
Title stata.com

mi impute chained — Impute missing values using chained equations

Description Menu Syntax Options
Remarks and examples Stored results Methods and formulas Acknowledgments
References Also see

Description

mi impute chained fills in missing values in multiple variables iteratively by using chained
equations, a sequence of univariate imputation methods with fully conditional specification (FCS)
of prediction equations. It accommodates arbitrary missing-value patterns. You can perform separate
imputations on different subsets of the data by specifying the by() option. You can also account for
frequency, analytic (with continuous variables only), importance, and sampling weights.

Menu
Statistics > Multiple imputation

Syntax
Default specification of prediction equations, basic syntax

mi impute chained (uvmethod) ivars
[
= indepvars

] [
if
] [

weight
] [

, impute options options
]

Default specification of prediction equations, full syntax

mi impute chained lhs
[
= indepvars

] [
if
] [

weight
] [

, impute options options
]

Custom specification of prediction equations

mi impute chained lhsc
[
= indepvars

] [
if
] [

weight
] [

, impute options options
]

where lhs is lhs spec
[

lhs spec
[
. . .

]]
and lhs spec is

(uvmethod
[

if
] [

, uvspec options
]
) ivars

lhsc is lhsc spec
[

lhsc spec
[
. . .

]]
and lhsc spec is

(uvmethod
[

if
] [

, include(xspec) omit(varlist) noimputed uvspec options
]
) ivars

ivars (or newivar if uvmethod is intreg) are the names of the imputation variables.

uvspec options are ascontinuous, noisily, and the method-specific options as described in the
manual entry for each univariate imputation method.

The include(), omit(), and noimputed options allow you to customize the default prediction
equations.

1

http://stata.com
https://www.stata.com/manuals/miglossary.pdf#miGlossarydef_FCS
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists

2 mi impute chained — Impute missing values using chained equations

uvmethod Description

regress linear regression for a continuous variable; [MI] mi impute regress
pmm predictive mean matching for a continuous variable;

[MI] mi impute pmm
truncreg truncated regression for a continuous variable with a restricted range;

[MI] mi impute truncreg
intreg interval regression for a continuous partially observed (censored) variable;

[MI] mi impute intreg
logit logistic regression for a binary variable; [MI] mi impute logit
ologit ordered logistic regression for an ordinal variable; [MI] mi impute ologit
mlogit multinomial logistic regression for a nominal variable;

[MI] mi impute mlogit
poisson Poisson regression for a count variable; [MI] mi impute poisson
nbreg negative binomial regression for an overdispersed count variable;

[MI] mi impute nbreg

impute options Description

Main
∗add(#) specify number of imputations to add; required when no imputations exist
∗replace replace imputed values in existing imputations
rseed(#) specify random-number seed
double store imputed values in double precision; the default is to store them

as float

by(varlist
[
, byopts

]
) impute separately on each group formed by varlist

Reporting

dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends

Advanced

force proceed with imputation, even when missing imputed values are
encountered

noupdate do not perform mi update; see [MI] noupdate option
∗add(#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.

https://www.stata.com/manuals/mimiimputeregress.pdf#mimiimputeregress
https://www.stata.com/manuals/mimiimputepmm.pdf#mimiimputepmm
https://www.stata.com/manuals/mimiimputetruncreg.pdf#mimiimputetruncreg
https://www.stata.com/manuals/mimiimputeintreg.pdf#mimiimputeintreg
https://www.stata.com/manuals/mimiimputelogit.pdf#mimiimputelogit
https://www.stata.com/manuals/mimiimputeologit.pdf#mimiimputeologit
https://www.stata.com/manuals/mimiimputemlogit.pdf#mimiimputemlogit
https://www.stata.com/manuals/mimiimputepoisson.pdf#mimiimputepoisson
https://www.stata.com/manuals/mimiimputenbreg.pdf#mimiimputenbreg
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeOptionsbyopts
https://www.stata.com/manuals/minoupdateoption.pdf#minoupdateoption

mi impute chained — Impute missing values using chained equations 3

options Description

MICE options

burnin(#) specify number of iterations for the burn-in period;
default is burnin(10)

chainonly perform chained iterations for the length of the burn-in period
without creating imputations in the data

augment perform augmented regression in the presence of perfect prediction for
all categorical imputation variables

noimputed do not include imputation variables in any prediction equation
bootstrap estimate model parameters using sampling with replacement
savetrace(. . .) save summaries of imputed values from each iteration in filename.dta

Reporting

dryrun show conditional specifications without imputing data
report show report about each conditional specification
chaindots display dots as chained iterations are performed
showevery(#) display intermediate results from every #th iteration
showiter(numlist) display intermediate results from every iteration in numlist

Advanced

orderasis impute variables in the specified order
nomonotone impute using chained equations even when variables follow a

monotone-missing pattern; default is to use monotone method
nomonotonechk do not check whether variables follow a monotone-missing pattern

You must mi set your data before using mi impute chained; see [MI] mi set.
You must mi register ivars as imputed before using mi impute chained; see [MI] mi set.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
fweights, aweights (regress, pmm, truncreg, and intreg only), iweights, and pweights are allowed; see

[U] 11.1.6 weight.

Options

� � �
Main �

add(), replace, rseed(), double, by(); see [MI] mi impute.

The following options appear on a Specification dialog that appears when you click on the Create ...
button on the Main tab. The include(), omit(), and noimputed options allow you to customize
the default prediction equations.

include(xspec) specifies that xspec be included in prediction equations of all imputation variables
corresponding to the current left-hand-side specification lhsc spec. xspec includes complete vari-
ables and expressions of imputation variables bound in parentheses. If the noimputed option is
specified within lhsc spec or with mi impute chained, then xspec may also include imputation
variables. xspec may contain factor variables; see [U] 11.4.3 Factor variables.

omit(varlist) specifies that varlist be omitted from the prediction equations of all imputation variables
corresponding to the current left-hand-side specification lhsc spec. varlist may include complete
variables or imputation variables. varlist may contain factor variables; see [U] 11.4.3 Factor

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/mimiset.pdf#mimiset
https://www.stata.com/manuals/mimiset.pdf#mimiset
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables

4 mi impute chained — Impute missing values using chained equations

variables. In omit(), you should list variables to be omitted exactly as they appear in the
prediction equation (abbreviations are allowed). For example, if variable x1 is listed as a factor
variable, use omit(i.x1) to omit it from the prediction equation.

noimputed specifies that no imputation variables automatically be included in prediction equations
of imputation variables corresponding to the current uvmethod.

uvspec options are options specified within each univariate imputation method, uvmethod.
uvspec options include ascontinuous, noisily, and the method-specific options as described
in the manual entry for each univariate imputation method.

ascontinuous specifies that categorical imputation variables corresponding to the current uvmethod
be included as continuous in all prediction equations. This option is only allowed when uvmethod
is logit, ologit, or mlogit.

noisily specifies that the output from the current univariate model fit to the observed data be
displayed. This option is useful in combination with the showevery(#) or showiter(numlist)
option to display results from a particular univariate imputation model for specific iterations.

� � �
MICE options �

burnin(#) specifies the number of iterations for the burn-in period for each chain (one chain per
imputation). The default is burnin(10). This option specifies the number of iterations necessary
for a chain to reach approximate stationarity or, equivalently, to converge to a stationary distribution.
The required length of the burn-in period will depend on the starting values used and the missing-
data patterns observed in the data. It is important to examine the chain for convergence to determine
an adequate length of the burn-in period prior to obtaining imputations; see Convergence of MICE.
The provided default is what current literature recommends. However, you are responsible for
determining that sufficient iterations are performed.

chainonly specifies that mi impute chained perform chained iterations for the length of the burn-in
period and then stop. This option is useful in combination with savetrace() to examine the
convergence of the method prior to imputation. No imputations are created when chainonly is
specified, so add() or replace is not required with mi impute chained, chainonly and they
are ignored if specified.

augment specifies that augmented regression be performed if perfect prediction is detected. By default,
an error is issued when perfect prediction is detected. The idea behind the augmented-regression
approach is to add a few observations with small weights to the data during estimation to avoid
perfect prediction. See The issue of perfect prediction during imputation of categorical data under
Remarks and examples in [MI] mi impute for more information. augment is not allowed with
importance weights. This option is equivalent to specifying augment within univariate specifications
of all categorical imputation methods: logit, ologit, and mlogit.

noimputed specifies that no imputation variables automatically be included in any of the prediction
equations. This option is seldom used. This option is convenient if you wish to use different sets
of imputation variables in all prediction equations. It is equivalent to specifying noimputed within
all univariate specifications.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect. This option is equivalent to specifying bootstrap within all
univariate specifications.

https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesTheissueofperfectpredictionduringimputationofcategoricaldata
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute

mi impute chained — Impute missing values using chained equations 5

savetrace(filename
[
, traceopts

]
) specifies to save the means and standard deviations of imputed

values from each iteration to a Stata dataset called filename.dta. If the file already exists, the
replace suboption specifies to overwrite the existing file. savetrace() is useful for monitoring
convergence of the chained algorithm. This option cannot be combined with by().

traceopts are replace, double, and detail.

replace indicates that filename.dta be overwritten if it exists.

double specifies that the variables be stored as doubles, meaning 8-byte reals. By default,
they are stored as floats, meaning 4-byte reals. See [D] Data types.

detail specifies that additional summaries of imputed values including the smallest and the
largest values and the 25th, 50th, and 75th percentiles are saved in filename.dta.

