
Mitral .7190197 10 0.5889 .2729881 1.870068

ln(TAR) 1 (exposure)

. poisson deaths i.age i.valve, exposure(TAR) irr nolog

Poisson regression Number of obs = 4
LR chi2(2) = 7.62
Prob > chi2 = 0.0222

Log likelihood = -8.1747285 Pseudo R2 = 0.3178

deaths IRR Std. err. z P>|z| [95% conf. interval]

age
>=55 3.390401 1.741967 2.38 0.017 1.238537 9.280965

valve
Mitral .7190197 .3150492 -0.75 0.452 .3046311 1.6971

_cons .0018142 .0009191 -12.46 0.000 .0006722 .0048968
ln(TAR) 1 (exposure)

Note: _cons estimates baseline incidence rate.

The CMLE and the MLE are numerically identical. We have strong evidence that the death rate for the
older age group is higher than the younger age group, specifically 3.4 times higher (p = 0.017). This
means that for every death in the younger group each month, we would expect about three deaths in
the older group. The IR estimate for valve type is approximately 0.72, but we do not have enough
evidence to claim that it is different from one. The exact Poisson confidence intervals are a bit wider
than the asymptotic confidence intervals.

You can use ir (see [R] Epitab) to estimate IRs and exact confidence intervals for one covariate,
and we compare these confidence intervals with those from expoisson, where we estimate the IR
by using age only.

https://www.stata.com/manuals/repitab.pdf#rEpitab
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. ir deaths age TAR

Incidence-rate comparison

Age of patient
Exposed Unexposed Total

Number of deaths 16 5 21
Time at risk 3064 3341 6405

Incidence rate .0052219 .0014966 .0032787

Point estimate [95% conf. interval]

Inc. rate diff. .0037254 .00085 .0066007
Inc. rate ratio 3.489295 1.221441 12.17875 (exact)
Attr. frac. ex. .7134092 .1812948 .9178898 (exact)
Attr. frac. pop .5435498

Mid-p-values for tests of incidence-rate difference:
Adj Pr(Exposed Number of deaths <= 16) = 0.9951 (lower one-sided)
Adj Pr(Exposed Number of deaths >= 16) = 0.0049 (upper one-sided)

Two-sided p-value = 0.0099

. expoisson deaths age, exposure(TAR) irr midp nolog

Exact Poisson regression
Number of obs = 4

deaths IRR Suff. 2*Pr(Suff.) [95% conf. interval]

age 3.489295 16 0.0099 1.324926 10.64922
ln(TAR) 1 (exposure)

Note: Mid-p-value computed for the probabilities and CIs.

Both ir and expoisson give identical IRs and p-values. Both report the two-sided exact p-value by
using the mid-p-value rule that accounts for the discreteness in the distribution by subtracting p1/2 =
Pr(T = t)/2 from pl = Pr(T ≤ t) and pg = Pr(T ≥ t), computing 2×min(pl− p1/2, pg − p1/2).
By default, expoisson will not use the mid-p-value rule (when you exclude the midp option), and
here the two-sided exact p-value would be 2×min(pl, pg) = 0.0158. The confidence intervals differ
because expoisson uses the mid-p-value rule when computing the confidence intervals, yet ir does
not. You can verify this by executing expoisson without the midp option for this example; you will
get the same confidence intervals as ir.

You can replay expoisson to view the conditional scores test or the conditional probabilities test
by using the test() option.

. expoisson, test(score) irr

Exact Poisson regression
Number of obs = 4

deaths IRR Score Pr>=Score [95% conf. interval]

age 3.489295 6.76528 0.0113 1.324926 10.64922
ln(TAR) 1 (exposure)

Note: Mid-p-value computed for the probabilities and CIs.
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All the statistics for expoisson are defined in Methods and formulas of [R] exlogistic. Apart
from enumerating the conditional distributions for the logistic and Poisson sufficient statistics, com-
putationally, the primary difference between exlogistic and expoisson is the weighting values in
the likelihood for the parameter sufficient statistics.

Example 3

In this example, we fabricate data that will demonstrate the difference between the CMLE and
the MUE when the CMLE is not infinite. A difference in these estimates will be more pronounced
when the probability of the coefficient sufficient statistic is skewed when plotted as a function of the
regression coefficient.

