Title stata.com

eregress postestimation — Postestimation tools for eregress and xteregress

Postestimation commands predict margins Remarks and examples Methods and formulas References Also see

Postestimation commands

The following postestimation command is of special interest after eregress and xteregress:

Command	Description
estat teffects	treatment effects and potential-outcome means

The following standard postestimation commands are also available after eregress and xteregress:

Command	Description
contrast	contrasts and ANOVA-style joint tests of estimates
estat ic	Akaike's, consistent Akaike's, corrected Akaike's, and Schwarz's Bayesian information criteria (AIC, CAIC, AICc, and BIC)
estat summarize	summary statistics for the estimation sample
estat vce	variance-covariance matrix of the estimators (VCE)
†estat (svy)	postestimation statistics for survey data
estimates	cataloging estimation results
etable	table of estimation results
*forecast	dynamic forecasts and simulations
*hausman	Hausman's specification test
lincom	point estimates, standard errors, testing, and inference for linear combinations of coefficients
*lrtest	likelihood-ratio test
margins	marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot	graph the results from margins (profile plots, interaction plots, etc.)
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients
predict	means, probabilities, treatment effects, etc.
predictnl	point estimates, standard errors, testing, and inference for generalized predictions
pwcompare	pairwise comparisons of estimates
† _{suest}	seemingly unrelated estimation
test	Wald tests of simple and composite linear hypotheses
testnl	Wald tests of nonlinear hypotheses

^{*}forecast, hausman, and lrtest are not appropriate with svy estimation results.

 $[\]ensuremath{^{\dagger}}\xspace$ suest and the survey data estat commands are not available after xteregress.

predict

Predictions after eregress and xteregress are described in

```
[ERM] eregress predict predict after eregress predict for treatment statistics predict's advanced features
```

[ERM] **eregress predict** describes the most commonly used predictions. If you fit a model with treatment effects, predictions specifically related to these models are detailed in [ERM] **predict treatment**. [ERM] **predict advanced** describes less commonly used predictions, such as predictions of outcomes in auxiliary equations.

margins

Description for margins

margins estimates statistics based on fitted models. These statistics include marginal means, marginal probabilities, potential-outcome means, average and conditional derivatives, average and conditional effects, and treatment effects.

Menu for margins

Statistics > Postestimation

Syntax for margins

```
margins [marginlist] [, options] margins [marginlist] , \underline{predict}(statistic ...) [\underline{predict}(statistic ...)] [options]
```

statistic	Description
Main	
$\underline{\mathtt{m}}\mathtt{ean}$	mean; the default
pr	probability for binary or ordinal y_j
pomean	potential-outcome mean
te	treatment effect
tet	treatment effect on the treated
xb	linear prediction excluding all complications
pr(a,b)	$Pr(a < y_j < b)$ for continuous y_j
e(a,b)	$E(y_j a < y_j < b)$ for continuous y_j
ystar(a,b)	$E(y_i^*), y_i^* = \max\{a, \min(y_i, b)\}$ for continuous y_i
<u>expm</u> ean	calculate $E\left\{\exp(y_i)\right\}$
te tet xb pr(a,b) e(a,b) ystar(a,b)	treatment effect treatment effect on the treated linear prediction excluding all complications $ \Pr(a < y_j < b) \text{ for continuous } y_j \\ E(y_j a < y_j < b) \text{ for continuous } y_j \\ E(y_j^*), \ y_j^* = \max\{a, \min(y_j, b)\} \text{ for continuous } y_j $

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples

stata.com

See [ERM] Intro 7 for an overview of using margins and predict after eregress. For examples using margins, predict, and estat teffects, see *Interpreting effects* in [ERM] Intro 9 and see [ERM] Example 1a.

Methods and formulas

This section contains methods and formulas for predictions and inference for the default average structural function. Methods and formulas for all other predictions are given in *Methods and formulas* of [ERM] **eregress**. We begin with the cross-sectional model and then extend our discussion to the random effect models that we use for panel data.

In the linear regression model, for exogenous covariates \mathbf{x}_i and C endogenous regressors \mathbf{w}_i , we have

$$y_i = \mathbf{x}_i \boldsymbol{\beta} + \mathbf{w}_i \boldsymbol{\beta}_2 + \epsilon_i$$

where the error ϵ_i is normal and correlated with \mathbf{w}_i .

Because ϵ_i is a normally distributed, mean 0, random variable, we can split it into two mean 0, normally distributed, independent parts,

$$\epsilon_i = \gamma \epsilon_{2i} + \psi_i$$

where ϵ_{2i} is the unobserved heterogeneity that gives rise to the endogeneity and ψ_i is an idiosyncratic error term with variance σ_{ψ}^2 .

Conditional on the covariates and the unobserved heterogeneity, the conditional mean of y_i is

$$E(y_i|\mathbf{x}_i,\mathbf{w}_i,\epsilon_i) = \mathbf{x}_i\boldsymbol{\beta} + \mathbf{w}_i\boldsymbol{\beta}_2 + \boldsymbol{\gamma}\boldsymbol{\epsilon}_{2i}$$

Predictions and effects are computed based on the expression above. Including ϵ_{2i} controls for endogeneity. Thus, all effects computed using the expression above have a structural interpretation. See Imbens and Newey (2009) and Wooldridge (2010) for a detailed description of structural functions for models with endogeneity.

Our discussion easily extends to models for panel data with random effects. In this case, we have N panels. Panel $i=1,\ldots,N$ has observations $t=1,\ldots,N_i$, so we observe y_{it} with random effect α_i and observation-level error ϵ_{it} . These errors are independent of each other. So the combined error $\xi_{it}=\alpha_i+\epsilon_{it}$ is normal with mean 0 and variance $\sigma^2+\sigma^2_\alpha$, where σ^2_α is the variance of α_i . The results discussed earlier can then be applied using the combined error ξ_{it} rather than the cross-sectional error.

All predictions after xteregress assume the panel-level random effects (α_i) are zero. Put another way, predictions condition on the random effects being set to their means.

References

Imbens, G. W., and W. K. Newey. 2009. Identification and estimation of triangular simultaneous equations models without additivity. Econometrica 77: 1481–1512. https://doi.org/10.3982/ECTA7108.

Wooldridge, J. M. 2010. Econometric Analysis of Cross Section and Panel Data. 2nd ed. Cambridge, MA: MIT Press.

Also see

- [ERM] eregress Extended linear regression
- [ERM] eregress predict predict after eregress and xteregress
- [ERM] **predict treatment** predict for treatment statistics
- [ERM] **predict advanced** predict's advanced features
- [ERM] eprobit postestimation Postestimation tools for eprobit and xteprobit
- [U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2023 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.