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Description

discrim knn performs kth-nearest-neighbor discriminant analysis. A wide selection of similarity
and dissimilarity measures is available.

kth-nearest neighbor must retain the training data and search through the data for the k nearest
observations each time a classification or prediction is performed. Consequently for large datasets,
kth-nearest neighbor is slow and uses a lot of memory.

See [MV] discrim for other discrimination commands.

Quick start
kth-nearest-neighbor discriminant analysis of v1, v2, v3, and v4 for groups defined by catvar and

k = 5
discrim knn v1 v2 v3 v4, k(5) group(catvar)

Same as above, but use prior probabilities proportional to group size
discrim knn v1 v2 v3 v4, k(5) group(catvar) priors(proportional)

Display only the leave-one-out classification table
discrim knn v1 v2 v3 v4, k(5) group(catvar) lootable notable

Use absolute-value distance
discrim knn v1 v2 v3 v4, k(5) group(catvar) measure(absolute)

Assume v1 and v2 are factor variables, and use the Dice similarity coefficient
discrim knn ibn.v1 ibn.v2, k(5) group(catvar) measure(dice)

Menu
Statistics > Multivariate analysis > Discriminant analysis > Kth-nearest neighbor (KNN)
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Syntax
discrim knn varlist

[
if
] [

in
] [

weight
]
, group(groupvar) k(#)

[
options

]
options Description

Model
∗group(groupvar) variable specifying the groups
∗k(#) number of nearest neighbors
priors(priors) group prior probabilities
ties(ties) how ties in classification are to be handled

Measure

measure(measure) similarity or dissimilarity measure; default is measure(L2)

s2d(standard) convert similarity to dissimilarity: d(ij) =
√

s(ii) + s(jj)− 2s(ij),
the default

s2d(oneminus) convert similarity to dissimilarity: d(ij) = 1− s(ij)
mahalanobis Mahalanobis transform continuous data before computing dissimilarities

Reporting

notable suppress resubstitution classification table
lootable display leave-one-out classification table

priors Description

equal equal prior probabilities; the default
proportional group-size-proportional prior probabilities
matname row or column vector containing the group prior probabilities
matrix exp matrix expression providing a row or column vector of the group

prior probabilities

ties Description

missing ties in group classification produce missing values; the default
random ties in group classification are broken randomly
first ties in group classification are set to the first tied group
nearest ties in group classification are assigned based on the closest

observation, or missing if this still results in a tie

∗group() and k() are required.
varlist may contain factor variables; see [U] 11.4.3 Factor variables.
collect and statsby are allowed; see [U] 11.1.10 Prefix commands.
fweights are allowed; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/mvmeasure_option.pdf#mvmeasure_option
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
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Options� � �
Model �

group(groupvar) is required and specifies the name of the grouping variable. groupvar must be a
numeric variable.

k(#) is required and specifies the number of nearest neighbors on which to base computations. In
the event of ties, the next largest value of k() is selected. Suppose that k(3) is selected. For a
given observation, one must go out a distance d to find three nearest neighbors, but if, say, there
are five data points all within distance d, then the computation will be based on all five nearest
points.

priors(priors) specifies the prior probabilities for group membership. The following priors are
allowed:

priors(equal) specifies equal prior probabilities. This is the default.

priors(proportional) specifies group-size-proportional prior probabilities.

priors(matname) specifies a row or column vector containing the group prior probabilities.

priors(matrix exp) specifies a matrix expression providing a row or column vector of the group
prior probabilities.

ties(ties) specifies how ties in group classification will be handled. The following ties are allowed:

ties(missing) specifies that ties in group classification produce missing values. This is the
default.

ties(random) specifies that ties in group classification are broken randomly.

ties(first) specifies that ties in group classification are set to the first tied group.

ties(nearest) specifies that ties in group classification are assigned based on the closest
observation, or missing if this still results in a tie.

� � �
Measure �

measure(measure) specifies the similarity or dissimilarity measure. The default is measure(L2);
all measures in [MV] measure option are supported except for measure(Gower).

s2d(standard | oneminus) specifies how similarities are converted into dissimilarities.