. clear

. input y x

y x
1. 0 2
2. 1 1
3. 1 0
4. 0 0
5. 0 .5
6. 1 .5
7. 2 .01
8. 3 .001
9. 4 .0001

10. end

. expoisson y x, test(score)
Enumerating sample-space combinations:
Observation 1: Enumerations = 13
Observation 2: Enumerations = 91
Observation 3: Enumerations = 169
Observation 4: Enumerations = 169
Observation 5: Enumerations = 313
Observation 6: Enumerations = 313
Observation 7: Enumerations = 1469
Observation 8: Enumerations = 5525
Observation 9: Enumerations = 5479

Exact Poisson regression
Number of obs = 9

y Coefficient Score Pr>=Score [95% conf. interval]

x -1.534468 2.955316 0.0810 -3.761718 .0485548

. expoisson y x, test(score) mue(x) nolog

Exact Poisson regression
Number of obs = 9

y Coefficient Score Pr>=Score [95% conf. interval]

x -1.309268* 2.955316 0.0810 -3.761718 .0485548

(*) median unbiased estimates (MUE)

We observe (xi, yi), i = 1, . . . , 9. If we condition on m =
∑9
i=1 yi = 12, the conditional

distribution of Tx =
∑
i Yixi has a size of 5,479 elements. For each entry in this enumeration,

a realization of Yi = y
(k)
i , k = 1, . . . , 5,479, is generated such that

∑
i y

(k)
i = 12. One of these

realizations produces the observed tx =
∑
i yixi ≈1.5234.

https://www.stata.com/manuals/rexlogistic.pdf#rexlogisticMethodsandformulas
https://www.stata.com/manuals/rexlogistic.pdf#rexlogistic
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Below is a graphical display comparing the CMLE with the MUE. We plot Pr(Tx = tx |M = 12, βx)
versus βx, −6 ≤ βx ≤ 1, in the upper panel and the cumulative probabilities, Pr(Tx ≤ tx | M =
12, βx) and Pr(Tx ≥ tx | M = 12, βx), in the lower panel.
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The location of the CMLE, indicated by the dashed line, is at the mode of the probability profile, and
the MUE, indicated by the dotted line, is to the right of the mode. If we solve for the β(u)

x and β(l)
x

such that Pr(Tx ≤ tx | M = 12, β(u)
x ) = 1/2 and Pr(Tx ≥ tx | M = 12, β(l)

x ) = 1/2, the MUE is
(β

(u)
x + β

(l)
x )/2. As you can see in the lower panel, the MUE cuts through the intersection of these

cumulative probability profiles.
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Technical note
The memory() option limits the amount of memory that expoisson will consume when computing

the conditional distribution of the parameter sufficient statistics. memory() is independent of the data
maximum memory setting (see set max memory in [D] memory), and it is possible for expoisson
to exceed the memory limit specified in set max memory without terminating. By default, a log
is provided that displays the number of enumerations (the size of the conditional distribution)
after processing each observation. Typically, you will see the number of enumerations increase,
and then at some point they will decrease as the multivariate shift algorithm (Hirji, Mehta, and
Patel 1987) determines that some of the enumerations cannot achieve the observed sufficient statistics
of the conditioning variables. When the algorithm is complete, however, it is necessary to store the
conditional distribution of the parameter sufficient statistics as a dataset. It is possible, therefore, to
get a memory error when the algorithm has completed if there is not enough memory to store the
conditional distribution.

Technical note
Computing the conditional distributions and reported statistics requires data sorting and numerical

comparisons. If there is at least one single-precision variable specified in the model, expoisson
will make comparisons with a relative precision of 2−5. Otherwise, a relative precision of 2−11 is
used. Be careful if you use recast to promote a single-precision variable to double precision (see
[D] recast). You might try listing the data in full precision (maybe %20.15g; see [D] format) to make
sure that this is really what you want. See [D] Data types for information on precision of numeric
storage types.

Stored results
expoisson stores the following in e():
Scalars

e(N) number of observations
e(k groups) number of groups
e(relative weight) relative weight for the observed e(sufficient) and e(condvars)
e(sum y) sum of depvar
e(k indvars) number of independent variables
e(k condvars) number of conditioning variables
e(midp) mid-p-value rule indicator
e(eps) relative difference tolerance

