
Title stata.com

mdsmat — Multidimensional scaling of proximity data in a matrix

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

mdsmat performs multidimensional scaling (MDS) for two-way proximity data with an explicit
measure of similarity or dissimilarity between objects, where the proximities are found in a user-
specified matrix. mdsmat performs classical metric MDS as well as modern metric and nonmetric
MDS.

If your proximities are stored as variables in long format, see [MV] mdslong. If you are looking for
MDS on a dataset on the basis of dissimilarities between observations over variables, see [MV] mds.

Quick start
Classical multidimensional scaling based on dissimilarities in matrix M

mdsmat M

Same as above, but suppress the MDS configuration plot and use 3 dimensions for the approximating
configuration

mdsmat M, noplot dimension(3)

Modern multidimensional scaling based on dissimilarities in matrix M

mdsmat M, method(modern)

Same as above, but with Sammon mapping loss criterion and Procrustes rotation toward the classical
solution

mdsmat M, loss(sammon) normalize(classical)

Nonmetric modern multidimensional scaling based on dissimilarities in matrix M

mdsmat M, method(nonmetric)

Menu
Statistics > Multivariate analysis > Multidimensional scaling (MDS) > MDS of proximity matrix

1

http://stata.com
https://www.stata.com/manuals/mvmdslong.pdf#mvmdslong
https://www.stata.com/manuals/mvmds.pdf#mvmds

2 mdsmat — Multidimensional scaling of proximity data in a matrix

Syntax
mdsmat matname

[
, options

]
options Description

Model

method(method) method for performing MDS
loss(loss) loss function
transform(tfunction) permitted transformations of dissimilarities
normalize(norm) normalization method; default is normalize(principal)

names(namelist) variable names corresponding to row and column names of the matrix;
required with all but shape(full)

shape(full) matname is a square symmetric matrix; the default
shape(lower) matname is a vector with the rowwise lower triangle (with diagonal)
shape(llower) matname is a vector with the rowwise strictly lower triangle (no diagonal)
shape(upper) matname is a vector with the rowwise upper triangle (with diagonal)
shape(uupper) matname is a vector with the rowwise strictly upper triangle (no diagonal)
s2d(standard) convert similarity to dissimilarity: dij =

√
sii + sjj − 2sij

s2d(oneminus) convert similarity to dissimilarity: dij = 1− sij

Model 2

dimension(#) configuration dimensions; default is dimension(2)

force fix problems in proximity information
addconstant make distance matrix positive semidefinite (classical MDS only)
weight(matname) specifies a weight matrix with the same shape as the proximity matrix

Reporting

neigen(#) maximum number of eigenvalues to display; default is neigen(10)
(classical MDS only)

config display table with configuration coordinates
noplot suppress configuration plot

Minimization

initialize(initopt) start with configuration given in initopt
tolerance(#) tolerance for configuration matrix; default is tolerance(1e-4)

ltolerance(#) tolerance for loss criterion; default is ltolerance(1e-8)

iterate(#) perform maximum # of iterations; default is iterate(1000)

protect(#) perform # optimizations and report best solution; default is protect(1)[
no
]
log display or suppress the iteration log; default is to display

trace display current configuration in iteration log
gradient display current gradient matrix in iteration log

sdprotect(#) advanced; see Options below

collect is allowed; see [U] 11.1.10 Prefix commands.
sdprotect(#) does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands

mdsmat — Multidimensional scaling of proximity data in a matrix 3

method Description

classical classical MDS; default if neither loss() nor transform() is
specified

modern modern MDS; default if loss() or transform() is specified;
except when loss(stress) and transform(monotonic) are
specified

nonmetric nonmetric (modern) MDS; default when loss(stress) and
transform(monotonic) are specified

loss Description

stress stress criterion, normalized by distances; the default
nstress stress criterion, normalized by disparities
sstress squared stress criterion, normalized by distances
nsstress squared stress criterion, normalized by disparities
strain strain criterion (with transform(identity) is equivalent to

classical MDS)
sammon Sammon mapping

tfunction Description

identity no transformation; disparity = dissimilarity; the default
power power α: disparity = dissimilarityα

monotonic weakly monotonic increasing functions (nonmetric scaling); only
with loss(stress)

norm Description

principal principal orientation; location = 0; the default
classical Procrustes rotation toward classical solution
target(matname)

[
, copy

]
Procrustes rotation toward matname; ignore naming conflicts

if copy is specified

initopt Description

classical start with classical solution; the default
random

[
(#)

]
start at random configuration, setting seed to #

from(matname)
[
, copy

]
start from matname; ignore naming conflicts if copy is specified

Options

� � �
Model �

method(method) specifies the method for MDS.

method(classical) specifies classical metric scaling, also known as “principal coordinates anal-
ysis” when used with Euclidean proximities. Classical MDS obtains equivalent results to modern
MDS with loss(strain) and transform(identity) without weights. The calculations for
classical MDS are fast; consequently, classical MDS is generally used to obtain starting values

4 mdsmat — Multidimensional scaling of proximity data in a matrix

for modern MDS. If the options loss() and transform() are not specified, mds computes the
classical solution, likewise if method(classical) is specified loss() and transform() are
not allowed.

method(modern) specifies modern scaling. If method(modern) is specified but not loss() or
transform(), then loss(stress) and transform(identity) are assumed. All values of
loss() and transform() are valid with method(modern).

method(nonmetric) specifies nonmetric scaling, which is a type of modern scaling. If
method(nonmetric) is specified, loss(stress) and transform(monotonic) are assumed.
Other values of loss() and transform() are not allowed.