The available s2d() options, standard and oneminus, are defined as

standard d(ij) =
√

s(ii) + s(jj)− 2s(ij) =
√

2{1− s(ij)}
oneminus d(ij) = 1− s(ij)

s2d(standard) is the default.

mahalanobis specifies performing a Mahalanobis transformation on continuous data before computing
dissimilarities. The data are transformed via the Cholesky decomposition of the within-group
covariance matrix, and then the selected dissimilarity measure is performed on the transformed
data. If the L2 (Euclidean) dissimilarity is chosen, this is the Mahalanobis distance. If the within-
group covariance matrix does not have sufficient rank, an error is returned.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/mvmeasure_option.pdf#mvmeasure_option
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� � �
Reporting �

notable suppresses the computation and display of the resubstitution classification table.

lootable displays the leave-one-out classification table.

Remarks and examples stata.com

Remarks are presented under the following headings:
Introduction
A first example
Mahalanobis transformation
Binary data

Introduction
kth-nearest-neighbor (KNN) discriminant analysis dates at least as far back as Fix and Hodges (1951).

An introductory treatment is available in Rencher and Christensen (2012). More advanced treatments
are in Hastie, Tibshirani, and Friedman (2009) and McLachlan (2004).

KNN is a nonparametric discrimination method based on the k nearest neighbors of each observation.
KNN can deal with binary data via one of the binary measures; see [MV] measure option.

A first example

What distinguishes kth-nearest-neighbor analysis from other methods of discriminant analysis is
its ability to distinguish irregular-shaped groups, including groups with multiple modes. We create a
dataset with unusual boundaries that lends itself to KNN analysis and graphical interpretation.

Example 1

We create a two-dimensional dataset on the plane with x and y values in [−4, 4]. In each quadrant
we consider points within a circle with a square root of two radii, centered around the points (2, 2),
(−2, 2), (−2,−2), and (2,−2). We set the group value to 1 to start and then replace it in the circles.
In the first and third circles we set the group value to 2, and in the second and fourth circles we set
the group value to 3. Outside the circles, the group value remains 1.

. set seed 98712321

. set obs 500
Number of observations (_N) was 0, now 500.

. generate x = 8*runiform() - 4

. generate y = 8*runiform() - 4

. generate group = 1

. replace group = 2 if (y+2)^2 + (x+2)^2 <= 2
(45 real changes made)

. replace group = 2 if (y-2)^2 + (x-2)^2 <= 2
(50 real changes made)

. replace group = 3 if (y+2)^2 + (x-2)^2 <= 2
(45 real changes made)

. replace group = 3 if (y-2)^2 + (x+2)^2 <= 2
(51 real changes made)

Next we define some local macros for function plots of the circles. This makes it easier to graph
the boundary circles on top of the data. We set the graph option aspectratio(1) to force the aspect
ratio to be 1; otherwise, the circles might appear to be ovals.

http://stata.com
https://www.stata.com/manuals/mvmeasure_option.pdf#mvmeasure_option
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. local rp : di %12.10f 2+sqrt(2)

. local rm : di %12.10f 2-sqrt(2)

. local functionplot
> (function y = sqrt(2-(x+2)^2) - 2, lpat(solid) range(-‘rp’ -‘rm’))
> (function y = -sqrt(2-(x+2)^2) - 2, lpat(solid) range(-‘rp’ -‘rm’))
> (function y = sqrt(2-(x-2)^2) + 2, lpat(solid) range(-‘rm’ ‘rp’))
> (function y = -sqrt(2-(x-2)^2) + 2, lpat(solid) range(-‘rm’ ‘rp’))
> (function y = sqrt(2-(x+2)^2) + 2, lpat(solid) range(-‘rp’ -‘rm’))
> (function y = -sqrt(2-(x+2)^2) + 2, lpat(solid) range(-‘rp’ -‘rm’))
> (function y = sqrt(2-(x-2)^2) - 2, lpat(solid) range( ‘rm’ ‘rp’))
> (function y = -sqrt(2-(x-2)^2) - 2, lpat(solid) range( ‘rm’ ‘rp’))

