Solvers - Functions to solve $\mathrm{AX}=\mathrm{B}$ and to obtain A inverse

Contents Description Remarks and examples Also see

Contents

[M-5] Manual entry	Function	Purpose
Solvers		
cholsolve()	```cholsolve() cholsolvelapacke()```	A positive definite; symmetric or Hermitian A positive definite using LAPACK routines; symmetric or Hermitian
lusolve()	lusolve()	A full rank, square, real or complex
qrsolve()	qrsolve()	A general; $m \times n, m \geq n$, real or complex; least-squares generalized solution
svsolve()	svsolve()	generalized; $m \times n$, real or complex; minimum norm, least-squares solution
Inverters		
invsym()	invsym()	generalized; real symmetric
cholinv()	```cholinv() cholinvlapacke()```	positive definite; symmetric or Hermitian positive definite using LAPACK routines; symmetric or Hermitian
$\operatorname{luinv}()$	luinv()	full rank; square; real or complex
qrinv()	qrinv()	generalized; $m \times n, m \geq n$; real or complex
pinv ()	pinv()	generalized; $m \times n$, real or complex Moore-Penrose pseudoinverse

Description

The above functions solve $A X=B$ for X and solve for A^{-1}.

Remarks and examples

Matrix solvers can be used to implement matrix inverters, and so the two nearly always come as a pair.

Solvers solve $A X=B$ for X. One way to obtain A^{-1} is to solve $A X=I$. If $f(A, B)$ solves $A X=B$, then $f(A$, I (rows (A)) solves for the inverse. Some matrix inverters are in fact implemented this way, although usually custom code is written because memory savings are possible when it is known that $B=I$.

The pairings of inverter and solver are

inverter	solver
invsym()	(none)
cholinv()	cholsolve()
cholinvlapacke()	cholsolvelapacke()
luinv()	lusolve()
qrinv()	qrsolve()
pinv()	svsolve()

Also see

[M-4] Intro - Categorical guide to Mata functions

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985-2023 StataCorp LLC, College Station, TX,
 USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.

