Title stata.com

bsample — Sampling with replacement

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description

bsample replaces the data in memory with a bootstrap sample (random sample with replacement) drawn from the current dataset. Clusters can be optionally sampled during each replication in place of observations. Bootstrap samples can also be selected within strata.

Quick start

Bootstrap sample with the same number of observations as the current dataset bsample

Same as above, but restrict to just 100 observations bsample 100

Stratified bootstrap sample of 100 observations at each level of svar bsample 100, strata(svar)

Bootstrap sample of 10 clusters identified by values of cvar bsample 10, cluster(cvar)

Same as above, but create a new unique ID code for sampled clusters and store it in cvar2 bsample 10, cluster(cvar) idcluster(cvar2)

Menu

Statistics > Resampling > Draw bootstrap sample

bsample
$$[exp][if][in][$$
, options $]$

where *exp* is a standard Stata expression specifying the size of the sample; see [U] **13 Functions and expressions**.

exp must be less than or equal to _N (the number of observations; [U] **13.4 System variables** (_variables)) when neither the cluster() nor the strata() option is specified. _N is the default when *exp* is not specified.

Observations that do not meet the optional if and in criteria are dropped from the resulting dataset.

options	Description
strata(varlist)	variables identifying strata
<u>cl</u> uster(<i>varlist</i>)	variables identifying resampling clusters
<pre>idcluster(newvar)</pre>	create new cluster ID variable
weight(varname)	replace varname with frequency weights

Options

strata(varlist) specifies the variables identifying strata. If strata() is specified, bootstrap samples are selected within each stratum, and exp must be less than or equal to _N within the defined strata.

cluster(varlist) specifies the variables identifying resampling clusters. If cluster() is specified, the sample drawn during each replication is a bootstrap sample of clusters, and exp must be less than or equal to N_c (the number of clusters identified by the cluster() option). If strata() is also specified, exp must be less than or equal to the number of within-strata clusters.

idcluster (newvar) creates a new variable containing a unique identifier for each resampled cluster.

weight(varname) specifies a variable in which the sampling frequencies will be placed. varname must be an existing variable, which will be replaced. After bsample, varname can be used as an fweight in any Stata command that accepts fweights, which can speed up resampling for commands like regress and summarize. This option cannot be combined with idcluster().

By default, bsample replaces the data in memory with the sampled observations; however, specifying the weight() option causes only the specified *varname* to be changed.

Remarks and examples

stata.com

Below is a series of examples illustrating how bsample is used with various sampling schemes.

Example 1: Bootstrap sampling

We have data on the characteristics of hospital patients and wish to draw a bootstrap sample of 200 patients. We type

- . use https://www.stata-press.com/data/r18/bsample1
- . bsample 200
- . count 200

1

Example 2: Stratified samples with equal sizes

Among the variables in our dataset is female, an indicator for the female patients. To get a bootstrap sample of 200 female patients and 200 male patients, we type

- . use https://www.stata-press.com/data/r18/bsample1, clear
- . bsample 200, strata(female)
- . tabulate female

	Indicator for female		Percent	ent Cum	
Ma Fema	le le	200 200	50.00 50.00	50.00 100.00	
Tot	al	400	100.00		

4

Example 3: Stratified samples with unequal sizes

To sample 300 females and 200 males, we must generate a variable that is 300 for females and 200 for males and then use this variable in exp when we call bsample.

- . use https://www.stata-press.com/data/r18/bsample1, clear
- . generate nsamp = cond(female,300,200)
- . bsample nsamp, strata(female)
- . tabulate female

Indicator for female	Freq. Percent		Cum.
Male Female	200 300	40.00 60.00	40.00 100.00
Total	500	100.00	

4

Example 4: Stratified samples with proportional sizes

Our original dataset has 2,392 males and 3,418 females.

- . use https://www.stata-press.com/data/r18/bsample1, clear
- . tabulate female

Cum.	Percent	Freq.	Indicator for female
41.17 100.00	41.17 58.83	2,392 3,418	Male Female
	100.00	5,810	Total

To sample 10% from females and males, we type

. bsample round(0.1*_N), strata(female)

bsample requires that the specified size of the sample be an integer, so we use the round() function to obtain the nearest integer to 0.1×2392 and 0.1×3418 . Our sample now has 239 males and 342 females:

. tabulate female

Indicator for female	Freq.	Percent	Cum.
Male Female	239 342	41.14 58.86	41.14 100.00
Total	581	100.00	

Example 5: Samples satisfying a condition

For a bootstrap sample of 200 female patients, we type

- . use https://www.stata-press.com/data/r18/bsample1, clear
- . bsample 200 if female
- . tabulate female

Indicator for female	Freq.	Percent	Cum.
Female	200	100.00	100.00
Total	200	100.00	

Example 6: Generating frequency weights

To identify the sampled observations using frequency weights instead of dropping unsampled observations, we use the weight() option (we will need to supply it an existing variable name) and type

- . use https://www.stata-press.com/data/r18/bsample1, clear
- . set seed 1234
- . generate fw = .

(5,810 missing values generated)

- . bsample 200 if female, weight(fw)
- . tabulate fw female

fw	Indicator f	for female Female	Total
0 1 2	2,392 0 0	3,222 192 4	5,614 192 4
Total	2,392	3,418	5,810

Note that $(192 \times 1) + (4 \times 2) = 200$.

