Description	Quick start	Menu	Syntax
Options	Remarks and examples	Stored results	Also see

Description

cmtab tabulates chosen alternatives, either alone in a one-way tabulation or versus another variable in a two-way tabulation.

For panel choice data, cmtab can display a two-way tabulation of chosen alternatives by time or a three-way tabulation of time by chosen alternative by another variable.

Quick start

Display a one-way tabulation of chosen alternatives for cmset data, where depvar is a $0 / 1$ variable cmtab, choice(depvar)

Tabulate chosen alternatives versus the values of variable xvar
cmtab xvar, choice(depvar)
Same as above, and report row percentages and Pearson's χ^{2} test
cmtab xvar, choice(depvar) row chi2
Transpose rows and columns in the above tabulation
cmtab xvar, choice(depvar) col chi2 transpose
For panel choice data, display a two-way tabulation of chosen alternatives versus the time variable cmtab, choice(depvar) time

For panel choice data, display tabulations of chosen alternatives versus x for each time
cmtab x, choice(depvar) time
Same as above, but display tabulations of chosen alternatives versus times for each value of x
cmtab x , choice(depvar) time timelast
Same as above, but create a compact display
cmtab x , choice(depvar) time timelast compact

Menu

Statistics $>$ Choice models $>$ Setup and utilities $>$ Tabulate chosen alternatives

Syntax

cmtab $[$ varname $][$ if $][$ in $][$ weight $]$, choice(choicevar) [options]

options Description

Main

* choice (choicevar)
missing
transpose
time
timelast
compact
altwise
specify $0 / 1$ variable indicating the chosen alternative
include missing values of varname in tabulation transpose rows and columns in tables tabulate by time variable (only for panel CM data) put time variable last in three-way tabulation; tabulate alternatives by time for each level of varname (only for panel CM data) display three-way tabulation compactly (only for panel CM data) use alternativewise deletion instead of casewise deletion

Options
tabl_options
options for one-way tables
tab2_options
options for two-way tables
*choice() is required.
tabl_options
Description
sort
display table in descending order of frequency
tab2_options
Description
chi2
lrchi2
column
row
cell
rowsort
colsort
[no] key
report Pearson's χ^{2}
report likelihood-ratio χ^{2}
report column percentages
report row percentages
report cell percentages
list rows in order of observed frequency
list columns in order of observed frequency
report or suppress cell contents key

You must cmset your data before using cmtab; see [CM] cmset. by and collect are allowed; see [U] 11.1.10 Prefix commands.
fweights and iweights are allowed; see [U] 11.1.6 weight.

Options

[^0]transpose transposes rows and columns in the tabular displays.
time tabulates the chosen alternative versus the time variable when data are panel choice data. See [CM] emset.
timelast puts time last in a three-way tabulation when data are panel choice data. Three-way tabulations are created when varname is specified as well as the option time. By default, the three-way tabulation is timevar \times chosen alternative \times varname; that is, for each value of timevar, a two-way table of chosen alternative versus varname is displayed. When timelast is specified, the three-way tabulation is varname \times chosen alternative \times timevar; that is, for each value of varname, a two-way table of chosen alternative versus timevar is displayed. To reverse the order of the two-way tabulations, you can use the option transpose.
compact creates a compact three-way tabulation when data are panel choice data.
altwise specifies that alternativewise deletion be used when omitting observations because of missing values in your variables. The default is to use casewise deletion; that is, the entire group of observations making up a case is omitted if any missing values are encountered. This option does not apply to observations that are excluded by the if or in qualifier or the by prefix; these observations are always handled alternativewise regardless of whether altwise is specified.

