Diagnostic plots - Distributional diagnostic plots

Description
Menu
Options for symplot, quantile, and qqplot
Options for qchi and pchi
Methods and formulas
References

Quick start
Syntax
Options for qnorm and pnorm
Remarks and examples
Acknowledgments
Also see

Description

symplot graphs a symmetry plot of varname.
quantile plots the ordered values of varname against the quantiles of a uniform distribution.
qqplot plots the quantiles of varname $_{1}$ against the quantiles of varname ${ }_{2}(\mathrm{Q}-\mathrm{Q}$ plot).
qnorm plots the quantiles of varname against the quantiles of the normal distribution ($\mathrm{Q}-\mathrm{Q}$ plot).
pnorm graphs a standardized normal probability plot ($\mathrm{P}-\mathrm{P}$ plot).
qchi plots the quantiles of varname against the quantiles of a χ^{2} distribution ($\mathrm{Q}-\mathrm{Q}$ plot).
pchi graphs a χ^{2} probability plot ($\mathrm{P}-\mathrm{P}$ plot).
See $[R]$ regress postestimation diagnostic plots for regression diagnostic plots and $[R]$ logistic postestimation for logistic regression diagnostic plots.

Quick start

Symmetry plot for v1 symplot v1

Change marker color and size symplot v1, mcolor(red) msize(large)

Plot ordered values of $v 1$ against quantiles of the uniform distribution quantile v1

Same as above, but only for observations with v2 greater than 5
quantile v1 if v2 > 5
Plot quantiles of v 1 against quantiles of v 2
qqplot v1 v2
Change thickness of the reference line qqplot v1 v2, rlopts(lwidth(thick))

Plot quantiles of v1 against quantiles of the normal distribution qnorm v1

Add grid lines qnorm v1, grid

Standardized normal probability plot for v1
pnorm v1
Change labels on the x and y axes
pnorm v1, xlabel(0(0.1)1) ylabel(0(0.1)1)
Plot quantiles of v 1 against quantiles of the χ_{1}^{2} distribution
qchi v1
Same as above, but comparing with quantiles of the χ_{2}^{2} distribution
qchi v1, df(2)

χ^{2} probability plot for v 1 pchi v1

Add " χ^{2} (1) P-P plot" to graph pchi v1, title("\{\&chi\}\{sup:2\}(1) P-P plot")

Menu

symplot

Statistics $>$ Summaries, tables, and tests $>$ Distributional plots and tests $>$ Symmetry plot

quantile

Statistics $>$ Summaries, tables, and tests $>$ Distributional plots and tests $>$ Quantiles plot

qqplot

Statistics $>$ Summaries, tables, and tests $>$ Distributional plots and tests $>$ Quantile-quantile plot

qnorm

Statistics $>$ Summaries, tables, and tests $>$ Distributional plots and tests $>$ Normal quantile plot

pnorm

Statistics $>$ Summaries, tables, and tests $>$ Distributional plots and tests $>$ Normal probability plot, standardized

qchi

Statistics $>$ Summaries, tables, and tests $>$ Distributional plots and tests $>$ Chi-squared quantile plot

pchi

Statistics $>$ Summaries, tables, and tests $>$ Distributional plots and tests $>$ Chi-squared probability plot

Syntax

Symmetry plot
symplot varname [if][in][, options $\left.{ }_{1}\right]$

Ordered values of varname against quantiles of uniform distribution quantile varname [if][in] [, options ${ }_{1}$]

Quantiles of varname ${ }_{1}$ against quantiles of varname ${ }_{2}$ qqplot varname $_{1}$ varname $_{2}[$ if $][$ in $]\left[\right.$, options $\left.{ }_{1}\right]$

Quantiles of varname against quantiles of normal distribution qnorm varname $[$ if $][$ in $][$, options 2]

Standardized normal probability plot
pnorm varname [if] [in] [, options 2]

Quantiles of varname against quantiles of χ^{2} distribution qchi varname [if] [in] [, options 3]
χ^{2} probability plot
pchi varname [if] [in] [, options 3]
options $_{1}$
Description
Plot
marker_options
marker_label_options
Reference line
rlopts (cline_options) affect rendition of the reference line
Add plots
addplot (plot) add other plots to the generated graph
Y axis, X axis, Titles, Legend, Overall
twoway_options any options other than by () documented in [G-3] twoway_options

Options for symplot, quantile, and qqplot

\qquad Plot
marker_options affect the rendition of markers drawn at the plotted points, including their shape, size, color, and outline; see [G-3] marker_options.
marker_label_options specify if and how the markers are to be labeled; see [G-3] marker_label_options.
\qquad Reference line
rlopts(cline_options) affect the rendition of the reference line; see [G-3] cline_options.
addplot (plot) provides a way to add other plots to the generated graph; see [G-3] addplot_option.