loss(loss) specifies the loss criterion.

loss(stress) specifies that the stress loss function be used, normalized by the squared Eu-
clidean distances. This criterion is often called Kruskal’s stress-1. Optimal configurations for
loss(stress) and for loss(nstress) are equivalent up to a scale factor, but the iteration
paths may differ. loss(stress) is the default.

loss(nstress) specifies that the stress loss function be used, normalized by the squared dis-
parities, that is, transformed dissimilarities. Optimal configurations for loss(stress) and for
loss(nstress) are equivalent up to a scale factor, but the iteration paths may differ.

loss(sstress) specifies that the squared stress loss function be used, normalized by the fourth
power of the Euclidean distances.

loss(nsstress) specifies that the squared stress criterion, normalized by the fourth power of
the disparities (transformed dissimilarities) be used.

loss(strain) specifies the strain loss criterion. Classical scaling is equivalent to loss(strain)
and transform(identity) but is computed by a faster noniterative algorithm. Specifying
loss(strain) still allows transformations.

loss(sammon) specifies the Sammon (1969) loss criterion.

transform(tfunction) specifies the class of allowed transformations of the dissimilarities; transformed
dissimilarities are called disparities.

transform(identity) specifies that the only allowed transformation is the identity; that is,
disparities are equal to dissimilarities. transform(identity) is the default.

transform(power) specifies that disparities are related to the dissimilarities by a power function,

disparity = dissimilarityα, α > 0

transform(monotonic) specifies that the disparities are a weakly monotonic function of the dis-
similarities. This is also known as nonmetric MDS. Tied dissimilarities are handled by the primary
method; that is, ties may be broken but are not necessarily broken. transform(monotonic)
is valid only with loss(stress).

normalize(norm) specifies a normalization method for the configuration. Recall that the location
and orientation of an MDS configuration is not defined (“identified”); an isometric transformation
(that is, translation, reflection, or orthonormal rotation) of a configuration preserves interpoint
Euclidean distances.

normalize(principal) performs a principal normalization, in which the configuration columns
have zero mean and correspond to the principal components, with positive coefficient for the
observation with lowest value of id(). normalize(principal) is the default.

mdsmat — Multidimensional scaling of proximity data in a matrix 5

normalize(classical) normalizes by a distance-preserving Procrustean transformation of the
configuration toward the classical configuration in principal normalization; see [MV] procrustes.
normalize(classical) is not valid if method(classical) is specified.

normalize(target(matname)
[
, copy

]
) normalizes by a distance-preserving Procrustean

transformation toward matname; see [MV] procrustes. matname should be an n × p matrix,
where n is the number of observations and p is the number of dimensions, and the rows of
matname should be ordered with respect to id(). The rownames of matname should be set
correctly but will be ignored if copy is also specified.

Note on normalize(classical) and normalize(target()): the Procrustes transformation
comprises any combination of translation, reflection, and orthonormal rotation—these transfor-
mations preserve distance. Dilation (uniform scaling) would stretch distances and is not applied.
However, the output reports the dilation factor, and the reported Procrustes statistic is for the
dilated configuration.

names(namelist) is required with all but shape(full). The number of names should equal the
number of rows (and columns) of the full similarity or dissimilarity matrix and should not contain
duplicates.

shape(shape) specifies the storage mode of the existing similarity or dissimilarity matrix matname.
The following storage modes are allowed:

full specifies that matname is a symmetric n× n matrix.

lower specifies that matname is a row or column vector of length n(n+ 1)/2, with the rowwise
lower triangle of the similarity or dissimilarity matrix including the diagonal.

D11 D21 D22 D31 D32 D33 . . . Dn1 Dn2 . . . Dnn

llower specifies that matname is a row or column vector of length n(n− 1)/2, with the rowwise
lower triangle of the similarity or dissimilarity matrix excluding the diagonal.

D21 D31 D32 D41 D42 D43 . . . Dn1 Dn2 . . . Dn,n−1

upper specifies that matname is a row or column vector of length n(n+ 1)/2, with the rowwise
upper triangle of the similarity or dissimilarity matrix including the diagonal.

D11 D12 . . . D1n D22 D23 . . . D2n D33 D34 . . . D3n . . . Dnn

uupper specifies that matname is a row or column vector of length n(n− 1)/2, with the rowwise
upper triangle of the similarity or dissimilarity matrix excluding the diagonal.

D12 D13 . . . D1n D23 D24 . . . D2n D34 D35 . . . D3n . . . Dn−1,n

s2d(standard | oneminus) specifies how similarities are converted into dissimilarities. By default,
the command assumes dissimilarity data. Specifying s2d() indicates that your proximity data are
similarities.

Dissimilarity data should have zeros on the diagonal (that is, an object is identical to itself)
and nonnegative off-diagonal values. Dissimilarities need not satisfy the triangular inequality,
D(i, j)2 ≤ D(i, h)2 + D(h, j)2. Similarity data should have ones on the diagonal (that is, an
object is identical to itself) and have off-diagonal values between zero and one. In either case,
proximities should be symmetric. See option force if your data violate these assumptions.

https://www.stata.com/manuals/mvprocrustes.pdf#mvprocrustes
https://www.stata.com/manuals/mvprocrustes.pdf#mvprocrustes

6 mdsmat — Multidimensional scaling of proximity data in a matrix

The available s2d() options, standard and oneminus, are defined as follows:

standard dissimij =
√

simii + simjj − 2simij =
√

2(1− simij)

oneminus dissimij = 1− simij

s2d(standard) is the default.

s2d() should be specified only with measures in similarity form.