Options

sort puts the table in descending order of frequency in a one-way table.
chi2 calculates and displays Pearson's χ^{2} for the hypothesis that the rows and columns in a two-way table are independent. chi2 may not be specified if iweights are used. chi2 is not available when compact is specified.
lrchi2 displays the likelihood-ratio χ^{2} statistic for a two-way table. lrchi2 may not be specified if iweights are used. lrchi2 is not available when compact is specified.
column displays the relative frequency, as a percentage, of each cell within its column in a two-way table. column is not available when compact is specified.
row displays the relative frequency, as a percentage, of each cell within its row in a two-way table. row is not available when compact is specified.
cell displays the relative frequency, as a percentage, of each cell in a two-way table. cell is not available when compact is specified.
rowsort and colsort specify that the rows and columns, respectively, be presented in order of observed frequency in a two-way table. rowsort and colsort are not available when compact is specified.
[no] key displays or suppresses a key above two-way tables. The default is to display the key if more than one cell statistic is requested. key displays the key. nokey suppresses its display. [no] key is not available when compact is specified.

Remarks and examples

stata.com
cmtab is a convenience command for tabulating chosen alternatives, either alone or against another variable.

The option choice (choicevar) is required, where choicevar is a $0 / 1$ variable. choicevar is typically the dependent variable for choice models with $0 / 1$ dependent variables.

For rank-ordered choice models, such as cmroprobit, using a dependent variable of ranks with choice() will give an error message. To use cmtab in this instance, you would have to create a $0 / 1$ variable, such as a variable indicating the highest ranked alternative for each case.

For tabulations of choice sets, see [CM] cmchoiceset. For an overview of other descriptive statistics available for choice model data, see [CM] Intro 3.

> Example 1: Cross-sectional choice data

Here is an example with cross-sectional choice data. First, we cmset our data:

```
. use https://www.stata-press.com/data/r18/carchoice
(Car choice data)
. cmset consumerid car
note: alternatives are unbalanced across choice sets; choice sets of
        different sizes found.
    Case ID variable: consumerid
Alternatives variable: car
```

These fictitious data represent persons who purchased a car with their choices categorized by the nationality of the manufacturer, American, Japanese, European, or Korean. Second, we use cmtab with only the choice() option, which gives a one-way tabulation of the chosen alternatives.

```
. cmtab, choice(purchase)
Tabulation of chosen alternatives (purchase = 1)
\begin{tabular}{r|rrr}
\begin{tabular}{r} 
Nationality \\
of car
\end{tabular} & Freq. & Percent & Cum. \\
\hline American & 384 & 43.39 & 43.39 \\
Japanese & 326 & 36.84 & 80.23 \\
European & 135 & 15.25 & 95.48 \\
Korean & 40 & 4.52 & 100.00 \\
\hline Total & 885 & 100.00 &
\end{tabular}
```

We see that most people in this dataset purchased American cars more than any other nationality of car.

We can look at associations between chosen alternatives and other variables in the dataset. We wonder whether gender is associated with the nationality of the car purchased:

```
. cmtab gender, choice(purchase)
Tabulation for chosen alternatives (purchase = 1)
        gender is constant within case
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Nationalit \(y\) of car} & \multicolumn{3}{|l|}{\[
\begin{aligned}
\text { Gender: } & 0=\text { Female, } 1 \\
= & \text { Male }
\end{aligned}
\]} \\
\hline & & & Total \\
\hline American & 96 & 280 & 376 \\
\hline Japanese & 110 & 206 & 316 \\
\hline European & 22 & 108 & 130 \\
\hline Korean & 8 & 32 & 40 \\
\hline Total & 236 & 626 & 862 \\
\hline
\end{tabular}
```

We specify the option row to better see the percentages of gender within choices. We also specify chi2 to get a p-value for the association of gender with the choice of car.
. cmtab gender, choice(purchase) row chi2
Tabulation for chosen alternatives (purchase = 1)
gender is constant within case

Key
frequency row percentage

Nationalit y of car	$\begin{aligned} \text { Gender: } & 0=\text { Female, } 1 \\ & =\text { Male } \end{aligned}$		Total
American	96	280	376
	25.53	74.47	100.00
Japanese	110	206	316
	34.81	65.19	100.00
European	22	108	130
	16.92	83.08	100.00
Korean	8	32	40
	20.00	80.00	100.00
Total	236	626	862
	27.38	72.62	100.00
Pearson chi2(3)			

There are more male car purchasers than female car purchasers in these data. Purchasers of European cars are even more overwhelmingly male. However, the percentage of Japanese cars purchased by females is greater than the percentage of American, European, or Korean cars purchased by females. The p-value from the Pearson's χ^{2} test for association is 0.001 .