Macros
e(cmd) expoisson
e(cmdline) command as typed
e(title) title in estimation output
e(depvar) name of dependent variable
e(indvars) independent variables
e(condvars) conditional variables
e(groupvar) group variable
e(exposure) exposure variable
e(offset) linear offset variable
e(level) confidence level
e(wtype) weight type
e(wexp) weight expression
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b
e(estat cmd) program used to implement estat
e(marginsnotok) predictions disallowed by margins

https://www.stata.com/manuals/dmemory.pdf#dmemory
https://www.stata.com/manuals/drecast.pdf#drecast
https://www.stata.com/manuals/dformat.pdf#dformat
https://www.stata.com/manuals/ddatatypes.pdf#dDatatypes
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Matrices
e(b) coefficient vector
e(mue indicators) indicator for elements of e(b) estimated using MUE instead of CMLE
e(se) e(b) standard errors (CMLEs only)
e(ci) matrix of e(level) confidence intervals for e(b)
e(sum y groups) sum of e(depvar) for each group
e(N g) number of observations in each group
e(sufficient) sufficient statistics for e(b)
e(p sufficient) p-value for e(sufficient)
e(scoretest) conditional scores tests for indepvars
e(p scoretest) p-values for e(scoretest)
e(probtest) conditional probabilities tests for indepvars
e(p probtest) p-value for e(probtest)

Functions
e(sample) marks estimation sample

Methods and formulas
Let {Y1, Y2, . . . , Yn} be a set of n independent Poisson random variables. For each i = 1, . . . , n,

we observe Yi = yi ≥ 0, and associated with each observation is the covariate row vector of length
p, xi = (xi1, . . . , xip). Denote β = (β1, . . . , βp)

T to be the column vector of regression parameters
and θ to be the constant. The sufficient statistic for βj is Tj =

∑n
i=1 Yixij , j = 1, . . . , p, and for θ is

M =
∑n
i=1 Yi. We observe Tj = tj , tj =

∑n
i=1 yixij , and M = m, m =

∑n
i=1 yi. Let κi be the

exposure for the ith observation. Then the probability of observing (Y1 = y1, Y2 = y2, . . . , Yn = yn)
is

Pr(Y1 = y1, . . . , Yn = yn | β,X,κ) =
exp(mθ + tβ)

exp{
∑n
i=1 κi exp(θ + xiβ)}

n∏
i=1

κyii
yi!

where t = (t1, . . . , tp), X = (xT1 , . . . ,x
T
n )
T , and κ = (κ1, . . . , κn)

T .

The joint distribution of the sufficient statistics (T,M) is obtained by summing over all possible
sequences Y1 ≥ 0, . . . , Yn ≥ 0 such that T = t and M = m. This probability function is

Pr(T1 = t1, . . . , Tp = tp,M = m | β,X,κ) = exp(mθ + tβ)

exp {
∑n
i=1 κi exp(θ + xiβ)}

(∑
u

n∏
i=1

κui
i

ui!

)

where the sum
∑

u is over all nonnegative vectors u of length n such that
∑n
i=1 ui = m and∑n

i=1 uixi = t.

Conditional distribution
Without loss of generality, we will restrict our discussion to the conditional distribution of the

sufficient statistic for β1, T1. If we condition on observing M = m and T2 = t2, . . . , Tp = tp, the
probability function of (T1 | β1, T2 = t2, . . . , Tp = tp,M = m) is

Pr(T1 = t1 | β1, T2 = t2, . . . , Tp = tp,M = m) =

(∑
u

∏n
i=1

κ
ui
i

ui!

)
et1β1∑

v

(∏n
i=1

κ
vi
i

vi!

)
eβ1

∑
i
vixi1

(2)
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where the sum
∑

u is over all nonnegative vectors u of length n such that
∑n
i=1 ui = m and∑n

i=1 uixi = t, and the sum
∑

v is over all nonnegative vectors v of length n such that
∑n
i=1 vi = m,∑n

i=1 vixi2 = t2, . . . ,
∑n
i=1 vixip = tp. The CMLE for β1 is the value that maximizes the log of

(1). This optimization task is carried out by ml (see [R] ml), using the conditional distribution of
(T1 | T2 = t2, . . . , Tp = tp,M = m) as a dataset. This dataset consists of the feasible values and
weights for T1,{(

s1,

n∏
i=1

κvii
vi!

)
:

n∑
i=1

vi = m,

n∑
i=1

vixi1 = s1,

n∑
i=1

vixi2 = t2, . . . ,

n∑
i=1

vixip = tp

}

Computing the CMLE, MUE, confidence intervals, conditional hypothesis tests, and sufficient statistic
p-values is discussed in Methods and formulas of [R] exlogistic. The only difference between the
two techniques is the use of the weights; that is, the weights for exact logistic are the combinatorial
coefficients, c(t,m), in (1) of Methods and formulas in [R] exlogistic. expoisson and exlogistic
use the same ml likelihood evaluator to compute the CMLEs as well as the same ado-programs and
Mata functions to compute the MUEs and estimate statistics.
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