� � �
Reporting �

dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from all univariate
conditional models fit to the observed data be displayed. nolegend suppresses all imputation table
legends that include a legend with the titles of the univariate imputation methods used, a legend
about conditional imputation when conditional() is used within univariate specifications, and
group legends when by() is specified.

dryrun specifies to show the conditional specifications that would be used to impute each vari-
able without actually imputing data. This option is recommended for checking specifications of
conditional models prior to imputation.

report specifies to show a report about each univariate conditional specification. This option, in
combination with dryrun, is recommended for checking specifications of conditional models prior
to imputation.

chaindots specifies that all chained iterations be displayed as dots. An x is displayed for every
failed iteration.

showevery(#) specifies that intermediate regression output be displayed for every #th iteration.
This option requires noisily. If noisily is specified with mi impute chained, then the output
from the specified iterations is displayed for all univariate conditional models. If noisily is used
within a univariate specification, then the output from the corresponding univariate model from
the specified iterations is displayed.

showiter(numlist) specifies that intermediate regression output be displayed for each iteration in
numlist. This option requires noisily. If noisily is specified with mi impute chained, then the
output from the specified iterations is displayed for all univariate conditional models. If noisily
is used within a univariate specification, then the output from the corresponding univariate model
from the specified iterations is displayed.

� � �
Advanced �

force; see [MI] mi impute.

orderasis requests that the variables be imputed in the specified order. By default, variables are
imputed in order from the most observed to the least observed.

nomonotone, a rarely used option, specifies not to use monotone imputation and to proceed with
chained iterations even when imputation variables follow a monotone-missing pattern. mi impute
chained checks whether imputation variables have a monotone missing-data pattern and, if they
do, imputes them using the monotone method (without iteration). If nomonotone is used, mi
impute chained imputes variables iteratively even if variables are monotone-missing.

https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/ddatatypes.pdf#dDatatypes
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute

6 mi impute chained — Impute missing values using chained equations

nomonotonechk specifies not to check whether imputation variables follow a monotone-missing
pattern. By default, mi impute chained checks whether imputation variables have a monotone
missing-data pattern and, if they do, imputes them using the monotone method (without iteration).
If nomonotonechk is used, mi impute chained does not check the missing-data pattern and
imputes variables iteratively even if variables are monotone-missing. Once imputation variables are
established to have an arbitrary missing-data pattern, this option may be used to avoid potentially
time-consuming checks; the monotonicity check may be time consuming when a large number of
variables is being imputed.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks and examples stata.com

Remarks are presented under the following headings:

Multivariate imputation using chained equations
Compatibility of conditionals
Convergence of MICE
First use
Using mi impute chained
Default prediction equations
Custom prediction equations
Link between mi impute chained and mi impute monotone
Examples

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute options. Also see [MI] Workflow for general advice on working with mi.

Multivariate imputation using chained equations

When a missing-data structure is monotone distinct, multiple variables can be imputed sequentially
without iteration by using univariate conditional models (see [MI] mi impute monotone). Such
monotone imputation is impossible with arbitrary missing-data patterns, and simultaneous imputation
of multiple variables in such cases requires iteration. We described the impact of an arbitrary missing-
data pattern on multivariate imputation and two common imputation approaches used in such cases, the
multivariate normal method and multivariate imputation using chained equations (MICE), in Multivariate
imputation in [MI] mi impute. In this entry, we describe MICE, also known as imputation using FCS
(van Buuren, Boshuizen, and Knook 1999) or sequential regression multivariate imputation (SRMI;
Raghunathan et al. 2001), in more detail. We use the terms MICE, FCS, and SRMI interchangeably
throughout the documentation.

MICE is similar to monotone imputation in the sense that it is also based on a series of univariate
imputation models. Unlike monotone imputation, MICE uses FCSs of prediction equations (chained
equations) and requires iteration. Iteration is needed to account for possible dependence of the estimated
model parameters on the imputed data when a missing-data structure is not monotone distinct.

The general idea behind MICE is to impute multiple variables iteratively via a sequence of univariate
imputation models, one for each imputation variable, with fully conditional specifications of prediction
equations: all variables except the one being imputed are included in a prediction equation. Formally,
for imputation variables X1, X2, . . . , Xp and complete predictors (independent variables) Z, this
procedure can be described as follows. Imputed values are drawn from

https://www.stata.com/manuals/minoupdateoption.pdf#minoupdateoption
http://stata.com
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
https://www.stata.com/manuals/miworkflow.pdf#miWorkflow
https://www.stata.com/manuals/mimiimputemonotone.pdf#mimiimputemonotone
https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesMultivariateimputation
https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesMultivariateimputation
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
https://www.stata.com/manuals/miglossary.pdf#miGlossarydef_FCS

mi impute chained — Impute missing values using chained equations 7

X
(t+1)
1 ∼ g1(X1|X(t)

2 , . . . , X(t)
p ,Z,φ1)

X
(t+1)
2 ∼ g2(X2|X(t+1)

1 , X
(t)
3 , . . . , X(t)

p ,Z,φ2)

. . .

X(t+1)
p ∼ gp(Xp|X(t+1)

1 , X
(t+1)
2 , . . . , X

(t+1)
p−1 ,Z,φp)

(1)

for iterations t = 0, 1, . . . , T until convergence at t = T , where φj are the corresponding model
parameters with a uniform prior. The univariate imputation models, gj(·), can each be of a different
type (normal, logistic, etc.), as is appropriate for imputing Xj .

Fully conditional specifications (1) are similar to the Gibbs sampling algorithm (Geman and
Geman 1984; Gelfand and Smith 1990), one of the MCMC methods for simulating from complicated
multivariate distributions. In fact, in certain cases these specifications do correspond to a genuine Gibbs
sampler. For example, when all Xj’s are continuous and all gj(·)’s are normal linear regressions with
constant variances, then (1) corresponds to a Gibbs sampler based on a multivariate normal distribution
with a uniform prior for model parameters. Such correspondence does not hold in general because
unlike the Gibbs sampler, the conditional densities {gj(·), j = 1, 2, . . . , p} may not correspond
to any multivariate joint conditional distribution of X1, X2, . . . , Xp given Z (Arnold, Castillo, and
Sarabia 2001). This issue is known as incompatibility of conditionals (for example, Arnold, Castillo,
and Sarabia [1999]). When conditionals are not compatible, the MICE procedure may not converge
to any stationary distribution, which can raise concerns about its validity as a principled statistical
method; see Compatibility of conditionals and Convergence of MICE for more details.

Despite the lack of a general theoretical justification, MICE is very popular in practice. Its popularity
is mainly due to the tremendous flexibility it offers for imputing various types of data arising in
observational studies. Similarly to monotone imputation, the variable-by-variable specification of MICE
allows practitioners to simultaneously impute variables of different types by choosing from several
univariate imputation methods appropriate for each variable. Being able to specify a separate model
for each variable provides an imputer with great flexibility in incorporating certain characteristics
specific to each variable. For example, we can use predictive mean matching ([MI] mi impute pmm)
or truncated regression ([MI] mi impute truncreg) to impute a variable with a restricted range. We
can impute variables defined on a subsample using only observations in that subsample while using the
entire sample to impute other variables; see Conditional imputation in [MI] mi impute for details. For
more information about multivariate imputation using chained equations, see van Buuren, Boshuizen,
and Knook (1999); Raghunathan et al. (2001); van Buuren et al. (2006); van Buuren (2007); White,
Royston, and Wood (2011); and Royston (2004, 2005a, 2005b, 2007, 2009), among others.