. local graphopts
> aspectratio(1) legend(order(1 "Group 1" 2 "Group 2" 3 "Group 3"))

. twoway (scatter y x if group==1)
> (scatter y x if group==2)
> (scatter y x if group==3)
> ‘functionplot’ , ‘graphopts’ name(original, replace)
> title("Training data")
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Training data

We perform three discriminant analyses on these data for comparison. We use linear discriminant
analysis (LDA), quadratic discriminant analysis (QDA) and KNN. The results from logistic discriminant
analysis are similar to those of LDA and are not included. With all three models, we use proportional
probabilities, priors(proportional). The probability of landing in a given group is proportional to
the geometric area of that group; they are certainly not equal. Rather than doing geometric calculations
for the prior probabilities, we use priors(proportional) to approximate this. We suppress the
standard classification table with notable. Instead we look at the lootable, that is, leave-one-out
(LOO) table, where the observation in question is omitted and its result is predicted from the rest
of the data. Likewise, we predict the LOO classification (looclass). With KNN we get to choose a
measure(); here we want the straight line distance between the points. This is the default, Euclidean
distance, so we do not have to specify measure().

We choose k = 7 for this run with 500 observations. See Methods and formulas for more
information on choosing k.
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. discrim lda x y, group(group) notable lootable priors(proportional)

Linear discriminant analysis
Leave-one-out classification summary

Key

Number
Percent

Classified
True group 1 2 3 Total

1 309 0 0 309
100.00 0.00 0.00 100.00

2 95 0 0 95
100.00 0.00 0.00 100.00

3 96 0 0 96
100.00 0.00 0.00 100.00

Total 500 0 0 500
100.00 0.00 0.00 100.00

Priors 0.6180 0.1900 0.1920

LDA classifies all observations into group one, the group with the highest prior probability.

. discrim qda x y, group(group) notable lootable priors(proportional)

Quadratic discriminant analysis
Leave-one-out classification summary

Key

Number
Percent

Classified
True group 1 2 3 Total

1 258 31 20 309
83.50 10.03 6.47 100.00

2 57 38 0 95
60.00 40.00 0.00 100.00

3 77 0 19 96
80.21 0.00 19.79 100.00

Total 392 69 39 500
78.40 13.80 7.80 100.00

Priors 0.6180 0.1900 0.1920

QDA has 185 (31 + 20 + 57 + 77) misclassified observations of 500, but it correctly classifies 38
of the 95 observations from group 2 and 19 of the 96 observations from group 3.
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. discrim knn x y, group(group) k(7) notable lootable priors(proportional)

Kth-nearest-neighbor discriminant analysis
Leave-one-out classification summary

Key

Number
Percent

Classified
True group 1 2 3 Total

1 299 4 6 309
96.76 1.29 1.94 100.00

2 13 82 0 95
13.68 86.32 0.00 100.00

3 10 0 86 96
10.42 0.00 89.58 100.00

Total 322 86 92 500
64.40 17.20 18.40 100.00

Priors 0.6180 0.1900 0.1920

In contrast to the other two models, KNN has only 33 (4+ 6+ 13+ 10) misclassified observations.

We can see how points are classified by KNN by looking at the following graph.

. predict cknn, looclass

. twoway (scatter y x if cknn==1 )
> (scatter y x if cknn ==2)
> (scatter y x if cknn ==3)
> ‘functionplot’, ‘graphopts’ name(knn, replace)
> title("KNN LOO classification")
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KNN LOO classification

KNN has some resolution of the circles and correctly classifies most of the points. Its misclassified
observations are near the boundaries of the circles, where nearest points fall on both sides of the
boundary line.



8 discrim knn — kth-nearest-neighbor discriminant analysis

Mahalanobis transformation
The Mahalanobis transformation eliminates the correlation between the variables and standardizes the

variance of each variable, as demonstrated in example 2 of [MV] discrim lda. When the Mahalanobis
transformation is used in conjunction with Euclidean distance, it is called Mahalanobis distance.
The Mahalanobis transformation may be applied when any continuous measure is chosen, not just
measure(Euclidean). See [MV] measure option for a description of the available measures.