� � �
Model 2 �

dimension(#) specifies the dimension of the approximating configuration. The default is dimen-
sion(2), and # should not exceed the number of positive eigenvalues of the centered distance
matrix.

force corrects problems with the supplied proximity information. force specifies that the dissimilarity
matrix be symmetrized; the mean of Dij and Dji is used. Also, problems on the diagonal
(similarities: Dii 6= 1; dissimilarities: Dii 6= 0) are fixed. force does not fix missing values
or out-of-range values (that is, Dij < 0 or similarities with Dij > 1). Analogously, force
symmetrizes the weight matrix.

addconstant specifies that if the double-centered distance matrix is not positive semidefinite (psd),
a constant should be added to the squared distances to make it psd and, hence, Euclidean.

weight(matname) specifies a symmetric weight matrix with the same shape as the proximity matrix;
that is, if shape(lower) is specified, the weight matrix must have this shape. Weights should be
nonnegative. Missing weights are assumed to be 0. Weights must also be irreducible; that is, it is
not possible to split the objects into disjointed groups with all intergroup weights 0. weight() is
not allowed with method(classical), but see loss(strain).

� � �
Reporting �

neigen(#) specifies the number of eigenvalues to be included in the table. The default is neigen(10).
Specifying neigen(0) suppresses the table. This option is allowed with classical MDS only.

config displays the table with the coordinates of the approximating configuration. This table may also
be displayed using the postestimation command estat config; see [MV] mds postestimation.

noplot suppresses the graph of the approximating configuration. The graph can still be produced
later via mdsconfig, which also allows the standard graphics options for fine-tuning the plot; see
[MV] mds postestimation plots.

� � �
Minimization �

These options are available only with method(modern) or method(nonmetric):

initialize(initopt) specifies the initial values of the criterion minimization process.

initialize(classical), the default, uses the solution from classical metric scaling as initial
values. With protect(), all but the first run start from random perturbations from the classical
solution. These random perturbations are independent and normally distributed with standard
error equal to the product of sdprotect(#) and the standard deviation of the dissimilarities.
initialize(classical) is the default.

initialize(random) starts an optimization process from a random starting configuration. These
random configurations are generated from independent normal distributions with standard error
equal to the product of sdprotect(#) and the standard deviation of the dissimilarities. The
means of the configuration are irrelevant in MDS.

https://www.stata.com/manuals/mvmdspostestimation.pdf#mvmdspostestimation
https://www.stata.com/manuals/mvmdspostestimationplots.pdf#mvmdspostestimationplots

mdsmat — Multidimensional scaling of proximity data in a matrix 7

initialize(from(matname)
[
, copy

]
) sets the initial value to matname. matname should be an

n×p matrix, where n is the number of observations and p is the number of dimensions, and the
rows of matname should be ordered with respect to id(). The rownames of matname should be
set correctly but will be ignored if copy is specified. With protect(), the second-to-last runs
start from random perturbations from matname. These random perturbations are independent
normal distributed with standard error equal to the product of sdprotect(#) and the standard
deviation of the dissimilarities.

tolerance(#) specifies the tolerance for the configuration matrix. When the relative change in the
configuration from one iteration to the next is less than or equal to tolerance(), the tolerance()
convergence criterion is satisfied. The default is tolerance(1e-4).

ltolerance(#) specifies the tolerance for the fit criterion. When the relative change in the fit
criterion from one iteration to the next is less than or equal to ltolerance(), the ltolerance()
convergence is satisfied. The default is ltolerance(1e-8).

Both the tolerance() and ltolerance() criteria must be satisfied for convergence.

iterate(#) specifies the maximum number of iterations. The default is iterate(1000).

protect(#) requests that # optimizations be performed and that the best of the solutions be reported.
The default is protect(1). See option initialize() on starting values of the runs. The output
contains a table of the return code, the criterion value reached, and the seed of the random number
used to generate the starting value. Specifying a large number, such as protect(50), provides
reasonable insight whether the solution found is a global minimum and not just a local minimum.

If any of the options log, trace, or gradient is also specified, iteration reports will be printed
for each optimization run. Beware: this option will produce a lot of output.

log and nolog specify whether to display the iteration log. The iteration log is displayed by default
unless you used set iterlog off to suppress it; see set iterlog in [R] set iter.

trace displays the configuration matrices in the iteration report. Beware: this option may produce a
lot of output.

gradient displays the gradient matrices of the fit criterion in the iteration report. Beware: this option
may produce a lot of output.

The following option is available with mdsmat but is not shown in the dialog box:

sdprotect(#) sets a proportionality constant for the standard deviations of random configurations
(init(random)) or random perturbations of given starting configurations (init(classical) or
init(from())). The default is sdprotect(1).

Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
Proximity data in a Stata matrix
Modern MDS and local minimums

Introduction

Multidimensional scaling (MDS) is a dimension-reduction and visualization technique. Dissimi-
larities (for instance, Euclidean distances) between observations in a high-dimensional space are
represented in a lower-dimensional space (typically two dimensions) so that the Euclidean distance
in the lower-dimensional space approximates the dissimilarities in the higher-dimensional space. See

https://www.stata.com/manuals/rsetiter.pdf#rsetiter
http://stata.com

8 mdsmat — Multidimensional scaling of proximity data in a matrix

Kruskal and Wish (1978) for a brief nontechnical introduction to MDS. Young (1987) and Borg and
Groenen (2005) are more advanced textbook-sized treatments.

mdsmat performs MDS on a similarity or dissimilarity matrix matname. You may enter the matrix
as a symmetric square matrix or as a vector (matrix with one row or column) with only the upper
or lower triangle; see option shape() for details. matname should not contain missing values. The
diagonal elements should be 0 (dissimilarities) or 1 (similarities). If you provide a square matrix
(that is, shape(full)), names of the objects are obtained from the matrix row and column names.
The row names should all be distinct, and the column names should equal the row names. Equation
names, if any, are ignored. In any of the vectorized shapes, names are specified with option names(),
and the matrix row and column names are ignored.