The specification of a conditional imputation model gj(·) includes an imputation method and a
prediction equation relating an imputation variable to other explanatory variables. In what follows,
we distinguish between the default specification (of prediction equations) in which the identities
of the complete explanatory variables are the same across all prediction equations, and the custom
specification in which the identities are allowed to differ.

Under the default specification, prediction equations of each imputation variable include all complete
independent variables and all imputation variables except the one being imputed. Under the custom
specification, each prediction equation may include a subset of the predictors that would be used under
the default specification. The custom specification also allows expressions of imputation variables in
prediction equations.

Model (1) corresponds to the default specification. For example, consider imputation variables
X1, X2, and X3 and complete predictors Z1 and Z2. Under the default specification, the individual
prediction equations are determined as follows. The most observed variable—say, X1—is predicted
from X2, X3, Z1, and Z2. The next most observed variable—say, X2—is predicted from X3, Z1,

https://www.stata.com/manuals/mimiimputepmm.pdf#mimiimputepmm
https://www.stata.com/manuals/mimiimputetruncreg.pdf#mimiimputetruncreg
https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesConditionalimputation
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute

8 mi impute chained — Impute missing values using chained equations

Z2, and previously imputed X1. The least observed variable, X3, is predicted from Z1, Z2, and
previously imputed X1 and X2. (A constant is included in all prediction equations, by default.) We
use the following notation to refer to the above sequence of prediction equations (imputation sequence):
X1|X−1, Z1, Z2 → X2|X−2, Z1, Z2 → X3|X−3, Z1, Z2, where X−j denotes all imputed or to-
be-imputed variables except Xj .

A sequence such as X1|X−1, Z1 → X2|X−2, Z1, Z2 → X3|X−3, Z2 would correspond to a
custom specification. Here X1 is assumed to be conditionally independent of Z2 given X−1 and Z1,
and X3 is assumed to be conditionally independent of Z1 given X−3 and Z2.

Compatibility of conditionals

A concern with MICE is its lack of a formal theoretical justification. Its theoretical weakness is
possible incompatibility of fully conditional specifications (1). As we briefly mentioned earlier, it is
possible to specify a set of full conditionals with MICE for which no multivariate distribution exists
(for example, van Buuren et al. [2006] and van Buuren [2007]). In such a case, the validity of MICE
as a statistical procedure is questionable.

The impact of incompatibility of conditional specifications in practice is still under investigation.
For example, van Buuren et al. (2006) performed several simulations to investigate the consequences
of strongly incompatible specifications on multiple-imputation (MI) results in a simple setting and
found very little impact of it on estimated parameters. The effect of incompatible conditionals on the
quality of imputations and final MI inference in general is not yet known. Of course, if a joint model
is of main scientific interest, then incompatibility of conditionals poses a problem. In the discussion
of Arnold, Castillo, and Sarabia (2001), Andrew Gelman and Trivellore Raghunathan mention that
the existence of an underlying joint distribution may be less important within the imputation context
than the ability to incorporate the unique features of the data.

For more information about the compatibility of conditional specifications, see Arnold, Castillo,
and Sarabia (2001); van Buuren (2007); and Arnold, Castillo, and Sarabia (1999) and references
therein.

Convergence of MICE

MICE is an iterative method and is similar in spirit to the Gibbs sampler, an MCMC method.
Similarly to MCMC methods, MICE builds a sequence of draws {X(t)

m : t = 1, 2, . . .}, a chain, and
iterates until this chain reaches a stationary distribution. So as with any MCMC method, monitoring
convergence is important with MICE.

MICE performs simulation by running multiple independent chains (see Convergence of iterative
methods in [MI] mi impute). To assess convergence of multiple chains, we need to examine the
stationarity of each chain by the end of the specified burn-in period b. In practice, convergence
of MICE is often examined visually. Trace plots—plots of summaries of the distribution (means,
standard deviations, quantiles, etc.) of imputed values against iteration numbers—are used to examine
stationarity of the chain. Long-term trends in trace plots are indicative of slow convergence to
stationarity. A suitable value for the burn-in period b can be inferred from a trace plot as the earliest
iteration after which each chain does not exhibit a visible trend and the fluctuations in values become
more regular. When the initial values are close to the mode of the target posterior distribution (when
one exists), b will generally be small. When the initial values are far off in the tails of the posterior
distribution, the initial number of iterations b will generally be larger.

https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesConvergenceofiterativemethods
https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesConvergenceofiterativemethods
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute

mi impute chained — Impute missing values using chained equations 9

The number of iterations necessary for MICE to converge depends on, among other things, the
fractions of missing information and initial values. The higher the fractions of missing information and
the farther the initial values are from the mode of the posterior predictive distribution of missing data,
the slower the convergence, and thus the larger the number of iterations required. Current literature
suggests that in many practical applications a low number of burn-in iterations, somewhere between
5 and 20 iterations, is usually sufficient for convergence (for example, van Buuren [2007]). In any
case, examination of the data and missing-data patterns is highly recommended when investigating
convergence of MICE.

The convergence of MICE may not be achieved when specified conditional models are incompatible,
as described in Compatibility of conditionals. The simulation draws will depend on the order in which
variables are imputed and on the chosen length of the burn-in period. It is important to evaluate the
quality of imputations (see Imputation diagnostics in [MI] mi impute) to determine the impact of
incompatibility on MI analysis.

First use
Before we describe various uses of mi impute chained, let’s look at a simple example first.

Consider the heart attack data example examining the relationship between heart attacks and
smoking from Multivariate imputation of [MI] mi impute, where the age and bmi variables contain
missing values. In another version of the dataset, bmi and age have a nonmonotone missing-data
pattern, and thus monotone imputation is not possible:

. use https://www.stata-press.com/data/r18/mheart8s0
(Fictional heart attack data; arbitrary pattern)

. mi misstable patterns, frequency

Missing-value patterns
(1 means complete)

Pattern
Frequency 1 2

118 1 1

24 1 0
8 0 1
4 0 0

154

Variables are (1) age (2) bmi

mi impute chained does not require missing data to be monotone, so we can use it to impute
missing values of age and bmi in this dataset. We use the same model specification as before:

https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesImputationdiagnostics
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesMultivariateimputation
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute

10 mi impute chained — Impute missing values using chained equations

. mi impute chained (regress) bmi age = attack smokes hsgrad female, add(10)

Conditional models:
age: regress age bmi attack smokes hsgrad female
bmi: regress bmi age attack smokes hsgrad female

Performing chained iterations ...

Multivariate imputation Imputations = 10
Chained equations added = 10
Imputed: m=1 through m=10 updated = 0

Initialization: monotone Iterations = 100
burn-in = 10

bmi: linear regression
age: linear regression

Observations per m

Variable Complete Incomplete Imputed Total

bmi 126 28 28 154
age 142 12 12 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

As before, 10 imputations are created (the add(10) option). The linear regression imputation method
(regress) is used to impute both continuous variables. The attack, smokes, hsgrad, and female
variables are used as complete predictors (independent variables).

mi impute chained reports the conditional specifications used to impute each variable and the
order in which they were imputed. By default, mi impute chained imputes variables in order from
the most observed to the least observed. In our example, age has the least number of missing values
and so is imputed first, even though we listed bmi before age in the command specification.

With the default specification, mi impute chained builds appropriate FCSs automatically using
the supplied imputation variables and complete predictors, specified as right-hand-side variables. The
default prediction equation for age includes bmi and all the complete predictors, and the default
prediction equation for bmi includes age and all the complete predictors.

The main header and table output were described in detail in [MI] mi impute. The information
specific to mi impute chained includes the type of initialization, the burn-in period, and the number
of iterations. By default, mi impute chained uses 10 burn-in iterations (also referred to as cycles in
the literature) before drawing imputed values. The total number of iterations performed by mi impute
chained to obtain 10 imputations is 100. Also, similarly to mi impute monotone, the additional
information above the table includes the legend describing what univariate imputation method was
used to impute each variable. (If desired, this legend may be suppressed by specifying the nolegend
option.)

Using mi impute chained

Below we summarize general capabilities of mi impute chained.

1. mi impute chained offers two main syntaxes—one using the default prediction equations
and the other allowing customization of prediction equations. We will refer to the two
syntaxes as default and custom, respectively. We describe the two syntaxes in detail in the
next two sections.

https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute

mi impute chained — Impute missing values using chained equations 11

2. mi impute chained allows specification of a global (outer) if condition,

. mi impute chained . . . if exp . . .

and equation-specific (inner) if conditions,

. mi impute chained . . . (. . . if exp . . .) . . .

A global if is applied to all equations. You may combine global and equation-specific if
conditions:

. mi impute chained . . . (. . . if exp . . .) . . . if exp . . .