Y axis, X axis, Titles, Legend, Overall
twoway_options are any of the options documented in [G-3] twoway_options, excluding by (). These include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see [G-3] saving_option).

Options for qnorm and pnorm

\qquad Main
grid adds grid lines at the $0.05,0.10,0.25,0.50,0.75,0.90$, and 0.95 quantiles when specified with qnorm. With pnorm, grid is equivalent to yline(.25,.5,.75) xline(.25, .5, .75).

$\sqrt{\text { Plot }}$

marker_options affect the rendition of markers drawn at the plotted points, including their shape, size, color, and outline; see [G-3] marker_options.
marker_label_options specify if and how the markers are to be labeled; see [G-3] marker_label_options.

rlopts (cline_options) affect the rendition of the reference line; see [G-3] cline_options.

```
            Add plots
    addplot (plot) provides a way to add other plots to the generated graph; see [G-3] addplot_option.
```

$\Longleftarrow \sqrt{\mathrm{Y} \text { axis, } \mathrm{X} \text { axis, Titles, Legend, Overall }}$
twoway_options are any of the options documented in [G-3] twoway_options, excluding by (). These include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see [G-3] saving_option).

Options for qchi and pchi

\qquad Main
grid adds grid lines at the $0.05,0.10,0.25,0.50,0.75,0.90$, and .95 quantiles when specified with qchi. With pchi, grid is equivalent to yline (. $25, .5, .75$) xline (. $25, .5, .75$). $\mathrm{df}(\#)$ specifies the degrees of freedom of the χ^{2} distribution. The default is $\mathrm{df}(1)$.
\qquad $\sqrt{\text { Plot }}$
marker_options affect the rendition of markers drawn at the plotted points, including their shape, size, color, and outline; see [G-3] marker_options.
marker_label_options specify if and how the markers are to be labeled; see [G-3] marker_label_options.

Reference line
rlopts(cline_options) affect the rendition of the reference line; see [G-3] cline_options.

Add plots
addplot (plot) provides a way to add other plots to the generated graph; see [G-3] addplot_option.

Remarks and examples

Remarks are presented under the following headings:

```
symplot
quantile
qqplot
qnorm
pnorm
qchi
pchi
```


symplot

$>$ Example 1
We have data on 74 automobiles. To make a symmetry plot of the variable price, we type

```
. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. symplot price
```


All points would lie along the reference line (defined as $y=x$) if car prices were symmetrically distributed. The points in this plot lie above the reference line, indicating that the distribution of car prices is skewed to the right - the most expensive cars are far more expensive than the least expensive cars are inexpensive.

The logic works as follows: a variable, z, is distributed symmetrically if

$$
\text { median }-z_{(i)}=z_{(N+1-i)}-\text { median }
$$

where $z_{(i)}$ indicates the i th-order statistic of z. symplot graphs $y_{i}=$ median $-z_{(i)}$ versus $x_{i}=$ $z_{(N+1-i)}$ - median.

For instance, consider the largest and smallest values of price in the example above. The most expensive car costs $\$ 15,906$ and the least expensive, $\$ 3,291$. Let's compare these two cars with the typical car in the data and see how much more it costs to buy the most expensive car, and compare that with how much less it costs to buy the least expensive car. If the automobile price distribution is symmetric, the price differences would be the same.

Before we can make this comparison, we must agree on a definition for the word "typical". Let's agree that "typical" means median. The price of the median car is $\$ 5,006.50$, so the most expensive car costs $\$ 10,899.50$ more than the median car, and the least expensive car costs $\$ 1,715.50$ less than the median car. We now have one piece of evidence that the car price distribution is not symmetric. We can repeat the experiment for the second-most-expensive car and the second-least-expensive car. We find that the second-most-expensive car costs $\$ 9,494.50$ more than the median car, and the second-least-expensive car costs $\$ 1,707.50$ less than the median car. We now have more evidence. We can continue doing this with the third most expensive and the third least expensive, and so on.