See option force if your matrix violates these assumptions.

In some applications, the similarity or dissimilarity of objects is defined by the researcher in terms
of variables (attributes) measured on the objects. If you need to do MDS of this form, you should
continue by reading [MV] mds.

Often, however, proximities—that is, similarities or dissimilarities—are measured directly. For
instance, psychologists studying the similarities or dissimilarities in a set of stimuli—smells, sounds,
faces, concepts, etc.—may have subjects rate the dissimilarity of pairs of stimuli. Linguists have
subjects rate the similarity or dissimilarity of pairs of dialects. Political scientists have subjects rate
the similarity or dissimilarity of political parties or candidates for political office. In other fields,
relational data are studied that may be interpreted as proximities in a more abstract sense. For instance,
sociologists study interpersonal contact frequencies in groups (“social networks”); these measures are
sometimes interpreted in terms of similarities.

A wide variety of MDS methods have been proposed. mdsmat performs classical and modern
scaling. Classical scaling has its roots in Young and Householder (1938) and Torgerson (1952). MDS
requires complete and symmetric dissimilarity interval-level data. To explore modern scaling, see Borg
and Groenen (2005). Classical scaling results in an eigen decomposition, whereas modern scaling
is accomplished by the minimization of a loss function. Consequently, eigenvalues are not available
after modern MDS.

Computing the classical solution is straightforward, but with modern MDS the minimization of the
loss criteria over configurations is a high-dimensional problem that is easily beset by convergence to
local minimums. mdsmat provides options to control the minimization process 1) by allowing the user
to select the starting configuration and 2) by selecting the best solution among multiple minimization
runs from random starting configurations.

Proximity data in a Stata matrix

To perform MDS of relational data, you must enter the data in a suitable format. One convenient
format is a Stata matrix. You may want to use this format for analyzing data that you obtain from a
printed source.

Example 1

Many texts on multidimensional scaling illustrate how locations can be inferred from a table of
geographic distances. We will do this too, using an example of distances in miles between 14 locations
in Texas, representing both manufactured and natural treasures:

https://www.stata.com/manuals/mvmds.pdf#mvmds

mdsmat — Multidimensional scaling of proximity data in a matrix 9

Big Bend 0 523 551 243 322 412 263 596 181 313 553
Corpus Christi 523 0 396 280 705 232 619 226 342 234 30

Dallas 551 396 0 432 643 230 532 243 494 317 426
Del Rio 243 280 432 0 427 209 339 353 62 70 310
El Paso 322 705 643 427 0 528 110 763 365 525 735

Enchanted Rock 412 232 230 209 528 0 398 260 271 69 262
Guadalupe Mnt 263 619 532 339 110 398 0 674 277 280 646

Houston 596 226 243 353 763 260 674 0 415 292 256
Langtry 181 342 494 62 365 271 277 415 0 132 372

Lost Maples 313 234 317 70 525 69 280 292 132 0 264
Padre Island 553 30 426 310 735 262 646 256 372 264 0

Pedernales Falls 434 216 235 231 550 40 420 202 293 115 246
San Antonio 397 141 274 154 564 91 475 199 216 93 171

StataCorp 426 205 151 287 606 148 512 83 318 202 316

Big Bend 434 397 426
Corpus Christi 216 141 205

Dallas 235 274 151
Del Rio 231 154 287
El Paso 550 564 606

Enchanted Rock 40 91 148
Guadalupe Mnt 420 475 512

Houston 202 199 83
Langtry 293 216 318

Lost Maples 115 93 202
Padre Island 246 171 316

Pedernales Falls 0 75 116
San Antonio 75 0 154

StataCorp 116 154 0

Note the inclusion of StataCorp, which is located in the twin cities of Bryan/College Station (BCS).
To get the data into Stata, we will enter only the strictly upper triangle as a Stata one-dimensional
matrix and collect the names in a global macro for later use. We are using the strictly upper triangle
(that is, omitting the diagonal) because the diagonal of a dissimilarity matrix contains all zeros—there
is no need to enter them.

. matrix input D = (
> 523 551 243 322 412 263 596 181 313 553 434 397 426
> 396 280 705 232 619 226 342 234 30 216 141 205
> 432 643 230 532 243 494 317 426 235 274 151
> 427 209 339 353 62 70 310 231 154 287
> 528 110 763 365 525 735 550 564 606
> 398 260 271 69 262 40 91 148
> 674 277 280 646 420 475 512
> 415 292 256 202 199 83
> 132 372 293 216 318
> 264 115 93 202
> 246 171 316
> 75 116
> 154)

. global names
> Big_Bend Corpus_Christi Dallas Del_Rio
> El_Paso Enchanted_Rock Guadalupe_Mnt Houston
> Langtry Lost_Maples Padre_Island Pedernales_Falls
> San_Antonio StataCorp

The triangular data entry is just typographical and is useful for catching data entry errors. As far
as Stata is concerned, we could have typed all the numbers in one long row. We use matrix input

10 mdsmat — Multidimensional scaling of proximity data in a matrix

D = rather than matrix define D = or just matrix D = so that we do not have to separate entries
with commas.