3. mi impute chained allows specification of global weights, which are applied to all equations:

. mi impute chained . . . [weight] . . .

4. mi impute chained uses fully specified prediction equations by default. Customize prediction
equations by including or omitting desired terms:

. mi imp chain (. . . , include(z3) . . .) (. . . , omit(z1) . . .) . . .

5. mi impute chained automatically includes appropriate imputation variables in prediction
equations. Use a global noimputed option to prevent inclusion of imputation variables in
all prediction equations:

. mi impute chained . . . , noimputed . . .

Or use an equation-specific noimputed option to prevent inclusion of imputation variables
in only some prediction equations:

. mi impute chained . . . (. . . , noimputed . . .) . . .

As we mentioned earlier, mi impute chained is an iterative imputation method. By default, it
performs 10 burn-in iterations for each imputation before drawing the final set of imputed values.
The number of iterations is determined by the length of the burn-in period after which a random
sequence (chain) is assumed to converge to its stationary distribution. The provided default may not
be applicable to all situations, so you can use the burnin() option to modify it.

Use the chainonly and savetrace() options to determine the appropriate burn-in period. For
example,

. mi impute chained . . . , burnin(100) chainonly savetrace(impstats) . . .

saves summaries of imputed values from 100 iterations for each of the imputation variables to
impstats.dta without proceeding to impute data. You can apply techniques from Convergence of
MICE to the data in impstats.dta to determine an adequate burn-in period.

Use a combination of the dryrun and report options to check the specification of each univariate
imputation model prior to imputing data.

In the next two sections, we describe the use of mi impute chained first using hypothetical
situations and then using real examples.

Default prediction equations

We showed in First use an example of mi impute chained with default prediction equations
using the heart attack data. Here we provide more details about this default specification.

12 mi impute chained — Impute missing values using chained equations

By default, mi impute chained imputes missing values by using the default prediction equations.
It builds the corresponding univariate imputation models based on the supplied information: uvmethod,
the imputation method; ivars, the imputation variables; and indepvars, the complete predictors or
independent variables.

Suppose that continuous variables x1, x2, and x3 contain missing values and are ordered from the
most observed to the least observed. We want to impute these variables, and we decide to use the
same univariate imputation method, say, linear regression, for all. We can do this by typing

. mi impute chained (regress) x1 x2 x3 . . .

The above command corresponds to the first syntax diagram of mi impute chained: uvmethod
is regress and ivars is x1 x2 x3. Relating the above to the model notation used in (1), g1, g2,
g3 represent linear regression imputation models and the prediction sequence is X1|X2, X3 →
X2|X1, X3 → X3|X1, X2.

By default, mi impute chained imputes variables in order from the most observed to the least
observed, regardless of the order in which variables were specified. For example, we can list imputation
variables in the reverse order,

. mi impute chained (regress) x3 x2 x1 . . .

and mi impute chained will still impute x1 first, x2 second, and x3 last. You can use the orderasis
option to instruct mi impute chained to perform imputation of variables in the specified order.

If we have additional covariates containing no missing values (say, z1 and z2) that we want to
include in the imputation model, we can do so by typing

. mi impute chained (regress) x1 x2 x3 = z1 z2 . . .

Now indepvars is z1 z2 and the prediction sequence is X1|X2, X3, Z1, Z2 → X2|X1, X3, Z1, Z2 →
X3|X1, X2, Z1, Z2. Independent variables are included in the prediction equations of all univariate
models.

Suppose that we want to use a different imputation method for one of the variables—we want to
impute x3 using predictive mean matching. We can do this by typing

. mi impute chained (regress) x1 x2 (pmm, knn(5)) x3 = z1 z2 . . .

The above corresponds to the second syntax diagram of mi impute chained, a generalization of
the first that accommodates differing imputation methods. The right-hand side of the equation is
unchanged. z1 and z2 are included in all three prediction equations. The left-hand side now has
two specifications: (regress) x1 x2 and (pmm, knn(5)) x3. In previous examples, we had only
one left-hand-side specification, lhs spec—(regress) x1 x2 x3. (The number of left-hand-side
specifications does not necessarily correspond to the number of univariate models; the latter is
determined by the number of imputation variables.) In this example, x1 and x2 are imputed using
linear regression, and x3 is imputed using predictive mean matching with five nearest neighbors
specified in pmm’s option knn(). All method-specific options must be specified within the parentheses
surrounding the method.

Suppose now we want to restrict the imputation sample for x2 to observations where z1 is one;
also see Imputing on subsamples of [MI] mi impute. The corresponding syntax is

. mi impute chained (regress) x1 (regress if z1==1) x2 (pmm, knn(5))
> x3 = z1 z2 . . .

If, in addition to the above, we want to impute all variables using an overall subsample where z3
is one, we can specify the global if z3==1 condition:

. mi impute chained (regress) x1 (regress if z1==1) x2 (pmm, knn(5))
> x3 = z1 z2 if z3==1 . . .

https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesImputingonsubsamples
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute

mi impute chained — Impute missing values using chained equations 13

In the above, restrictions included only complete variables. When restrictions include imputation
variables, you should use the conditional() option instead of an if condition; see Conditional
imputation in [MI] mi impute. Suppose that we need to impute x2 using only observations for which
x1 is positive, provided that missing values of x1 are nested within missing values of x2. We can do
this by typing

. mi impute chained (regress) x1 (regress, cond(if x1>0)) x2 (pmm, knn(5)) x3
> = z1 z2 . . .

When any imputation variable is imputed using a categorical method (logit, ologit, or mlogit),
mi impute chained automatically includes it as a factor variable in the prediction equations of other
imputation variables. Suppose that x1 is a categorical variable and is imputed using the multinomial
logistic method:

. mi impute chained (mlogit) x1 (regress) x2 x3 . . .

The above will result in the prediction sequence X1|X2, X3 → X2|i.X1, X3 → X3|i.X1, X2

where i.X1 denotes the factors of X1.

If you wish to include a factor variable as continuous in prediction equations, you can use the
ascontinuous option within the specification of the univariate imputation method for that variable:

. mi impute chained (mlogit, ascontinuous) x1 (regress) x2 x3 . . .

As we discussed in The issue of perfect prediction during imputation of categorical data of [MI] mi
impute, perfect prediction often occurs during imputation of categorical variables. One way of dealing
with it is to use the augmented-regression approach (White, Daniel, and Royston 2010), available
through the augment option. For example, if perfect prediction occurs during imputation of x1 in
the above, you can specify augment within the method specification of x1 to perform augmented
regression:

. mi impute chained (mlogit, augment) x1 (regress) x2 x3 . . .

Alternatively, you can use the augment option with mi impute chained to perform augmented
regression for all categorical variables for which the issue of perfect prediction arises:

. mi impute chained (mlogit) x1 (logit) x2 (regress) x3 . . . , augment . . .

The above is equivalent to specifying augment within each specification of a univariate categorical
imputation method:

. mi impute chained (mlogit, augment) x1 (logit, augment) x2 (regress) x3 . . .

Custom prediction equations

In the previous section, we considered various uses of mi impute chained with default prediction
equations. Often, however, you may want to use different prediction equations for some or even all
imputation variables. We can easily modify the above specifications to accommodate this.

Let’s consider situations in which we want to use different sets of complete variables for some
imputation variables first. Recall our following hypothetical example:

. mi impute chained (regress) x1 x2 x3 = z1 z2 . . . (M1)

Suppose that we want to omit z2 from the prediction equation for x3. To accommodate this, we
need to include two separate specifications: one for x1 and x2 and one for x3:

. mi impute chained (regress) x1 x2 (regress, omit(z2)) x3 = z1 z2 . . .

https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesConditionalimputation
https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesConditionalimputation
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesTheissueofperfectpredictionduringimputationofcategoricaldata
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute

14 mi impute chained — Impute missing values using chained equations

The above corresponds to the custom specification, the third syntax diagram, of mi impute
chained. As before, we list all the complete variables indepvars to be included in all prediction
equations to the right of the = sign. So, indepvars is still z1 z2. The prediction equation for x3,
however, omits variable z2, specified within the omit() option. The prediction sequence for the
above specification is X1|X2, X3, Z1, Z2 → X2|X1, X3, Z1, Z2 → X3|X1, X2, Z1.

Alternatively, we could have achieved the above by including variable z1 in all prediction equations,
as a right-hand-side specification indepvars, and using the include() option to add variable z2 to
the prediction equations of x1 and x2:

. mi impute chained (regress, include(z2)) x1 x2 (regress) x3 = z1 . . .