1

Example 7: Oversampling observations

bsample requires the expression in exp to evaluate to a number that is less than or equal to the number of observations. To sample twice as many male and female patients as there are already in memory, we must expand the data before using bsample. For example,

- . use https://www.stata-press.com/data/r18/bsample1, clear
- . set seed 1234
- . expand 2

(5,810 observations created)

- . bsample, strata(female)
- . tabulate female

Indicator for female	Freq.	Percent	Cum.
Male Female	4,784 6,836	41.17 58.83	41.17 100.00
Total	11,620	100.00	

4

Example 8: Stratified oversampling with unequal sizes

To sample twice as many female patients as male patients, we must expand the records for the female patients because there are less than twice as many of them as there are male patients, but first put the number of observed male patients in a local macro. After expanding the female records, we generate a variable that contains the number of observations to sample within the two groups.

```
. use https://www.stata-press.com/data/r18/bsample1, clear
```

- . set seed 1234
- . count if !female 2,392
- . local nmale = r(N)
- . expand 2 if female

(3,418 observations created)

- . generate nsamp = cond(female,2*'nmale','nmale')
- . bsample nsamp, strata(female)
- . tabulate female

Indicator for female	Freq.	Percent	Cum.	
Male Female	2,392 4,784	33.33 66.67	33.33 100.00	
Total	7,176	100.00		

Example 9: Oversampling of clusters

For clustered data, sampling more clusters than are present in the original dataset requires more than just expanding the data. To illustrate, suppose we wanted a bootstrap sample of eight clusters from a dataset consisting of five clusters of observations.

- . use https://www.stata-press.com/data/r18/bsample2, clear
- . tabstat x, stat(n mean) by(group)

Summary for variables: x Group variable: group

group	N	Mean
А	15	3073028
В	10	00984
C	11	.0810985
D	11	1989179
E	29	095203
Total	76	1153269

bsample will complain if we simply expand the dataset.

```
. use https://www.stata-press.com/data/r18/bsample2
```

. expand 3

(152 observations created)

. bsample 8, cluster(group)

resample size must not be greater than number of clusters r(498);

Expanding the data will only partly solve the problem. We also need a new variable that uniquely identifies the copied clusters. We use the expandcl command to accomplish both these tasks; see [D] expandcl.

- . use https://www.stata-press.com/data/r18/bsample2, clear
- . set seed 1234
- . expandcl 2, generate(expgroup) cluster(group) (76 observations created)
- . tabstat x, stat(n mean) by(expgroup)

Summary for variables: x

Group variable: expgroup (New cluster ID from expandcl)

expgroup	N	Mean
1	15	3073028
2	15	3073028
3	10	00984
4	10	00984
5	11	.0810985
6	11	.0810985
7	11	1989179
8	11	1989179
9	29	095203
10	29	095203
Total	152	1153269

. generate fw = .

(152 missing values generated)

- . bsample 8, cluster(expgroup) weight(fw)
- . tabulate fw group

			group			
fw	A	В	C	D	E	Total
0	15	10	22	11	58	116
1	0	0	0	11	0	11
2	15	0	0	0	0	15
5	0	10	0	0	0	10
Total	30	20	22	22	58	152

The results from tabulate on the generated frequency weight variable versus the original cluster ID (group) show us that the bootstrap sample contains one copy of cluster A, one copy of cluster B, two copies of cluster C, two copies of cluster D, and two copies of cluster E (1+1+2+2+2=8).

Example 10: Stratified oversampling of clusters

Suppose that we have a dataset containing two strata with five clusters in each stratum, but the cluster identifiers are not unique between the strata. To get a stratified bootstrap sample with eight clusters in each stratum, we first use expandcl to expand the data and get a new cluster ID variable. We use cluster(strid group) in the call to expandcl; this action will uniquely identify the 2 * 5 = 10 clusters across the strata.

- . use https://www.stata-press.com/data/r18/bsample2, clear
- . set seed 1234
- . tabulate group strid

group	strid 1	2	Total
A	7	8	15
В	5	5	10
C	5	6	11
D	5	6	11
E	14	15	29
Total	36	40	76

. expandcl 2, generate(expgroup) cluster(strid group)
(76 observations created)

Now, we can use bsample with the expanded data, stratum ID variable, and new cluster ID variable.

- . generate fw = .
- (152 missing values generated)
- . bsample 8, cluster(expgroup) str(strid) weight(fw)
- . by strid, sort: tabulate fw group

-> strid = 1						
			group			
fw	A	В	C	D	E	Total
0	7	0	10	5	14	36
1	0	5	0	5	14	24
2	7	0	0	0	0	7
3	0	5	0	0	0	5
Total	14	10	10	10	28	72

->	stria	=	2	

			group			
fw	A	В	C	D	E	Total
0	0	0	12	0	15	27
1	16	5	0	12	15	48
2	0	5	0	0	0	5
Total	16	10	12	12	30	80

The results from by strid: tabulate on the generated frequency weight variable versus the original cluster ID (group) show us how many times each cluster was sampled for each stratum. For stratum 1, the bootstrap sample contains two copies of cluster A, one copy of cluster B, two copies of cluster C, one copy of cluster D, and two copies of cluster E (2+1+2+1+2=8). For stratum 2, the bootstrap sample contains one copy of cluster A, zero copies of cluster B, three copies of cluster C, one copy of cluster D, and three copies of cluster E (1+0+3+1+3=8).

References

- Gould, W. W. 2012a. Using Stata's random-number generators, part 2: Drawing without replacement. The Stata Blog: Not Elsewhere Classified.
 - http://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/.
- -.. 2012b. Using Stata's random-number generators, part 3: Drawing with replacement. The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawingwith-replacement/.

Also see

- [R] **bootstrap** Bootstrap sampling and estimation
- [R] **bstat** Report bootstrap results
- [R] **simulate** Monte Carlo simulations
- [D] **sample** Draw random sample
- [D] **splitsample** Split data into random samples

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985–2023 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.