Once we have all of these numbers, we want to compare each pair and ask how similar, on average, they are. The easiest way to do that is to plot all the pairs.

quantile

> Example 2

We have data on the prices of 74 automobiles. To make a quantile plot of price, we type

```
. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. quantile price, rlopts(clpattern(dash)) ytitle(Quantiles of price)
```


We changed the pattern of the reference line by specifying rlopts(clpattern(dash)).
In a quantile plot, each value of the variable is plotted against the fraction of the data that have values less than that fraction. The diagonal line is a reference line. If automobile prices were rectangularly distributed, all the data would be plotted along the line. Because all the points are below the reference line, we know that the price distribution is skewed right.

qqplot

> Example 3
We have data on the weight and country of manufacture of 74 automobiles. We wish to compare the distributions of weights for domestic and foreign automobiles:

```
. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. generate weightd=weight if !foreign
(22 missing values generated)
. generate weightf=weight if foreign
(52 missing values generated)
. qqplot weightd weightf
```


qnorm

> Example 4
Continuing with our price data on 74 automobiles, we now wish to compare the distribution of price with the normal distribution:
. qnorm price, grid

Grid lines are $5,10,25,50,75,90$, and 95 percentiles.
The result shows that the distributions are different.

- Technical note

The idea behind qnorm is recommended strongly by Miller (1997): he calls it probit plotting. His recommendations from much practical experience should interest many users. "My recommendation for detecting nonnormality is probit plotting" (Miller 1997, 10). "If a deviation from normality cannot be spotted by eye on probit paper, it is not worth worrying about. I never use the Kolmogorov-Smirnov test (or one of its cousins) or the χ^{2} test as a preliminary test of normality. They do not tell you how the sample is differing from normality, and I have a feeling they are more likely to detect irregularities in the middle of the distribution than in the tails" (Miller 1997, 13-14).

pnorm

> Example 5

Quantile-normal plots emphasize the tails of the distribution. Normal probability plots put the focus on the center of the distribution:
. pnorm price, grid

qchi

> Example 6

Suppose that we want to examine the distribution of the sum of squares of price and mpg, standardized for their variances.
. egen $c 1=$ std(price)
. egen $c 2=\operatorname{std}(m p g)$
. generate ch = c1^2 + c2~2
. qchi ch, df(2) grid ylabel(, axis(2) labsize(*.8) format(\%4.2f))
> xlabel(, axis(2) format(\%4.2f))

The quadratic form is clearly not χ^{2} with 2 degrees of freedom.

pchi

> Example 7

We can focus on the center of the distribution by doing a probability plot:
. pchi ch, df(2) grid

Methods and formulas

Let $x_{(1)}, x_{(2)}, \ldots, x_{(N)}$ be the data sorted in ascending order.
If a continuous variable, x, has a cumulative distribution function $F(x)=P(X \leq x)=p$, the quantiles $x_{p_{i}}$ are such that $F\left(x_{p_{i}}\right)=p_{i}$. For example, if $p_{i}=0.5$, then $x_{0.5}$ is the median. When we plot data, the probabilities, p_{i}, are often referred to as plotting positions. There are many different conventions for choice of plotting positions, given $x_{(1)} \leq \cdots \leq x_{(N)}$. Most belong to the family $(i-a) /(N-2 a+1) . a=0.5$ (suggested by Hazen) and $a=0$ (suggested by Weibull) are popular choices.

For a wider discussion of the calculation of plotting positions, see Cox (2002).
symplot plots median $-x_{(i)}$ versus $x_{(N+1-i)}$ - median.
quantile plots $x_{(i)}$ versus $(i-0.5) / N$ (the Hazen position).
qnorm plots $x_{(i)}$ against $q_{i} \times \widehat{\sigma}+\widehat{\mu}$, where $q_{i}=\Phi^{-1}\left(p_{i}\right), \Phi$ is the cumulative normal distribution, $p_{i}=i /(N+1)$ (the Weibull position), $\widehat{\sigma}$ is the standard deviation, and $\widehat{\mu}$ is the mean of the data.
pnorm plots $\Phi\left\{\left(x_{i}-\widehat{\mu}\right) / \widehat{\sigma}\right\}$ versus $p_{i}=i /(N+1)$, where $\widehat{\mu}$ is the mean of the data and $\widehat{\sigma}$ is the standard deviation.
qchi and pchi are similar to qnorm and pnorm; the cumulative χ^{2} distribution is used in place of the cumulative normal distribution.
qqplot is just a two-way scatterplot of one variable against the other after both variables have been sorted into ascending order, and both variables have the same number of nonmissing observations. If the variables have unequal numbers of nonmissing observations, interpolated values of the variable with more data are plotted against the variable with fewer data.