With the data now in Stata, we may use mdsmat to infer the locations in Texas and produce a
map:

. mdsmat D, names($names) shape(uupper)

Classical metric multidimensional scaling
Dissimilarity matrix: D

Number of obs = 14
Eigenvalues > 0 = 8 Mardia fit measure 1 = 0.7828
Retained dimensions = 2 Mardia fit measure 2 = 0.9823

abs(eigenvalue) (eigenvalue)^2
Dimension Eigenvalue Percent Cumul. Percent Cumul.

1 691969.62 62.63 62.63 92.45 92.45
2 172983.05 15.66 78.28 5.78 98.23

3 57771.995 5.23 83.51 0.64 98.87
4 38678.916 3.50 87.01 0.29 99.16
5 19262.579 1.74 88.76 0.07 99.23
6 9230.7695 0.84 89.59 0.02 99.25
7 839.70996 0.08 89.67 0.00 99.25
8 44.989372 0.00 89.67 0.00 99.25

Big_Bend
Corpus_Christi

Dallas

Del_Rio

El_PasoEnchanted_Rock Guadalupe_Mnt
Houston

Langtry

Lost_Maples

Padre_Island

Pedernales_Falls

San_Antonio

StataCorp

-600

-400

-200

0

200

400

D
im

en
si

on
 2

-400 -200 0 200 400 600
Dimension 1

Classical MDS

MDS configuration

The representation of the distances in two dimensions provides a reasonable, but not great, fit; the
percentage of eigenvalues accounted for is 78%.

By default, mdsmat produces a configuration plot. Enhancements to the configuration plot are
possible using the mdsconfig postestimation graphics command; see [MV] mds postestimation
plots. We present the configuration plot with the autoaspect option to obtain better use of the
available space while preserving the equivalence of distance in the x and y axes. We negate the
direction of the x axis with the xnegate option to flip the configuration horizontally and flip the
direction of the y axis with the ynegate option. We also change the default title and control the
placement of labels.

https://www.stata.com/manuals/mvmdspostestimationplots.pdf#mvmdspostestimationplots
https://www.stata.com/manuals/mvmdspostestimationplots.pdf#mvmdspostestimationplots

mdsmat — Multidimensional scaling of proximity data in a matrix 11

. set obs 14
Number of observations (_N) was 0, now 14.

. generate pos = 3

. replace pos = 4 in 6
(1 real change made)

. replace pos = 2 in 10
(1 real change made)

. mdsconfig, autoaspect xnegate ynegate mlabvpos(pos)
> title(MDS for 14 Texas locations)

Big_Bend

Corpus_Christi

Dallas

Del_Rio

El_Paso Enchanted_Rock

Guadalupe_Mnt
Houston

Langtry

Lost_Maples

Padre_Island

Pedernales_Falls

San_Antonio

StataCorp

-200

-100

0

100

200

300

D
im

en
si

on
 2

-600 -400 -200 0 200 400
Dimension 1

Classical MDS

MDS for 14 Texas locations

Look at the graph produced by mdsconfig after mdsmat. You will probably recognize a twisted
(and slightly distorted) map of Texas. The vertical orientation of the map is not correctly north–south;
you would probably want to turn the map some 20 degrees clockwise. Why didn’t mdsmat get it
right? It could not have concluded the correct rotation from the available distance information. Any
orthogonal rotation of the map would produce the same distances. The orientation of the map is not
identified. Finally, the “location” of the map cannot be inferred from the distances. Translating the
coordinates does not change the distances. As far as mdsmat is concerned, Texas could be part of
China.

Modern MDS and local minimums
Modern MDS can converge to a local rather than a global minimum. We give an example where

this happens and show how the protect() option can guard against this. protect(#) performs
multiple minimizations and reports the best one. The output is explained in [MV] mds.

Example 2

Continuing from where we left off, we perform modern MDS, using an initial random configuration
with the init(random(512308)) option. The number 512,308 sets the seed so that this run may
be replicated.

https://www.stata.com/manuals/mvmds.pdf#mvmds

12 mdsmat — Multidimensional scaling of proximity data in a matrix

. mdsmat D, names($names) shape(uupper) meth(modern) init(random(512308)) nolog
> noplot
(loss(stress) assumed)
(transform(identity) assumed)

Modern multidimensional scaling
Dissimilarity matrix: D

Loss criterion: stress = raw_stress/norm(distances)
Transformation: identity (no transformation)

Number of obs = 14
Dimensions = 2

Normalization: principal Loss criterion = 0.0858

. mdsconfig, autoaspect xnegate ynegate mlabvpos(pos)
> title(Padre Island heads north?)

Big_Bend

Corpus_Christi

Dallas

Del_Rio

El_Paso

Enchanted_Rock

Guadalupe_Mnt

Houston

Langtry

Lost_Maples

Padre_Island

Pedernales_Falls

San_Antonio

StataCorp

-300

-200

-100

0

100

200

D
im

en
si

on
 2

-600 -400 -200 0 200 400
Dimension 1

Modern MDS (loss = stress; transform = identity)

Padre Island heads north?

This graph has some resemblance to the one we saw before, but any Texan can assure you that
Padre Island should not end up north of Dallas.