You may also want to modify the sets of imputation variables to be included in prediction equations.
By default, mi impute chained automatically includes the appropriate fully conditional specifications
of imputation variables in all prediction equations.

Suppose that in addition to different sets of complete predictors, we assume that X1 and X2 are
conditionally independent given X3, which implies that prediction equations for x1 and x2 include
only x3 and not each other. We can accommodate this with the command

. mi impute chained (regress, include(x3 z2) noimputed) x1 x2 (regress) ///
x3 = z1 . . .

which corresponds to the prediction sequence X1|X3, Z1, Z2 → X2|X3, Z1, Z2 → X3|X1, X2, Z1.

The above is also equivalent to the command

. mi impute chained (regress, omit(x1 x2)) x1 x2 (regress, omit(z2)) ///
x3 = z1 z2 . . .

There are other equivalent ways of achieving the above custom specifications by using various
combinations of include(), omit(), and noimputed. The most convenient specification will depend
on your particular structure of the prediction equations. You can also combine these options within
the same univariate specification.

It is important to realize that equivalent syntaxes may produce different (yet equivalent with
stable imputation models) sequences of imputed values when they have different ordering of variables
in prediction equations. mi impute chained builds prediction equations as follows. Appropriate
imputation variables are included first, unless the noimputed option is specified. By default, imputation
variables are included in order from the most observed to the least observed. If the orderasis option
is used, the variables are included in the specified order. Next, terms specified in the include()
option are included in the listed order. Then right-hand-side variables (indepvars) are included in the
listed order. Finally, variables listed in the omit() option are removed from the prediction equation.
When you specify omit(), it is important to specify variables as they are included in the prediction
equation; if x1 is included as a factor variable, omit(i.x1) should be used.

You can also include functions of imputation variables in prediction equations with the custom
specification of mi impute chained. As we discussed in Model building in [MI] mi impute, there
are two ways to do that. You can include functions of imputation variables as separate imputation
variables directly in your imputation model or you can impute them passively using mi impute
chained.

https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesModelbuilding
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute

mi impute chained — Impute missing values using chained equations 15

For example, using model (M1), suppose that we would like to include the interaction between
x1 and x2 in the conditional model for x3:

. mi impute chained (regress) x1 x2 ///
(regress, include((x1*x2))) x3 ///

= z1 z2 . . .

The expression x1*x2, specified in the include() option, is enclosed in parentheses.

We also could have typed

. mi impute chained (regress, include((x1*x2))) x1 x2 x3 = z1 z2 . . .

and mi impute chained would appropriately include the interaction term X1X2 only in the prediction
equation of X3.

You can include any other expressions of imputation variables in include() within any of the
left-hand-side specifications. Just remember to enclose such expressions in parentheses.

All the examples we considered in Default prediction equations are also applicable to mi impute
chained with custom prediction equations. For example, to restrict imputation of x2 to observations
where z1==1 in one of our earlier examples, we can type

. mi impute chained (reg) x1 (reg if z1==1) x2 (reg, omit(z2)) x3 = z1 z2 . . .

Link between mi impute chained and mi impute monotone

Similarly to mi impute monotone (see [MI] mi impute monotone), mi impute chained uses a
sequence of univariate imputation models to impute variables. So the use of mi impute chained is
very similar to that of mi impute monotone except:

1. mi impute chained does not require that the specified imputation variables follow a
monotone-missing pattern.

2. mi impute chained requires iteration to accommodate arbitrary missing-data patterns.

3. mi impute chained, by default, uses FCSs of the prediction equations where all specified
complete variables and all imputation variables except the one being imputed are included
in prediction equations.

4. mi impute chained provides an alternative way of specifying custom prediction equations
to accommodate FCS of imputation variables.

When a missing-value pattern is monotone, mi impute chained defaults to the monotone method
(unless nomonotone is specified) and produces the same results as mi impute monotone. However,
using mi impute monotone in this case is faster because it performs the estimation step only once,
on the original data, whereas mi impute chained performs estimation on every chained iteration.

The best approach to follow is

1. Check the missing-data pattern using misstable nested (or mi misstable nested if the
data are already mi set; see [R] misstable or [MI] mi misstable) first.

2. If the missing-data pattern is monotone, use mi impute monotone to impute variables. If
the missing-data pattern is not monotone, use mi impute chained to impute variables.

It is worth mentioning the difference between the documented custom syntaxes of mi impute
chained and mi impute monotone.

https://www.stata.com/manuals/mimiimputemonotone.pdf#mimiimputemonotone
https://www.stata.com/manuals/rmisstable.pdf#rmisstable
https://www.stata.com/manuals/mimimisstable.pdf#mimimisstable

16 mi impute chained — Impute missing values using chained equations

With monotone imputation, variables are imputed in a particular, monotone-missing order and
prediction equations are built in a particular way: previously imputed variables are added sequentially to
the prediction equations of other imputation variables. So when building custom prediction equations,
it is easier to construct one equation at a time in the order of the monotone missing pattern. As such,
the custom syntax of mi impute monotone, as documented in [MI] mi impute monotone, requires
full specification of a separate conditional model for each imputation variable in the monotone-missing
order.

Imputation using chained equations does not require specific ordering in which variables must be
imputed, although imputing variables in order from the most observed to the least observed usually
leads to faster convergence. Also, because all imputation variables except the one being imputed are
included in prediction equations, it does not matter in what order prediction equations are specified.
The custom syntax of mi impute chained reflects this.

Examples

For the purpose of illustration, we use five imputations in our examples.

Example 1: Different imputation methods

Recall the heart attack example from First use. If we wanted to impute bmi using predictive mean
matching with, say, three nearest neighbors instead of linear regression, we could type

. use https://www.stata-press.com/data/r18/mheart8s0, clear
(Fictional heart attack data; arbitrary pattern)

. mi impute chained (pmm, knn(3)) bmi (reg) age = attack smokes hsgrad female,
> add(5)

Conditional models:
age: regress age bmi attack smokes hsgrad female
bmi: pmm bmi age attack smokes hsgrad female, knn(3)

Performing chained iterations ...

Multivariate imputation Imputations = 5
Chained equations added = 5
Imputed: m=1 through m=5 updated = 0

Initialization: monotone Iterations = 50
burn-in = 10

bmi: predictive mean matching
age: linear regression

Observations per m

Variable Complete Incomplete Imputed Total

bmi 126 28 28 154
age 142 12 12 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

As shown previously, mi impute chained imputed age first and bmi second, because age is the
variable with the fewest missing values.

https://www.stata.com/manuals/mimiimputemonotone.pdf#mimiimputemonotone

mi impute chained — Impute missing values using chained equations 17

Example 2: Convergence of MICE

In Convergence of MICE, we described ways to assess convergence of the MICE algorithm.
Continuing our previous example, let’s investigate the trends in the summaries of imputed values of
age and bmi over iterations.

Following the recommendation from Using mi impute chained, we use a combination of chainonly
and savetrace() to perform chained iterations without creating imputations in the data and save
summaries of imputed values to the new dataset impstats.dta. We perform 100 iterations and
specify a random-number seed for reproducibility:

. use https://www.stata-press.com/data/r18/mheart8s0, clear
(Fictional heart attack data; arbitrary pattern)

. mi impute chained (pmm, knn(3)) bmi (reg) age = attack smokes hsgrad female,
> chainonly burnin(100) savetrace(impstats) rseed(1359)

Conditional models:
age: regress age bmi attack smokes hsgrad female
bmi: pmm bmi age attack smokes hsgrad female, knn(3)

Performing chained iterations ...

Note: No imputation performed.