The transpose option transposes rows and columns in the display:

> Example 2: Panel choice data

When you have panel choice data, cmtab is useful to see how chosen alternatives vary by time. Here is an example. First, we cmset the data:

```
. use https://www.stata-press.com/data/r18/transport, clear
(Transportation choice data)
. cmset id t alt
note: case identifier _caseid generated from id and t.
note: panel by alternatives identifier _panelaltid generated from id and alt.
                            Panel data: Panels id and time t
        Case ID variable: _caseid
    Alternatives variable: alt
Panel by alternatives variable: _panelaltid (strongly balanced)
    Time variable: t, 1 to 3
    Delta: 1 unit
```

Note: Data have been xtset.

Second, we specify the option time to look at chosen alternatives by time. The option column helps to see whether there is any trend with time.
. cmtab, choice(choice) time column chi2
Tabulation of chosen alternatives (choice $=\mathbf{1}$) by time \mathbf{t}

Key
frequency
column percentage

Alternativ	Time variable			
es	1	2	3	Total
Car	234	359	388	981
	46.80	71.80	77.60	65.40
Public	108	81	67	256
	21.60	16.20	13.40	17.07
Bicycle	74	40	31	145
	14.80	8.00	6.20	9.67
Walk	84	20	14	118
	16.80	4.00	2.80	7.87
Total	500	500	500	1,500
	100.00	100.00	100.00	100.00
	Pearson chi2(6) $=148.9651$	Pr $=0.000$		

There is a large time trend for the chosen alternatives in these data. The percentage of persons choosing cars as their mode of transportation increases from 46.8% at time 1 to 77.6% at time 3 . All the other choices of modes of transportation decline over time.

Does choice of transportation vary by whether a person has a full-time or part-time job (indicated by the variable parttime)? Here is how we could look at that, aggregating across time.

```
. cmtab parttime, choice(choice) column nokey
```

Tabulation for chosen alternatives (choice = 1)
parttime is constant within case

| Alternativ |
| ---: | ---: | ---: | ---: |
| es |\quad| Part-time job | | |
| ---: | ---: | ---: |
| Full-time | Part-time | Total |
| Car | 503 | 478 |
| | 66.80 | 63.99 |

Because this tabulation aggregates chosen alternatives across time for the same individual, we did not calculate a Pearson χ^{2}. However, there does not appear to be an association between choice of transportation and whether the person is employed full time or part time.

Let's look at the choice of transportation by full-time or part-time employment for each time point. To do this, we add the option time. We also specify the option transpose to make wide tables that take up less vertical space. Because we are not aggregating counts, we also specify the chi2 option.
. cmtab parttime, choice(choice) row chi2 nokey time transpose
Tabulations by chosen alternatives (choice = 1)
parttime is constant within case
time $\mathbf{t}=1$

Part-time	Car	Alternatives			
job	Public	Bicycle	Walk	Total	
Full-time	119	53	34	31	237
	50.21	22.36	14.35	13.08	100.00
Part-time	115	55	40	53	263
	43.73	20.91	15.21	20.15	100.00
Total	234	108	74	84	500
	46.80	21.60	14.80	16.80	100.00

Pearson chi2(3) $=5.0154 \quad \operatorname{Pr}=0.171$

Part-time job	Alternatives				
	Car	Public	Bicycle	Walk	Total
Full-time	186	43	18	11	258
	72.09	16.67	6.98	4.26	100.00
Part-time	173	38	22	9	242
	71.49	15.70	9.09	3.72	100.00
Total	359	81	40	20	500
	71.80	16.20	8.00	4.00	100.00