Example 2

We will reproduce an example from Rencher and Christensen (2012, 290–292) that uses the
Mahalanobis distance. Rencher and Christensen present data collected by G. R. Bryce and R. M.
Barker of Brigham Young University as part of a preliminary study of a possible link between football
helmet design and neck injuries. Six head dimensions were measured for each subject. Thirty subjects
were sampled in each of three groups: high school football players (group 1), college football players
(group 2), and nonfootball players (group 3). The six variables are wdim, head width at its widest
dimension; circum, head circumference; fbeye, front-to-back measurement at eye level; eyehd, eye
to top of head measurement; earhd, ear to top of head measurement; and jaw, jaw width.

These measurements will not have the same ranges. For example, the head circumference should
be much larger than eye to top of head measurement. Mahalanobis distance is used to standardize
the measurements.

https://www.stata.com/manuals/mvdiscrimlda.pdf#mvdiscrimldaRemarksandexamplesex2_dlda
https://www.stata.com/manuals/mvdiscrimlda.pdf#mvdiscrimlda
https://www.stata.com/manuals/mvmeasure_option.pdf#mvmeasure_option
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. use https://www.stata-press.com/data/r18/head, clear
(Table 8.3. Head measurements, Rencher and Christensen (2012))

. discrim knn wdim-jaw, k(5) group(group) mahalanobis

Kth-nearest-neighbor discriminant analysis
Resubstitution classification summary

Key

Number
Percent

Classified
True group High school College Nonplayer Unclassified

High school 26 0 1 3
86.67 0.00 3.33 10.00

College 1 19 9 1
3.33 63.33 30.00 3.33

Nonplayer 1 4 22 3
3.33 13.33 73.33 10.00

Total 28 23 32 7
31.11 25.56 35.56 7.78

Priors 0.3333 0.3333 0.3333

Classified
True group Total

High school 30
100.00

College 30
100.00

Nonplayer 30
100.00

Total 90
100.00

Priors

A subset of this result is in Rencher and Christensen (2012, 331–332). Of the 90 original
observations, 16 were misclassified and 7 observations were unclassified. Rencher and Christensen
also state the error rate for this example is 0.193. We use estat errorrate to get the error rate.

. estat errorrate

Error rate estimated by error count

group
High school College Nonplayer Total

Error rate .037037037 .344827586 .185185185 .189016603

Priors .333333333 .333333333 .333333333

Note: 7 observations were not classified and are not included in the table.

Our error rate of 0.189 does not match that of Rencher and Christensen. Why is this? Rencher
and Christensen calculates the error rate as the number of misclassified observations over the total
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number of observations classified. This is 16/83 ≈ 0.193. We use the standard error-rate definition
that takes into account the prior probabilities. From the high school group, there is one misclassified
observation of 27 total observations classified from this group, so its error rate is (1/27) ≈ 0.037, and
its contribution to the total is (1/27)(1/3). Likewise, the error rates for the college and nonplayer
group are (10/29) ≈ 0.345 and (5/27) ≈ 0.185 respectively, with contributions of (10/29)(1/3) and
(5/27)(1/3). Adding all contributions, we get the displayed error rate of 0.189. See

Methods and formulas of [MV] discrim estat for details.

The unclassified observations are those that resulted in ties. We can force ties to be classified by
changing the ties() option. The default is ties(missing), which says that ties are to be classified
as missing values. Here we choose ties(nearest), which breaks the tie by classifying to the group
of the nearest tied observation.

. discrim knn wdim-jaw, k(5) group(group) mahalanobis ties(nearest)

Kth-nearest-neighbor discriminant analysis
Resubstitution classification summary

Key

Number
Percent

Classified
True group High school College Nonplayer Total

High school 28 0 2 30
93.33 0.00 6.67 100.00

College 1 20 9 30
3.33 66.67 30.00 100.00

Nonplayer 1 4 25 30
3.33 13.33 83.33 100.00

Total 30 24 36 90
33.33 26.67 40.00 100.00

Priors 0.3333 0.3333 0.3333

Compare this with example 1 in [MV] candisc, example 3 in [MV] discrim estat, and example 2
of [MV] discrim logistic.