We check this result by rerunning with protect(10). This will repeat the minimization and report
the best result. Larger values of protect() give us more assurance that we have found the global
minimum, but here protect(10) is sufficient to tell us that our original mdsmat found a local, not
a global, minimum.

mdsmat — Multidimensional scaling of proximity data in a matrix 13

. mdsmat D, names($names) shape(uupper) meth(modern) init(random(512308)) nolog
> protect(10) noplot
(loss(stress) assumed)
(transform(identity) assumed)

run mrc #iter lossval

1 0 61 .06180059
2 0 48 .0618006
3 0 49 .0618006
4 0 42 .0618006
5 0 52 .0618006
6 0 84 .08581202
7 0 83 .08581202
8 0 70 .08581202
9 0 89 .12189371

10 0 66 .12189371

Modern multidimensional scaling
Dissimilarity matrix: D

Loss criterion: stress = raw_stress/norm(distances)
Transformation: identity (no transformation)

Number of obs = 14
Dimensions = 2

Normalization: principal Loss criterion = 0.0618

. mdsconfig, autoaspect xnegate ynegate mlabvpos(pos)
> title(Padre Island is back where it belongs)

Big_Bend
Corpus_Christi

Dallas

Del_Rio

El_Paso

Enchanted_Rock

Guadalupe_Mnt
Houston

Langtry

Lost_Maples

Padre_Island

Pedernales_Falls

San_Antonio

StataCorp

-200

-100

0

100

200

300

D
im

en
si

on
 2

-600 -400 -200 0 200 400
Dimension 1

Modern MDS (loss = stress; transform = identity)

Padre Island is back where it belongs

The original run had a loss criterion of 0.0858, but after using the protect() option the loss
criterion was much lower—0.0618. We also see that Padre Island is back down south where it belongs.
It is clear that the original run converged to a local minimum. You can see the original results appear
as the final output line of the first table in the output after using protect(10). The seed in the
table is a hexadecimal representation of how the seed is stored internally. The number 512,308 in
init(random(512308)) is convenient shorthand for specifying the seed; the two are equivalent. If
we wish, we could repeat the command with a larger value of protect() to assure ourselves that
0.0618 is indeed the global minimum.

14 mdsmat — Multidimensional scaling of proximity data in a matrix

After mdsmat, all MDS postestimation tools are available. For instance, you may analyze residuals
with estat quantile, you may produce a Shepard diagram, etc.; see [MV] mds postestimation and
[MV] mds postestimation plots.

Stored results
mdsmat stores the following in e():
Scalars

e(N) number of rows or columns (i.e., number of observations)
e(p) number of dimensions in the approximating configuration
e(np) number of strictly positive eigenvalues
e(addcons) constant added to squared dissimilarities to force positive semidefiniteness
e(mardia1) Mardia measure 1
e(mardia2) Mardia measure 2
e(critval) loss criterion value
e(wsum) sum of weights
e(alpha) parameter of transform(power)
e(ic) iteration count
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) mdsmat
e(cmdline) command as typed
e(method) classical or modern MDS method
e(method2) nonmetric, if method(nonmetric)
e(loss) loss criterion
e(losstitle) description loss criterion
e(dmatrix) name of analyzed matrix
e(tfunction) identity, power, or monotonic, transformation function
e(transftitle) description of transformation
e(dtype) similarity or dissimilarity; type of proximity data
e(s2d) standard or oneminus (when e(dtype) is similarity)
e(unique) 1 if eigenvalues are distinct, 0 otherwise
e(init) initialization method
e(irngstate) initial random-number state used for init(random)
e(rngstate) random-number state for solution
e(norm) normalization method
e(targetmatrix) name of target matrix for normalize(target)
e(properties) nob noV for modern or nonmetric MDS; nob noV eigen for classical MDS
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(D) dissimilarity matrix
e(Disparities) disparity matrix for nonmetric MDS
e(Y) approximating configuration coordinates
e(Ev) eigenvalues
e(W) weight matrix
e(norm stats) normalization statistics
e(linearf) two element vector defining the linear transformation; distance

equals first element plus second element times dissimilarity

Methods and formulas
Methods and formulas are presented under the following headings:

Classical multidimensional scaling
Modern multidimensional scaling
Conversion of similarities to dissimilarities

https://www.stata.com/manuals/mvmdspostestimation.pdf#mvmdspostestimation
https://www.stata.com/manuals/mvmdspostestimationplots.pdf#mvmdspostestimationplots

mdsmat — Multidimensional scaling of proximity data in a matrix 15

Classical multidimensional scaling

Let D be an n × n dissimilarity matrix. The matrix D is said to be Euclidean if there are
coordinates Y so that

D2
ij = (Yi −Yj)(Yi −Yj)

′

Here Yi and Yj are the ith and jth column vectors extracted from Y. Let A = −(1/2)D �D,
with � being the Hadamard or elementwise matrix product, and define B as the double-centered
distance matrix

B = HAH with H = I− 1

n
11′

D is Euclidean if and only if B is positive semidefinite. Assume for now that D is indeed Euclidean.
The spectral or eigen decomposition of B is written as B = UΛU′, with U the orthonormal matrix of
eigenvectors normed to 1, and Λ a diagonal matrix with nonnegative values (the eigenvalues of B) in
decreasing order. The coordinates Y are defined in terms of the spectral decomposition Y = UΛ1/2.
These coordinates are centered Y′1 = 0.

The spectral decomposition can also be used to obtain a low-dimensional configuration Ỹ, n× p,
so that the interrow distances of Ỹ approximate D. Mardia, Kent, and Bibby (1979, sec. 14.4) discuss
some characterizations under which the leading p columns of Y are an optimal choice of Ỹ. These
characterizations also apply to the case when B is not positive semidefinite, so some of the λ’s are
negative; we require that λp > 0.