By default, means and standard deviations of imputed values for each imputation variable are
saved along with iteration and imputation numbers (imputation number is always 0 when chainonly
is used):

. use impstats
(Summaries of imputed values from -mi impute chained-)

. describe

Contains data from impstats.dta
Observations: 101 Summaries of imputed values

from -mi impute chained-
Variables: 6 23 Mar 2023 17:15

Variable Storage Display Value
name type format label Variable label

iter byte %12.0g Iteration numbers
m byte %12.0g Imputation numbers
age_mean float %9.0g Mean of age
age_sd float %9.0g Std. dev. of age
bmi_mean float %9.0g Mean of bmi
bmi_sd float %9.0g Std. dev. of bmi

Sorted by:

We use the time-series command tsline (see [TS] tsline) to plot summaries of imputed values
with respect to the iteration number. We first use tsset to set iter as the “time” variable and then
use tsline to obtain trace plots. We create trace plots for all variables and combine them in one
graph using graph combine:

https://www.stata.com/manuals/tstsline.pdf#tstsline

18 mi impute chained — Impute missing values using chained equations

. tsset iter

Time variable: iter, 0 to 100
Delta: 1 unit

. tsline bmi_mean, name(gr1) nodraw

. tsline bmi_sd, name(gr2) nodraw

. tsline age_mean, name(gr3) nodraw

. tsline age_sd, name(gr4) nodraw

. graph combine gr1 gr2 gr3 gr4, title(Trace plots of summaries of imputed values)
> rows(2)

23

24

25

26

27

28

M
ea

n
of

 b
m

i

0 20 40 60 80 100
Iteration numbers

2.5

3

3.5

4

4.5

5

S
td

. d
ev

. o
f b

m
i

0 20 40 60 80 100
Iteration numbers

45

50

55

60

65

M
ea

n
of

 a
ge

0 20 40 60 80 100
Iteration numbers

5

10

15

20

S
td

. d
ev

. o
f a

ge

0 20 40 60 80 100
Iteration numbers

Trace plots of summaries of imputed values

The trace plots show no apparent trends in the summaries of the imputed values, so the default
number of burn-in iterations, 10, seems adequate. Although a low number of burn-in iterations may
be sufficient in some applications, there are situations when larger numbers are required (for example,
van Buuren [2007]).

It is also useful to look at several chains, each obtained using a different set of initial values, to
check convergence and stability of the algorithm.

Let’s look at three separate chains. The easiest way to do this is to use the add() option instead of
chainonly to create three imputations. Remember that mi impute chained starts a new chain for
each imputation, so a different set of initial values is used for each imputation. When savetrace()
is specified, mi impute chained saves summaries of imputed values for each imputation.

. use https://www.stata-press.com/data/r18/mheart8s0
(Fictional heart attack data; arbitrary pattern)

. quietly mi impute chained (pmm, knn(3)) bmi (reg) age = attack smokes hsgrad
> female, add(3) burnin(100) savetrace(impstats, replace) rseed(1359)

mi impute chained — Impute missing values using chained equations 19

The results are saved in a long form. If we want to overlay separate chains in one graph, we need
to convert our data to a wide form first—one variable per chain. We use the reshape command for
this (see [D] reshape):

. use impstats, clear
(Summaries of imputed values from -mi impute chained-)

. reshape wide *mean *sd, i(iter) j(m)
(j = 1 2 3)

Data Long -> Wide

Number of observations 303 -> 101
Number of variables 6 -> 13
j variable (3 values) m -> (dropped)
xij variables:

age_mean -> age_mean1 age_mean2 age_mean3
bmi_mean -> bmi_mean1 bmi_mean2 bmi_mean3

age_sd -> age_sd1 age_sd2 age_sd3
bmi_sd -> bmi_sd1 bmi_sd2 bmi_sd3

We can now plot the three chains for, say, the mean of bmi using tsline:

. tsset iter

Time variable: iter, 0 to 100
Delta: 1 unit

. tsline bmi_mean1 bmi_mean2 bmi_mean3, ytitle(Mean of bmi) yline(25.24)
> legend(rows(1) label(1 "Chain 1") label(2 "Chain 2") label(3 "Chain 3"))

23

24

25

26

27

28

M
ea

n
of

 b
m

i

0 20 40 60 80 100
Iteration numbers

Chain 1 Chain 2 Chain 3

There are no apparent trends in any of the chains. All three chains seem to oscillate around the
observed mean estimate of bmi of 25.24, providing some evidence of convergence of the algorithm.

https://www.stata.com/manuals/dreshape.pdf#dreshape

20 mi impute chained — Impute missing values using chained equations

Example 3: Custom prediction equations

Continuing example 1, we believe that there is no association between bmi and hsgrad conditional
on other predictors, so we want to use hsgrad to model only age and omit it from the model for
bmi:

. use https://www.stata-press.com/data/r18/mheart8s0
(Fictional heart attack data; arbitrary pattern)

. mi impute chained
> (pmm, knn(3) omit(hsgrad)) bmi
> (regress) age
> = attack smokes hsgrad female, add(5)

Conditional models:
age: regress age bmi attack smokes hsgrad female
bmi: pmm bmi age attack smokes female, knn(3)

Performing chained iterations ...

Multivariate imputation Imputations = 5
Chained equations added = 5
Imputed: m=1 through m=5 updated = 0

Initialization: monotone Iterations = 50
burn-in = 10

bmi: predictive mean matching
age: linear regression

Observations per m

Variable Complete Incomplete Imputed Total

bmi 126 28 28 154
age 142 12 12 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

All right-hand-side complete predictors (attack, smokes, and female) are used in both prediction
equations. The prediction equation for age additionally includes the hsgrad variable.

mi impute chained — Impute missing values using chained equations 21

Example 4: Imputing variables of different types

We now consider an mi set version of the heart attack data containing an indicator for smoking
high-tar cigarettes (variable hightar):

. use https://www.stata-press.com/data/r18/mheart9s0, clear
(Fictional heart attack data; bmi, age, and hightar missing; arbitrary pattern)

. mi describe

Style: mlong
last mi update 31jan2023 09:23:53, 20 days ago

Observations:
Complete 98
Incomplete 56 (M = 0 imputations)

Total 154

Variables:
Imputed: 3; bmi(24) age(30) hightar(12)

Passive: 0

Regular: 4; attack smokes female hsgrad

System: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

. mi misstable nested

1. hightar(12)
2. bmi(24)
3. age(30)

According to mi describe, there are no imputations, three registered imputed variables (age, bmi,
and hightar), and four registered regular variables. mi misstable nested reports that missing
values of the three imputation variables are not nested.

The hightar variable is a binary variable, so we choose the logistic method to impute its values
(see [MI] mi impute logit). Because hightar records whether a subject smokes high-tar cigarettes,
we use only those who smoke to impute its missing values. As such, including smokes as a predictor
of hightar is redundant, so we omit this variable from the prediction equation for hightar:

https://www.stata.com/manuals/mimiimputelogit.pdf#mimiimputelogit

22 mi impute chained — Impute missing values using chained equations

. mi impute chained
> (pmm, knn(3) omit(hsgrad)) bmi
> (regress) age
> (logit if smokes==1, omit(smokes)) hightar
> = attack smokes hsgrad female, add(5)

Conditional models:
hightar: logit hightar bmi age attack hsgrad female if smokes==1

bmi: pmm bmi i.hightar age attack smokes female, knn(3)
age: regress age i.hightar bmi attack smokes hsgrad female

Performing chained iterations ...

Multivariate imputation Imputations = 5
Chained equations added = 5
Imputed: m=1 through m=5 updated = 0

Initialization: monotone Iterations = 50
burn-in = 10

bmi: predictive mean matching
age: linear regression

hightar: logistic regression

Observations per m

Variable Complete Incomplete Imputed Total

bmi 130 24 24 154
age 124 30 30 154

hightar 52 12 12 64

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

From the output, we see that all incomplete values of each of the variables are imputed in all
imputations. Because we restricted the imputation sample of hightar to smokers, the total number
of observations reported for hightar is 64 and not 154. mi impute chained also automatically
included the binary variable hightar as a factor variable in prediction equations for age and bmi
because we used logit to impute it.

As we described in Conditional imputation, you should be careful when using an if statement
for imputing variables conditionally on other variables. It was safe to use if here, because smokes
did not contain missing values and there were no missing values of hightar for the subjects who
do not smoke.

https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesConditionalimputation

mi impute chained — Impute missing values using chained equations 23

Example 5: Conditional imputation

Continuing example 4, suppose now that the smokes variable also contains missing values:

. use https://www.stata-press.com/data/r18/mheart10s0, clear
(Fict. heart attack data; bmi, age, hightar, & smokes missing; arbitrary pattern)

. mi describe

Style: mlong
last mi update 31jan2023 09:23:53, 20 days ago

Observations:
Complete 92
Incomplete 62 (M = 0 imputations)

Total 154

Variables:
Imputed: 4; bmi(24) age(30) hightar(19) smokes(14)

Passive: 0

Regular: 3; attack female hsgrad

System: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

. mi misstable nested

1. smokes(14) -> hightar(19)
2. bmi(24)
3. age(30)

The smokes variable is now registered as imputed and the three regular variables are now attack,
female, and hsgrad. mi misstable nested reports that although the missing-data pattern with
respect to all four imputation variables is not monotone, the missing-data pattern with respect to
smokes and hightar is monotone. Recall from Conditional imputation that one of the requirements
of conditional imputation is that missing values of all conditioning variables (smokes) are nested
within missing values of the conditional variable (hightar). So this requirement is satisfied in our
data.