Binary data

In addition to the measures for continuous data, a variety of binary measures are available for
KNN. Binary data can be created from any categorical dataset by using xi; see [R] xi.

Example 3

You have invited some scientist friends over for dinner, including Mr. Mushroom (see vignette
below), a real “fun guy”. Mr. Mushroom is not only a researcher in mycology who enjoys studying
mushrooms but also an enthusiastic mushroom gourmand who likes nothing better than to combine his
interests in classification and cookery. His current research is identification of poisonous mushrooms
from photographs. From the photographs, he can identify the shape of a mushroom’s cap, the cap’s

https://www.stata.com/manuals/mvdiscrimestat.pdf#mvdiscrimestatMethodsandformulas
https://www.stata.com/manuals/mvdiscrimestat.pdf#mvdiscrimestat
https://www.stata.com/manuals/mvcandisc.pdf#mvcandiscRemarksandexamplesex1_candisc
https://www.stata.com/manuals/mvcandisc.pdf#mvcandisc
https://www.stata.com/manuals/mvdiscrimestat.pdf#mvdiscrimestatRemarksandexamplesex3_discrimestat
https://www.stata.com/manuals/mvdiscrimestat.pdf#mvdiscrimestat
https://www.stata.com/manuals/mvdiscrimlogistic.pdf#mvdiscrimlogisticRemarksandexamplesex2
https://www.stata.com/manuals/mvdiscrimlogistic.pdf#mvdiscrimlogistic
https://www.stata.com/manuals/rxi.pdf#rxi
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surface, the cap’s color, the population of mushrooms, and, with some careful attention to detail in
the surrounding area, the habitat.

� �
William Alphonso Murrill (1867–1957) was a famous mycologist, taxonomist, and writer from
the New York Botanical Gardens and was nicknamed “Mr. Mushroom”. Although we borrowed
his nickname, Mr. Mushroom and the events portrayed in this example are entirely fictitious.
William Murrill’s many scientific accomplishments include the 1916 book Edible and Poisonous
Mushrooms.� �
Knowing your friend, you imagine that he will insist on bringing a mushroom dish to be unveiled

and served at dinnertime—perhaps his experimental subjects. Although you know that he is a careful
scientist and a gifted cook, you are stalked with worries about poisoning your other guests.

Late at night you cannot sleep for worrying about poisonous mushrooms, and you decide to do
a little research into mushroom classification. You do a Google search online and find mushroom
data at http://archive.ics.uci.edu/ml/datasets/Mushroom. For reference, these records are drawn from
Lincoff (1981).

This is a large dataset of 8,124 observations on the Agaricus and Lepiota. Each species is identified
as definitely edible, definitely poisonous, or of unknown edibility and not recommended. This last
class was combined with the poisonous one. Lincoff (1981) clearly states that there is no simple rule
for determining the edibility of a mushroom; no rule like “leaflets three, let it be” for Poison Oak
and Ivy, a fact that does not seem comforting. Twenty-two attributes are collected, including those
that Mr. Mushroom can identify from his photographs.

The mushroom data is a set of 23 variables that describe the cap of the mushroom, whether or
not it has bruises, the gills, the veil, the stalk, the ring, the spores, the population, and the habitat.
The variables that describe the cap, for example, are capshape, capsurface, and capcolor. The
capshape variable, for example, has categories bell, conical, convex, flat, knobbed, and sunken.
Other variables and categories are similar.

You read in this dataset by using infile and make some modifications, attaching notes to this
dataset to describe what you did to the original mushroom data. Modifications include dropping
categories of the variables of interest that completely determine whether a mushroom is poisonous.
The full mushroom data are also available; webuse mushroom full to obtain it.