Various other approaches have been proposed to deal with the case when the matrix B is not positive
semidefinite, that is, when B has negative eigenvalues (see Cox and Cox 2001, 45–48). An easy
solution is to add a constant to the off-diagonal elements of D�D to make B positive semidefinite.
The smallest such constant is −2λn, where λn is the smallest eigenvalue of B (Lingoes 1971). See
Cailliez (1983) for a solution to the additive constant problem in terms of the dissimilarities instead
of the squared dissimilarities.

Goodness-of-fit statistics for a configuration in p dimensions have been proposed by Mardia (1978)
in characterizations of optimality properties of the classical solution

Mardia1 =

∑p
i=1 |λi|∑n
i=1 |λi|

and

Mardia2 =

∑p
i=1 λ

2
i∑n

i=1 λ
2
i

Modern multidimensional scaling

Let D be a symmetric n×n matrix of observed dissimilarities. We assume that proximity data in
the form of similarities have already been transformed into dissimilarities. Let W be an n×n matrix
of nonnegative weights. With unweighted MDS, we define Wij = 1. For a configuration of n points in
k-dimensional space represented by the n× k matrix Y, let B(Y) be the n×n matrix of Euclidean
distances between the rows of Y. We consider F to be some class of permitted transformations from
n× n real matrices to n× n real matrices.

Modern metric and nonmetric multidimensional scaling involves the minimization of a loss criterion

L {f(D),B(Y),W}

16 mdsmat — Multidimensional scaling of proximity data in a matrix

over the configurations Y and transformations f ∈ F . Whether a scaling method is labeled metric
or nonmetric depends on the class F . In nonmetric scaling, F is taken to be the class of monotonic
functions. If F is a regular parameterized set of functions, one commonly labels the scaling as metric.

D is the matrix of proximities or dissimilarities, B(Y) is the matrix of distances, and the result
of f(D) = D̂ is the matrix of disparities.

The mdsmat command supports the following loss criteria:

1. stress specifies Kruskal’s stress-1 criterion: the Euclidean norm of the difference between
the distances and the disparities, normalized by the Euclidean norm of the distances.

stress(D̂,B,W) =

{∑
ijWij(Bij − D̂ij)

2∑
ijWijB2

ij

}1/2

2. nstress specifies the square root of the normalized stress criterion: the Euclidean norm of
the difference between the distances and the disparities, normalized by the Euclidean norm
of the disparities.

nstress(D̂,B,W) =

{∑
ijWij(Bij − D̂ij)

2∑
ijWijD̂2

ij

}1/2

nstress normalizes with the disparities, stress with the distances.

3. sammon specifies the Sammon mapping criterion (Sammon 1969; Neimann and Weiss 1979):
the sum of the scaled, squared differences between the distances and the disparities, normalized
by the sum of the disparities.

sammon(D̂,B,W) =

∑
ijWij(Bij − D̂ij)

2/D̂ij∑
ijWijD̂ij

4. sstress specifies the squared stress criterion: the Euclidean norm of the difference between
the squared distances and the squared disparities, normalized by the Euclidean norm of the
squared distances.

sstress(D̂,B,W) =

{∑
ijWij(B

2
ij − D̂2

ij)
2∑

ijWijB4
ij

}1/2

5. nsstress specifies the normalized squared stress criterion: the Euclidean norm of the difference
between the squared distances and the squared disparities, normalized by the Euclidean norm
of the squared disparities.

nsstress(D̂,B,W) =

{∑
ijWij(B

2
ij − D̂2

ij)
2∑

ijWijD̂4
ij

}1/2

nsstress normalizes with the disparities, sstress with the distances.

mdsmat — Multidimensional scaling of proximity data in a matrix 17

6. strain specifies the strain criterion,

strain(D̂,B,W) =

√
trace(X′X)∑

ijWij

where
X = W �

{
D̂−B(Ỹ)

}
where Ỹ is the centered configuration of Y. Without weights, Wij = 1, and without
transformation, that is, D̂ = D, minimization of the strain criterion is equivalent to classical
metric scaling.

The mdsmat command supports three classes of permitted transformations, f ∈ F : 1) the class of
all weakly monotonic transformations, 2) the power class of functions where f is defined elementwise
on D as f(Dij , α) = Dα

ij (Critchley 1978; Cox and Cox 2001), and 3) the trivial identity case of
f(D) = D.

Minimization of a loss criterion with respect to the configuration Y and the permitted transformation
f ∈ F is performed with an alternating algorithm in which the configuration Y is modified (the
C-step) and the transformation f is adjusted (the T-step) to reduce loss. Obviously, no T-step is made
with the identity transformation. The classical solution is the default starting configuration. Iteration
continues until the C-step and T-step reduce loss by less than the tolerance for convergence or the
maximum number of iterations is performed. The C-step is taken by steepest descent using analytical
gradients and an optimal stepsize computed using Brent’s bounded minimization (Brent 1973). The
implementation of the T-step varies with the specified class of transformations. In the nonmetric case
of monotonic transformations, we use isotonic regression (Kruskal 1964a, 1964b; Cox and Cox 2001),
using the primary approach to ties (Borg and Groenen 2005, 40). For power transformations, we
again apply Brent’s minimization method.