Pearson chi2(3) $=0.8683 \quad \operatorname{Pr}=0.833$
time $\mathbf{t}=3$

| Part-time | Car | Alternatives | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| job | Public | Bicycle | Walk | Total | |
| Full-time | 198 | 36 | 20 | 4 | 258 |
| | 76.74 | 13.95 | 7.75 | 1.55 | 100.00 |
| Part-time | 190 | 31 | 11 | 10 | 242 |
| | 78.51 | 12.81 | 4.55 | 4.13 | 100.00 |
| Total | 388 | 67 | 31 | 14 | 500 |
| | 77.60 | 13.40 | 6.20 | 2.80 | 100.00 |
| | Pearson chi2(3) $=$ | 5.2158 | $\operatorname{Pr}=0.157$ | | |

Is there a time trend for choice of transportation for those employed full time? For those employed part time? The tables above can be considered a three-way tabulation: time \times parttime \times chosen alternative. To look for time trends within parttime, we note the three-way tabulation parttime \times chosen alternative \times time is better. We can get this three-way tabulation by specifying the option timelast.
. cmtab parttime, choice(choice) column chi2 nokey time timelast
Tabulations by chosen alternatives (choice = 1)
parttime is constant within case
parttime $=0$

Alternativ es	Time variable			
	1	2	3	Total
Car	119	186	198	503
	50.21	72.09	76.74	66.80
Public	53	43	36	132
	22.36	16.67	13.95	17.53
Bicycle	34	18	20	72
	14.35	6.98	7.75	9.56
Walk	31	11	4	46
	13.08	4.26	1.55	6.11
Total	237	258	258	753
	100.00	100.00	100.00	100.00
Pearson chi2 (6) $=57.2439 \quad \mathrm{Pr}=0.000$				

Alternativ es	Time variable			
	1	2	3	Total
Car	115	173	190	478
	43.73	71.49	78.51	63.99
Public	55	38	31	124
	20.91	15.70	12.81	16.60
Bicycle	40	22	11	73
	15.21	9.09	4.55	9.77
Walk	53	9	10	72
	20.15	3.72	4.13	9.64
Total	263	242	242	747
	100.00	100.00	100.00	100.00
Pearson chi2 (6) $=93.5435 \quad \operatorname{Pr}=0.000$				

Three-way tabulations created by cmtab can be displayed more compactly using the option compact:

```
. cmtab parttime, choice(choice) time timelast compact
Tabulations by chosen alternatives (choice = 1)
parttime is constant within case
```

Alternati ves	$$					
Car	119	186	198	115	173	190
Public	53	43	36	55	38	31
Bicycle	34	18	20	40	22	11
Walk	31	11	4	53	9	10

Stored results

cmtab stores the following in r() :
Scalars

```
r(N) number of observations
    r(r) number of rows
    r(c) number of columns
    r(chi2) Pearson's }\mp@subsup{\chi}{}{2
    r(p) p-value for Pearson's }\mp@subsup{\chi}{}{2}\mathrm{ test
    r(chi2_lr) likelihood-ratio }\mp@subsup{\chi}{}{2
    r(p_lr) p-value for likelihood-ratio test
```


Also see

[CM] emchoiceset - Tabulate choice sets
[CM] cmsample - Display reasons for sample exclusion
[CM] emset - Declare data to be choice model data
[CM] emsummarize - Summarize variables by chosen alternatives

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright (c) 1985-2023 StataCorp LLC, College Station, TX,
 USA. All rights reserved.
For suggested citations, see the FAQ on citing Stata documentation.

[^0]: Main
 choice (choicevar) specifies the variable indicating the chosen alternative. choicevar must be coded as 0 and 1 , with 0 indicating an alternative that was not chosen and 1 indicating the chosen alternative. choice() is required.
 missing specifies that the missing values of varname are to be treated like any other value of varname.

