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Description
, and \ are Mata’s row-join and column-join operators.
Syntax
a,b
a\b
Remarks and examples stata.com

Remarks are presented under the following headings:

Comma and backslash are operators
Comma as a separator

Warning about the misuse of comma and backslash operators

Comma and backslash are operators

That , and \ are operators cannot be emphasized enough. When one types

(1, 2\ 3, 4
1 2

1 1 2

2 3 4

one is tempted to think, “Ah, comma and backslash are how you separate elements when you enter
a matrix.” If you think like that, you will not appreciate the power of , and \.

, and \ are operators in the same way that * and + are operators.

, is the operator that takes a r X ¢; matrix and a r X cg matrix, and returns a r X (c¢; + c2) matrix.

\ is the operator that takes a r; X ¢ matrix and a ro X ¢ matrix, and returns a (r; + ro) X ¢ matrix.

, and \ may be used with scalars, vectors, or matrices:
ta=(1\2)
tb=(3\4)
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a, b
1 2
1 1 3
2 2 4
= (1, 2)
d = (3, 4
c\d
1 2
1 1 2
2 3 4

, binds more tightly than \, meaning that e, f \ g, & is interpreted as (e, f) \ (g, h). In this, , and
\ are no different from * and + operators: * binds more tightly than + and exf + g*h is interpreted
as (exf)+(gxh).

Just as it sometimes makes sense to type ex (f +g)*h, it can make sense to type e, (f\g), h:

e=1\2
f=5\6
:g=3
h=4
e, (g\h),f
1 2 3

-
e
w
(&)

Comma as a separator

, has a second meaning in Mata: it is the argument separator for functions. When you type
: myfunc(a, b)
the comma that appears inside the parentheses is not the comma row-join operator; it is the comma

argument separator. If you wanted to call myfunc() with second argument equal to row vector
(1,2), you must type

: myfunc(a, (1,2))

and not
: myfunc(a, 1, 2)
because otherwise Mata will think you are trying to pass three arguments to myfunc (). When you

open another set of parentheses inside a function’s argument list, comma reverts to its usual row-join
meaning.
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Warning about the misuse of comma and backslash operators

Misuse or mere overuse of , and \ can substantially reduce the speed with which your code executes.
Consider the actions Mata must take when you code, say,

a\b

First, Mata must allocate a matrix or vector containing rows (a)+rows (b) rows, then it must copy
a into the new matrix or vector, and then it must copy b. Nothing inefficient has happened yet, but
now consider

(@a\ b) \c

Picking up where we left off, Mata must allocate a matrix or vector containing rows (a) +rows (b) +
rows (¢) rows, then it must copy (a \ b) into the new matrix or vector, and then it must copy c.
Something inefficient just happened: a was copied twice!

Coding
res = (a \ b) \ ¢

is convenient, but execution would be quicker if we coded

res = J(rows(a)+rows(b)+rows(c), cols(a), .)
res[1,.1 = a
res[2,.1 = b
res[3,.] c

We do not want to cause you concern where none is due. In general, you would not be able to
measure the difference between the more efficient code and coding res = (a \ b) \ c. But as the
number of row or column operators stack up, the combined result becomes more and more inefficient.
Even that is not much of a concern. If the inefficient construction itself is buried in a loop, however,
and that loop is executed thousands of times, the inefficiency can become important.

With a little thought, you can always substitute predeclaration using J() (see [M-5] J()) and assignment
via subscripting.

Conformability
a,b:
a. r X c1
b: r X co
result: r X (c1+ ¢2)
a\ b:
a: r Xc
b: rog X ¢
result: (r1+r) Xc
Diagnostics

, and \ abort with error if @ and b are not of the same broad type.
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Also see
[M-2] exp — Expressions

[M-2] Intro — Language definition
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