Because smokes contains missing values, we cannot use an if condition to restrict the imputation
sample of hightar to those who smoke. We must use the conditional() option. We use the
logistic method (see [MI] mi impute logit) to fill in missing values of smokes.

https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesConditionalimputation
https://www.stata.com/manuals/mimiimputelogit.pdf#mimiimputelogit

24 mi impute chained — Impute missing values using chained equations

. mi impute chained
> (pmm, knn(3) omit(hsgrad)) bmi
> (regress) age
> (logit, cond(if smokes==1) omit(i.smokes)) hightar
> (logit) smokes
> = attack hsgrad female, add(5)

Conditional models:
smokes: logit smokes bmi age attack hsgrad female
hightar: logit hightar bmi age attack hsgrad female,

cond(if smokes==1)
bmi: pmm bmi i.smokes i.hightar age attack female, knn(3)
age: regress age i.smokes i.hightar bmi attack hsgrad female

Performing chained iterations ...

Multivariate imputation Imputations = 5
Chained equations added = 5
Imputed: m=1 through m=5 updated = 0

Initialization: monotone Iterations = 50
burn-in = 10

Conditional imputation:
hightar: incomplete out-of-sample obs replaced with value 0

bmi: predictive mean matching
age: linear regression

hightar: logistic regression
smokes: logistic regression

Observations per m

Variable Complete Incomplete Imputed Total

bmi 130 24 24 154
age 124 30 30 154

hightar 135 19 19 154
smokes 140 14 14 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

With conditional imputation, a legend appears before the imputation table, reporting the conditional
constant, the value that was used to replace all incomplete values of an imputation variable outside
the conditional sample. The missing values of hightar in that sample were replaced with 0.

The smokes variable is imputed using logit and thus is included in prediction equations as a factor
variable, i.smokes. As such, we specified omit(i.smokes) to omit smokes from the prediction
equation for hightar.

Also notice that compared with imputation on a restricted subsample using an if condition,
the reported total number of observations in the imputation sample for hightar is still 154. All
incomplete observations, within and outside the conditional sample, are included in the imputation
sample during conditional imputation. So the reported numbers of complete, incomplete, and imputed
observations correspond with observations within and outside the conditional sample.

Example 6: Including expressions of imputation variables

In Model building of [MI] mi impute, we described two ways of accommodating functional
relationships during imputation. Here we demonstrate a passive imputation approach that includes
expressions of imputation variables directly into the imputation model.

https://www.stata.com/manuals/mimiimpute.pdf#mimiimputeRemarksandexamplesModelbuilding
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute

mi impute chained — Impute missing values using chained equations 25

Continuing example 5, suppose we assume that the conditional distribution of bmi exhibits some
curvature with respect to age. We want to include age^2 in the prediction equation for bmi. If the
relationship between bmi and age is indeed curvilinear, it would be unreasonable to assume that
the conditional distribution of age given bmi is linear. One possibility is to determine what the
relationship is between age and bmi given other predictors in the observed data (see, for example,
[R] mfp) and include the appropriate functional terms of bmi in the prediction equation for age.
Following White, Royston, and Wood (2011) to relax the linearity assumption, we use predictive
mean matching with, say, five nearest neighbors instead of linear regression to impute age:

. mi impute chained
> (pmm, knn(3) omit(hsgrad) incl((age^2))) bmi
> (pmm, knn(5)) age
> (logit, cond(if smokes==1) omit(i.smokes)) hightar
> (logit) smokes
> = attack hsgrad female, replace

Conditional models:
smokes: logit smokes bmi age attack hsgrad female
hightar: logit hightar bmi age attack hsgrad female,

cond(if smokes==1)
bmi: pmm bmi i.smokes i.hightar age (age^2)

attack female, knn(3)
age: pmm age i.smokes i.hightar bmi attack hsgrad

female, knn(5)

Performing chained iterations ...

Multivariate imputation Imputations = 5
Chained equations added = 0
Imputed: m=1 through m=5 updated = 5

Initialization: monotone Iterations = 50
burn-in = 10

Conditional imputation:
hightar: incomplete out-of-sample obs replaced with value 0

bmi: predictive mean matching
age: predictive mean matching

hightar: logistic regression
smokes: logistic regression

Observations per m

Variable Complete Incomplete Imputed Total

bmi 130 24 24 154
age 124 30 30 154

hightar 135 19 19 154
smokes 140 14 14 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

We included the expression term in parentheses in the include() option in the prediction equation
for bmi.

Example 7: Imputing on subsamples
Suppose that in our primary logistic analysis of heart attacks, we are planning to investigate

various interaction effects with respect to gender. The female variable is complete, so the best way
to accommodate such interactions is to use the by() option to perform imputation separately for
females and males.

https://www.stata.com/manuals/rmfp.pdf#rmfp

26 mi impute chained — Impute missing values using chained equations

We continue example 3. Before imputing missing values, let’s review our conditional specifications
for each group. We can use the dryrun option to see univariate conditional models that will be used
during imputation without actually imputing data:

. use https://www.stata-press.com/data/r18/mheart8s0, clear
(Fictional heart attack data; arbitrary pattern)

. mi impute chained
> (pmm, knn(3) omit(hsgrad)) bmi
> (regress) age
> = attack smokes hsgrad, by(female) dryrun

Performing setup for each by() group:

-> female = 0
Conditional models:

age: regress age bmi attack smokes hsgrad
bmi: pmm bmi age attack smokes, knn(3)

-> female = 1
Conditional models:

age: regress age bmi attack smokes hsgrad
bmi: pmm bmi age attack smokes, knn(3)

Conditional specifications are as we expected, so we can proceed to imputation.
. mi impute chained
> (pmm, knn(3) omit(hsgrad)) bmi
> (regress) age
> = attack smokes hsgrad
> , add(5) by(female, noreport) dots

-> female = 0
Performing chained iterations:

imputing m=1 through m=5 done

-> female = 1
Performing chained iterations:

imputing m=1 through m=5 done

Multivariate imputation Imputations = 5
Chained equations added = 5
Imputed: m=1 through m=5 updated = 0

Initialization: monotone Iterations = 50
burn-in = 10

bmi: predictive mean matching
age: linear regression

Observations per m
by()

Variable Complete Incomplete Imputed Total

female = 0
bmi 95 21 21 116
age 106 10 10 116

female = 1
bmi 31 7 7 38
age 36 2 2 38

Overall
bmi 126 28 28 154
age 142 12 12 154

(Complete + Incomplete = Total; Imputed is the minimum across m
of the number of filled-in observations.)

mi impute chained — Impute missing values using chained equations 27

To avoid longer output, we specified the noreport option within by() to suppress information
about the setup and imputation steps that otherwise would have been reported for each group.

Stored results
mi impute chained stores the following in r():

Scalars
r(M) total number of imputations
r(M add) number of added imputations
r(M update) number of updated imputations
r(k ivars) number of imputed variables
r(burnin) number of burn-in iterations
r(N g) number of imputed groups (1 if by() is not specified)

Macros
r(method) name of imputation method (chained)
r(ivars) names of imputation variables
r(uvmethods) names of univariate imputation methods
r(init) type of initialization
r(rngstate) random-number state used
r(by) names of variables specified within by()

Matrices
r(N) number of observations in imputation sample in each group (per variable)
r(N complete) number of complete observations in imputation sample in each group (per variable)
r(N incomplete) number of incomplete observations in imputation sample in each group (per variable)
r(N imputed) number of imputed observations in imputation sample in each group (per variable)

Methods and formulas
Let X1, X2, . . . , Xp denote imputation variables ordered from the most observed to the least

observed and let Z denote the set of complete independent variables. (If X1, X2, . . . , Xp are monotone-
missing and neither nomonotone nor nomonotonechk is used, then mi impute chained uses
monotone imputation; see Methods and formulas of [MI] mi impute monotone for details.)

With the default specification of prediction equations, the chained-equation algorithm proceeds as
follows. First, at iteration t = 0, missing values are initialized using monotone imputation. That is,
missing values of X(0)

i , i = 1, . . . , p, are simulated from conditional densities of the form

fi(Xi|X(0)
1 , X

(0)
2 , . . . , X

(0)
i−1,Z, θi) (2)

where the conditional density fi(·) is determined according to the chosen univariate imputation method
and θi is its corresponding set of parameters with uniform prior; see Methods and formulas of chosen
univariate imputation methods for details.