Ramanathan Gnanadesikan (1932-2015) was born in Madras. He obtained degrees from the Universities of Madras and North Carolina. He worked in industry at Procter \& Gamble, Bell Labs, and Bellcore, as well as in universities, retiring from Rutgers in 1998. Among many contributions to statistics, he is especially well known for work on probability plotting, robustness, outlier detection, clustering, classification, and pattern recognition.
Martin Bradbury Wilk (1922-2013) was born in Montreal. He obtained degrees in chemical engineering and statistics from McGill and Iowa State Universities. After holding several statisticsrelated posts in industry and at universities (including periods at Princeton, Bell Labs, and Rutgers), Wilk was appointed Chief Statistician at Statistics Canada (1980-1986). He is especially well known for his work with Gnanadesikan on probability plotting and with Shapiro on tests for normality.

Acknowledgments

We thank Peter A. Lachenbruch (1937-2021), Emeritus Appointment, Biostatistics, College of Public Health and Human Sciences, Oregon State University for writing the original versions of qchi and pchi. Patrick Royston of the MRC Clinical Trials Unit, London, and coauthor of the Stata Press book Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model also published a similar command in Royston (1996).

References

Chambers, J. M., W. S. Cleveland, B. Kleiner, and P. A. Tukey. 1983. Graphical Methods for Data Analysis. Belmont, CA: Wadsworth.

Cox, N. J. 2002. Speaking Stata: On getting functions to do the work. Stata Journal 2: 411-427.
-_. 2004a. Speaking Stata: Graphing distributions. Stata Journal 4: 66-88.
-_. 2004b. gr42_2: Software update: Quantile plots, generalized. Stata Journal 4: 97.
——. 2005a. Speaking Stata: Density probability plots. Stata Journal 5: 259-273.
-_. 2005b. Speaking Stata: The protean quantile plot. Stata Journal 5: 442-460.
-_. 2005c. Speaking Stata: Smoothing in various directions. Stata Journal 5: 574-593.
-_. 2007. Stata tip 47: Quantile-quantile plots without programming. Stata Journal 7: 275-279.

- 2012. Speaking Stata: Axis practice, or what goes where on a graph. Stata Journal 12: 549-561.

Daniel, C., and F. S. Wood. 1980. Fitting Equations to Data: Computer Analysis of Multifactor Data. 2nd ed. New York: Wiley.
Gan, F. F., K. J. Koehler, and J. C. Thompson. 1991. Probability plots and distribution curves for assessing the fit of probability models. American Statistician 45: 14-21. https://doi.org/10.2307/2685233.

Genest, C., and G. J. Brackstone. 2013. Obituary: Martin B. Wilk, 1922-2013. IMS Bulletin 42(4): 7-8.
Hoaglin, D. C. 1985. Using quantiles to study shape. In Exploring Data Tables, Trends, and Shapes, ed. D. C. Hoaglin, C. F. Mosteller, and J. W. Tukey, 417-460. New York: Wiley.
Kettenring, J. R. 2001. A conversation with Ramanathan Gnanadesikan. Statistical Science 16: 295-309. https://doi.org/10.1214/ss/1009213730.

Miller, R. G., Jr. 1997. Beyond ANOVA: Basics of Applied Statistics. London: Chapman and Hall.
Nolan, D., and T. Speed. 2000. Stat Labs: Mathematical Statistics Through Applications. New York: Springer.
Royston, P. 1996. sg47: A plot and a test for the χ^{2} distribution. Stata Technical Bulletin 29: 26-27. Reprinted in Stata Technical Bulletin Reprints, vol. 5, pp. 142-144. College Station, TX: Stata Press.

Wilk, M. B., and R. Gnanadesikan. 1968. Probability plotting methods for the analysis of data. Biometrika 55: 1-17. https://doi.org/10.2307/2334448.

Also see

[R] cumul - Cumulative distribution
$[R]$ kdensity - Univariate kernel density estimation
[R] logistic postestimation - Postestimation tools for logistic
[R] lv - Letter-value displays
[R] regress postestimation diagnostic plots - Postestimation plots for regress

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985-2023 StataCorp LLC, College Station, TX,
 USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.