. use https://www.stata-press.com/data/r18/mushroom
(Lincoff (1981) Audubon Guide; http://archive.ics.uci.edu/ml/datasets/Mushroom)

. tabulate habitat poison

poison
habitat edible poisonous Total

grasses 752 680 1,432
leaves 240 585 825

meadows 128 24 152
paths 136 1,008 1,144
urban 64 224 288
woods 1,848 1,268 3,116

Total 3,168 3,789 6,957

You can see by tabulating two of the variables, habitat and poison, that in each habitat you have
some mushrooms that are poisonous as well as some that are edible. The other descriptive variables
of interest produce similar results.

http://archive.ics.uci.edu/ml/datasets/Mushroom
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Each variable is a set of unordered categories. Thus, you can treat them as factor variables. Because
your goal is to account for all categories, you will apply the factor-variable base operator ibn. to
the categorical variables. For details, see [U] 11.4.3 Factor variables.

With KNN you can choose a measure that is suited to these data. You expect data with many
zeroes and few ones. A match of two ones is far more significant than two matching zeroes. Looking
through the binary similarity measures in [MV] measure option, you see that the Jaccard binary
similarity coefficient reports the proportion of matches of ones when at least one of the observations
contains a one, and the Dice binary similarity measure weighs matches of ones twice as heavily as
the Jaccard measure. Either suits the situation, and you choose the Dice measure. The conversion
from a similarity to a dissimilarity measure will be s2d(standard) by default.

The poisonous and edible mushrooms are split about half and half in the original dataset, and in
the current subset of these data the ratio is still approximately half and half, so you do not specify
priors, obtaining priors(equal), the default.

Because of the size of the dataset and the number of indicator variables created by the factor-variable
base operator ibn., KNN analysis is slow. You decide to discriminate based on 2,000 points selected
at random, approximately a third of the data.

. set seed 12345678

. generate u = runiform()

. sort u

. discrim knn ibn.population ibn.habitat ibn.bruises ibn.capshape
> ibn.capsurface ibn.capcolor in 1/2000, k(15) group(poison) measure(dice)

Kth-nearest-neighbor discriminant analysis
Resubstitution classification summary

Key

Number
Percent

Classified
True poison edible poisonous Total

edible 848 65 913
92.88 7.12 100.00

poisonous 29 1,058 1,087
2.67 97.33 100.00

Total 877 1,123 2,000
43.85 56.15 100.00

Priors 0.5000 0.5000

In some settings, these results would be considered good. Of the original 2,000 mushrooms, you
see that only 29 poisonous mushrooms have been misclassified as edible. However, even sporadic
classification of a poisonous mushroom as edible is a much bigger problem than classifying an edible
mushroom as poisonous. This does not take the cost of misclassification into account. You decide
that calling a poisonous mushroom edible is at least 10 times worse than calling an edible mushroom
poisonous. In the two-group case, you can easily use the priors() option to factor in this cost;
see [MV] discrim or McLachlan (2004, 9). We set the prior probability of poisonous mushrooms 10
times higher than that of the edible mushrooms.

https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/mvmeasure_option.pdf#mvmeasure_option
https://www.stata.com/manuals/mvdiscrim.pdf#mvdiscrim
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. estat classtable in 1/2000, priors(.09, .91)

Resubstitution classification table

Key

Number
Percent

Classified
True poison edible poisonous Total

edible 728 185 913
79.74 20.26 100.00

poisonous 0 1,087 1,087
0.00 100.00 100.00

Total 728 1,272 2,000
36.40 63.60 100.00

Priors 0.0900 0.9100

These results are reassuring. There are no misclassified poisonous mushrooms, although 185 edible
mushrooms of the total 2,000 mushrooms in our model are misclassified.

You now check to see how this subsample of the data performs in predicting the poison status of
the rest of the data. This takes a few minutes of computer time, but unlike using estat classtable
above, the variable predicted will stay with your dataset until you drop it. tabulate can be used
instead of estat classtable.