At iteration t, missing values of Xi for all i = 1, . . . , p are simulated from full conditionals,
conditional densities of the form:

gi(Xi|X(t)
1 , X

(t)
2 , . . . , X

(t)
i−1, X

(t−1)
i+1 , . . . , X(t−1)

p ,Z,φi) (3)

where again the conditional density gi(·) is determined according to the chosen univariate imputation
method and φi is its corresponding set of parameters with uniform prior.

https://www.stata.com/manuals/mimiimputemonotone.pdf#mimiimputemonotoneMethodsandformulas
https://www.stata.com/manuals/mimiimputemonotone.pdf#mimiimputemonotone

28 mi impute chained — Impute missing values using chained equations

The algorithm iterates for a prespecified number of iterations b, t = 1, . . . , b, and a final set of
imputed values is obtained from the last iteration. At each iteration, the imputation process consists
of steps 1–3 described in Methods and formulas of each respective univariate imputation method’s
manual entry.

Each imputation is obtained independently by repeating (2) and (3).

Conditional specifications in (2) and (3) correspond to the default specification of prediction
equations. With the custom specification, the sets of complete predictors Z = Zi and imputation
variables may differ across univariate specifications, and prediction equations may additionally include
functions of imputation variables.

In summary, mi impute chained follows the steps below to fill in missing values in X1, . . . , Xp:

1. mi impute chained first builds appropriate univariate imputation models using the supplied
information about imputation methods, imputation variables X, and complete predictors
Z. By default, fully conditional specification of prediction equations is used. The order in
which imputation variables are listed is ignored unless the orderasis option is used. By
default, mi impute chained imputes variables in order from the most observed to the least
observed.

2. Initialize missing values at t = 0 using monotone imputation (2).

3. Perform the iterative procedure (3) for t = 1, . . . , b, for the length of the burn-in period, to
obtain imputed values. At each iteration t,

3.1. Fit a univariate model for Xi to the observed data to obtain the estimates of φi. See
step 1 in Methods and formulas of each respective univariate imputation method’s
manual entry for details.

3.2. Fill in missing values of Xi according to the specified imputation model. See
step 2 and step 3 in Methods and formulas of each respective univariate imputation
method’s manual entry for details.

3.3. Repeat steps 3.1 and 3.2 for each imputation variable Xi, i = 1, . . . , p.

4. Repeat steps 2 and 3 to obtain M multiple imputations.

The iterative procedure (3) may not always correspond to a genuine simulation of imputed values from
their predictive distribution f(Xm|Xo,Z) because the set of full conditionals {gi : i = 1, 2, . . . , p}
may not correspond to this distribution or, in fact, to any proper multivariate distribution. The extent
to which this is a problem in practical applications is still an open research problem. Some limited
simulation studies reported only minimal effect of such incompatibility on final MI estimates (for
example, van Buuren et al. [2006]).

Acknowledgments
The mi impute chained command was inspired by the community-contributed command ice

by Patrick Royston of the MRC Clinical Trials Unit, London, and coauthor of the Stata Press book
Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model; and Ian White of the MRC
Biostatistics Unit, London. We are indebted to them for their extensive work in the multiple-imputation
area in Stata. We are also grateful to them for their comments and advice on mi impute chained.

http://www.stata-press.com/books/fpsaus.html

mi impute chained — Impute missing values using chained equations 29

References
Andersen, A., and A. Rieckmann. 2016. Using mi impute chained to fit ANCOVA models in randomized trials with

censored dependent and independent variables. Stata Journal 16: 650–661.

Arnold, B. C., E. Castillo, and J. M. Sarabia. 1999. Conditional Specification of Statistical Models. New York:
Springer.

. 2001. Conditionally specified distributions: An introduction. Statistical Science 16: 249–274.
https://doi.org/10.1214/ss/1009213728.

Gelfand, A. E., and A. F. M. Smith. 1990. Sampling-based approaches to calculating marginal densities. Journal of
the American Statistical Association 85: 398–409. https://doi.org/10.1080/01621459.1990.10476213.

Geman, S., and D. Geman. 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE
Transactions on Pattern Analysis and Machine Intelligence 6: 721–741. https://doi.org/10.1109/TPAMI.1984.4767596.

Raghunathan, T. E., J. M. Lepkowski, J. Van Hoewyk, and P. Solenberger. 2001. A multivariate technique for multiply
imputing missing values using a sequence of regression models. Survey Methodology 27: 85–95.

Royston, P. 2004. Multiple imputation of missing values. Stata Journal 4: 227–241.

. 2005a. Multiple imputation of missing values: Update. Stata Journal 5: 188–201.

. 2005b. Multiple imputation of missing values: Update of ice. Stata Journal 5: 527–536.

. 2007. Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring.
Stata Journal 7: 445–464.

. 2009. Multiple imputation of missing values: Further update of ice, with an emphasis on categorical variables.
Stata Journal 9: 466–477.

van Buuren, S. 2007. Multiple imputation of discrete and continuous data by fully conditional specification. Statistical
Methods in Medical Research 16: 219–242. https://doi.org/10.1177/0962280206074463.

van Buuren, S., H. C. Boshuizen, and D. L. Knook. 1999. Multiple imputation of missing blood pressure covariates in
survival analysis. Statistics in Medicine 18: 681–694. https://doi.org/10.1002/(SICI)1097-0258(19990330)18:6〈681::
AID-SIM71〉3.0.CO;2-R.

van Buuren, S., J. P. L. Brand, C. G. M. Groothuis-Oudshoorn, and D. B. Rubin. 2006. Fully conditional
specification in multivariate imputation. Journal of Statistical Computation and Simulation 76: 1049–1064.
https://doi.org/10.1080/10629360600810434.

Welch, C., J. W. Bartlett, and I. Petersen. 2014. Application of multiple imputation using the two-fold fully conditional
specification algorithm in longitudinal clinical data. Stata Journal 14: 418–431.

White, I. R., R. M. Daniel, and P. Royston. 2010. Avoiding bias due to perfect prediction in multi-
ple imputation of incomplete categorical data. Computational Statistics and Data Analysis 54: 2267–2275.
https://doi.org/10.1016/j.csda.2010.04.005.

White, I. R., P. Royston, and A. M. Wood. 2011. Multiple imputation using chained equations: Issues and guidance
for practice. Statistics in Medicine 30: 377–399. https://doi.org/10.1002/sim.4067.

Also see
[MI] mi impute — Impute missing values

[MI] mi impute monotone — Impute missing values in monotone data

[MI] mi impute mvn — Impute using multivariate normal regression

[MI] mi estimate — Estimation using multiple imputations

[MI] Intro — Introduction to mi

[MI] Intro substantive — Introduction to multiple-imputation analysis

[MI] Glossary

http://www.stata-journal.com/article.html?article=st0447
http://www.stata-journal.com/article.html?article=st0447
https://doi.org/10.1214/ss/1009213728
https://doi.org/10.1214/ss/1009213728
https://doi.org/10.1080/01621459.1990.10476213
https://doi.org/10.1109/TPAMI.1984.4767596
http://www.stata-journal.com/article.html?article=st0067
http://www.stata-journal.com/article.html?article=st0067_1
http://www.stata-journal.com/article.html?article=st0067_2
http://www.stata-journal.com/article.html?article=st0067_3
http://www.stata-journal.com/article.html?article=st0067_4
https://doi.org/10.1177/0962280206074463
https://doi.org/10.1002/(SICI)1097-0258(19990330)18:6<681::AID-SIM71>3.0.CO;2-R
https://doi.org/10.1002/(SICI)1097-0258(19990330)18:6<681::AID-SIM71>3.0.CO;2-R
https://doi.org/10.1080/10629360600810434
http://www.stata-journal.com/article.html?article=st0345
http://www.stata-journal.com/article.html?article=st0345
https://doi.org/10.1016/j.csda.2010.04.005
https://doi.org/10.1002/sim.4067
https://www.stata.com/manuals/mimiimpute.pdf#mimiimpute
https://www.stata.com/manuals/mimiimputemonotone.pdf#mimiimputemonotone
https://www.stata.com/manuals/mimiimputemvn.pdf#mimiimputemvn
https://www.stata.com/manuals/mimiestimate.pdf#mimiestimate
https://www.stata.com/manuals/miintro.pdf#miIntro
https://www.stata.com/manuals/miintrosubstantive.pdf#miIntrosubstantive
https://www.stata.com/manuals/miglossary.pdf#miGlossary

30 mi impute chained — Impute missing values using chained equations

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp
LLC. Other brand and product names are registered trademarks or trademarks of their
respective companies. Copyright c© 1985–2023 StataCorp LLC, College Station, TX,
USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

