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cholsolve( ) — Solve AX=B for X using Cholesky decomposition

Description Syntax Remarks and examples Conformability
Diagnostics Also see

Description

cholsolve(A, B) solves AX = B and returns X for symmetric (Hermitian), positive-definite A.
cholsolve() returns a matrix of missing values if A is not positive definite or if A is singular.

cholsolve(A, B, tol) does the same thing; it allows you to specify the tolerance for declaring that
A is singular; see Tolerance under Remarks and examples below.

cholsolve(A, B) and cholsolve(A, B, tol) do the same thing, except that, rather than
returning the solution X, they overwrite B with the solution, and in the process of making the
calculation, they destroy the contents of A.

cholsolvelapacke(A), cholsolvelapacke(A, tol), cholsolvelapacke(A), and
cholsolvelapacke(A, tol) are similar to their correspondent functions without lapacke endings,

but instead they use interfaces to the LAPACK routines to compute the solutions.

Syntax
numeric matrix cholsolve(numeric matrix A, numeric matrix B)

numeric matrix cholsolve(numeric matrix A, numeric matrix B, real scalar tol)

void cholsolve(numeric matrix A, numeric matrix B)

void cholsolve(numeric matrix A, numeric matrix B, real scalar tol)

numeric matrix cholsolvelapacke(numeric matrix A, numeric matrix B)

numeric matrix cholsolvelapacke(numeric matrix A, numeric matrix B,
real scalar tol)

void cholsolvelapacke(numeric matrix A, numeric matrix B)

void cholsolvelapacke(numeric matrix A, numeric matrix B,
real scalar tol)

Remarks and examples stata.com

The above functions solve AX = B via Cholesky decomposition and are accurate. When A is not
symmetric and positive definite, [M-5] lusolve( ), [M-5] qrsolve( ), and [M-5] svsolve( ) are alternatives
based on the LU decomposition, the QR decomposition, and the singular value decomposition (SVD).
The alternatives differ in how they handle singular A. Then, the LU-based routines return missing
values, whereas the QR-based and SVD-based routines return generalized (least-squares) solutions.
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Remarks are presented under the following headings:

Derivation
Relationship to inversion
Tolerance

Derivation

We wish to solve for X

AX = B (1)

when A is symmetric and positive definite. Perform the Cholesky decomposition of A so that we have
A = GG′. Then, (1) can be written as

GG′X = B (2)

Define
Z = G′X (3)

Then, (2) can be rewritten as

GZ = B (4)

It is easy to solve (4) for Z because G is a lower-triangular matrix. Once Z is known, it is easy to
solve (3) for X because G′ is upper triangular.

Relationship to inversion

See Relationship to inversion in [M-5] lusolve( ) for a discussion of the relationship between solving
the linear system and matrix inversion.

Tolerance

The default tolerance used is

η =
(1e-13)*trace(abs(G))

n

where G is the lower-triangular Cholesky factor of A: n × n. A is declared to be singular if cholesky()
(see [M-5] cholesky( )) finds that A is not positive definite or, if A is found to be positive definite, if
any diagonal element of G is less than or equal to η. Mathematically, positive definiteness implies that
the matrix is not singular. In the numerical method used, two checks are made: cholesky() makes
one, and then the η rule is applied to ensure numerical stability in the use of the result cholesky()
returns.

If you specify tol > 0, the value you specify is used to multiply η. You may instead specify tol ≤
0, and then the negative of the value you specify is used in place of η; see [M-1] Tolerance.

See [M-5] lusolve( ) for a detailed discussion of the issues surrounding solving nearly singular systems.
The main point to keep in mind is that if A is ill conditioned, then small changes in A or B can lead
to radically large differences in the solution for X.

https://www.stata.com/manuals/m-5lusolve.pdf#m-5lusolve()RemarksandexamplesRelationshiptoinversion
https://www.stata.com/manuals/m-5lusolve.pdf#m-5lusolve()
https://www.stata.com/manuals/m-5cholesky.pdf#m-5cholesky()
https://www.stata.com/manuals/m-1tolerance.pdf#m-1Tolerance
https://www.stata.com/manuals/m-5lusolve.pdf#m-5lusolve()
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Conformability

cholsolve(A, B, tol):
input:

A: n × n
B: n × k

tol: 1 × 1 (optional)
result: n × k

cholsolve(A, B, tol):
input:

A: n × n
B: n × k

tol: 1 × 1 (optional)
output:

A: 0 × 0
B: n × k

cholsolvelapacke(A, B, tol):
input:

A: n × n
B: n × k

tol: 1 × 1 (optional)
result: n × k

cholsolvelapacke(A, B, tol):
input:

A: n × n
B: n × k

tol: 1 × 1 (optional)
output:

A: 0 × 0
B: n × k

Diagnostics

cholsolve(A, B, . . . ) and cholsolve(A, B, . . . ) return a result of all missing values if A is
not positive definite or if A contains missing values.

cholsolve(A, B, . . . ) also aborts with error if A or B is a view.

cholsolvelapacke(A, B, . . . ) and cholsolvelapacke(A, B, . . . ) return a result of all
missing values if A is not positive definite or if A contains missing values.

cholsolvelapacke(A, B, . . . ) also aborts with error if A or B is a view.

All functions use the elements from the lower triangle of A without checking whether A is symmetric
or, in the complex case, Hermitian.
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Also see
[M-5] cholesky( ) — Cholesky square-root decomposition

[M-5] cholinv( ) — Symmetric, positive-definite matrix inversion

[M-5] lusolve( ) — Solve AX=B for X using LU decomposition

[M-5] qrsolve( ) — Solve AX=B for X using QR decomposition

[M-5] solvelower( ) — Solve AX=B for X, A triangular

[M-5] svsolve( ) — Solve AX=B for X using singular value decomposition

[M-5] solve tol( ) — Tolerance used by solvers and inverters

[M-4] Matrix — Matrix functions

[M-4] Solvers — Functions to solve AX=B and to obtain A inverse
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