. predict cpoison, classification priors(.09, .91)

. label values cpoison poison

. tabulate poison cpoison

classification
poison edible poisonous Total

edible 2,450 718 3,168
poisonous 0 3,789 3,789

Total 2,450 4,507 6,957

This is altogether reassuring. Again, no poisonous mushrooms were misclassified. Perhaps there
is no need to worry about dinnertime disasters, even with a fungus among us. You are so relieved
that you plan on serving a Jello dessert to cap off the evening—your guests will enjoy a mold to
behold. Under the circumstances, you think doing so might just be a “morel” imperative.
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Stored results
discrim knn stores the following in e():

Scalars
e(N) number of observations
e(N groups) number of groups
e(k nn) number of nearest neighbors
e(k) number of discriminating variables

Macros
e(cmd) discrim
e(subcmd) knn
e(cmdline) command as typed
e(groupvar) name of group variable
e(grouplabels) labels for the groups
e(measure) similarity or dissimilarity measure
e(measure type) dissimilarity or similarity
e(measure binary) binary, if binary measure specified
e(s2d) standard or oneminus, if s2d() specified
e(varlist) discriminating variables
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(ties) how ties are to be handled
e(mahalanobis) mahalanobis, if Mahalanobis transform is performed
e(properties) nob noV
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(groupcounts) number of observations for each group
e(grouppriors) prior probabilities for each group
e(groupvalues) numeric value for each group
e(SSCP W) pooled within-group SSCP matrix
e(W eigvals) eigenvalues of e(SSCP W)
e(W eigvecs) eigenvectors of e(SSCP W)
e(S) pooled within-group covariance matrix
e(Sinv) inverse of e(S)
e(sqrtSinv) Cholesky (square root) of e(Sinv)
e(community) community of neighbors for prediction

Functions
e(sample) marks estimation sample

Methods and formulas
Let g be the number of groups, ni the number of observations for group i, and qi the prior

probability for group i. Let x denote an observation measured on p discriminating variables. For
consistency with the discriminant analysis literature, x will be a column vector, though it corresponds
to a row in your dataset. Let fi(x) represent the density function for group i, and let P (x|Gi) denote
the probability of observing x conditional on belonging to group i. Denote the posterior probability
of group i given observation x as P (Gi|x). With Bayes’s theorem, we have

P (Gi|x) =
qifi(x)∑g

j=1 qjfj(x)
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Substituting P (x|Gi) for fi(x), we have

P (Gi|x) =
qiP (x|Gi)∑g

j=1 qjP (x|Gj)

For KNN discrimination, we let ki be the number of the k nearest neighbors from group i, and
the posterior-probability formula becomes

P (Gi|x) =

qiki
ni

g∑
j=1

qjkj
nj

In the event that there are ties among the nearest neighbors, k is increased to accommodate the
ties. If five points are all nearest and equidistant from a given x, then an attempt to calculate the
three nearest neighbors of x will actually obtain five nearest neighbors.

Determining the nearest neighbors depends on a dissimilarity or distance calculation. The available
dissimilarity measures are described in [MV] measure option. Continuous and binary measures are
available. If a similarity measure is selected, it will be converted to a dissimilarity by either

standard d(ij) =
√

s(ii) + s(jj)− 2s(ij) =
√

2{1− s(ij)}
oneminus d(ij) = 1− s(ij)

With any of the continuous measures, a Mahalanobis transformation may be performed before
computing the dissimilarities. For details on the Mahalanobis transformation, see Methods and formulas
of [MV] discrim lda. The Mahalanobis transformation with Euclidean distance is called Mahalanobis
distance.

Optimal choice of k for KNN is not an exact science. With two groups, k should be chosen as
an odd integer to avoid ties. Rencher and Christensen (2012, 331) cites the research of Loftsgaarden
and Quesenberry (1965), which suggests that an optimal k is

√
ni, where ni is a typical group size.

Rencher and Christensen also suggest running with several different values of k and choosing the
one that gives the best error rate. McLachlan (2004) cites Enas and Choi (1986), which suggests that
when there are two groups of comparable size that k should be chosen approximately between N3/8

or N2/8, where N is the number of observations.
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[MV] discrim — Discriminant analysis
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