Given enough iterations, convergence is usually not a problem. However, the alternating algorithm
may not converge to a global minimum. mdsmat provides some protection by repeated runs from
different initial configurations. However, as Euclidean distances B(Y) are invariant with respect to
isometric transformations (rotations, translations) of Y, some caution is required to compare different
runs and, similarly, to compare the configurations obtained from different scaling methods. mdsmat
normalizes the optimal configuration by centering and via the orthogonal Procrustean rotation without
dilation toward the classical or a user-specified solution; see [MV] procrustes.

Conversion of similarities to dissimilarities

If a similarity measure was selected, it is turned into a dissimilarity measure by using one of two
methods. The standard conversion method is

dissimij =
√

simii + simjj − 2simij

With the similarity of an object to itself being 1, this is equivalent to

dissimij =
√
2(1− simij)

This conversion method has the attractive property that it transforms a positive-semidefinite similarity
matrix into a Euclidean distance matrix (see Mardia, Kent, and Bibby 1979, 402).

https://www.stata.com/manuals/mvprocrustes.pdf#mvprocrustes

18 mdsmat — Multidimensional scaling of proximity data in a matrix

We also offer the one-minus method

dissimij = 1− simij

References
Borg, I., and P. J. F. Groenen. 2005. Modern Multidimensional Scaling: Theory and Applications. 2nd ed. New York:

Springer.

Brent, R. P. 1973. Algorithms for Minimization without Derivatives. Englewood Cliffs, NJ: Prentice Hall. (Reprinted
in paperback by Dover Publications, Mineola, NY, January 2002).

Cailliez, F. 1983. The analytical solution of the additive constant problem. Psychometrika 48: 305–308.
https://doi.org/10.1007/BF02294026.

Cox, T. F., and M. A. A. Cox. 2001. Multidimensional Scaling. 2nd ed. Boca Raton, FL: Chapman and Hall/CRC.

Critchley, F. 1978. Multidimensional scaling: A short critique and a new method. In COMPSTAT 1978: Proceedings
in Computational Statistics, ed. L. C. A. Corsten and J. Hermans. Vienna: Physica.

Kruskal, J. B. 1964a. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika
29: 1–27. https://doi.org/10.1007/bf02289565.

. 1964b. Nonmetric multidimensional scaling: A numerical method. Psychometrika 29: 115–129.
https://doi.org/10.1007/BF02289694.

Kruskal, J. B., and M. Wish. 1978. Multidimensional Scaling. Newbury Park, CA: Sage.

Lingoes, J. C. 1971. Some boundary conditions for a monotone analysis of symmetric matrices. Psychometrika 36:
195–203. https://doi.org/10.1007/BF02291398.

Mardia, K. V. 1978. Some properties of classical multidimensional scaling. Communications in Statistics—Theory and
Methods 7: 1233–1241. https://doi.org/10.1080/03610927808827707.

Mardia, K. V., J. T. Kent, and J. M. Bibby. 1979. Multivariate Analysis. London: Academic Press.

Neimann, H., and J. Weiss. 1979. A fast-converging algorithm for nonlinear mapping of high-dimensional data to a
plane. IEEE Transactions on Computers 28: 142–147. https://doi.org/10.1109/TC.1979.1675303.

Sammon, J. W., Jr. 1969. A nonlinear mapping for data structure analysis. IEEE Transactions on Computers 18:
401–409. https://doi.org/10.1109/T-C.1969.222678.

Torgerson, W. S. 1952. Multidimensional scaling: I. Theory and method. Psychometrika 17: 401–419.
https://doi.org/10.1007/BF02288916.

Young, F. W. 1987. Multidimensional Scaling: History, Theory, and Applications. Hillsdale, NJ: Erlbaum Associates.

Young, G., and A. S. Householder. 1938. Discussion of a set of points in terms of their mutual distances. Psychometrika
3: 19–22. https://doi.org/10.1007/BF02287916.

Also see
[MV] mds postestimation — Postestimation tools for mds, mdsmat, and mdslong

[MV] mds postestimation plots — Postestimation plots for mds, mdsmat, and mdslong

[MV] biplot — Biplots

[MV] ca — Simple correspondence analysis

[MV] factor — Factor analysis

[MV] mds — Multidimensional scaling for two-way data

[MV] mdslong — Multidimensional scaling of proximity data in long format

[MV] pca — Principal component analysis

https://doi.org/10.1007/BF02294026
https://doi.org/10.1007/bf02289565
https://doi.org/10.1007/BF02289694
https://doi.org/10.1007/BF02289694
https://doi.org/10.1007/BF02291398
https://doi.org/10.1080/03610927808827707
https://doi.org/10.1109/TC.1979.1675303
https://doi.org/10.1109/T-C.1969.222678
https://doi.org/10.1007/BF02288916
https://doi.org/10.1007/BF02287916
https://www.stata.com/manuals/mvmdspostestimation.pdf#mvmdspostestimation
https://www.stata.com/manuals/mvmdspostestimationplots.pdf#mvmdspostestimationplots
https://www.stata.com/manuals/mvbiplot.pdf#mvbiplot
https://www.stata.com/manuals/mvca.pdf#mvca
https://www.stata.com/manuals/mvfactor.pdf#mvfactor
https://www.stata.com/manuals/mvmds.pdf#mvmds
https://www.stata.com/manuals/mvmdslong.pdf#mvmdslong
https://www.stata.com/manuals/mvpca.pdf#mvpca

mdsmat — Multidimensional scaling of proximity data in a matrix 19

[U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. Other brand and product names are registered trademarks or
trademarks of their respective companies. Copyright c© 1985–2023 StataCorp LLC,
College Station, TX, USA. All rights reserved.

®

https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands

