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Description
Difference in differences (DID) is a method to estimate the average effect of a treatment on those

who receive the treatment. The method can be applied to two types of observational data: repeated
cross-sections, in which different individuals are observed at different time points, and panel data,
in which the same individuals are observed over time. We provide commands that estimate the
average treatment effect on the treated (ATET). The effect may be the same for all (homogeneous) or
may differ across time and across groups (heterogeneous). didregress and xtdidregress are for
homogeneous treatment effects; hdidregress and xthdidregress are for heterogeneous treatment
effects.

didregress and xtdidregress estimate the ATET of a binary or continuous treatment on a
continuous outcome by fitting a linear model with time fixed effects and group or panel fixed effects.
These commands also estimate difference in difference in differences (DDD), in which we augment
the DID framework to include additional control groups to obtain the ATET.

hdidregress and xthdidregress estimate ATETs that vary over time and over treatment cohorts.
Treatment cohorts are groups that are subject to intervention at different points in time. As in the
homogeneous case, we can fit a linear model with time fixed effects and group or panel fixed effects, but
we also incorporate interactions of the treatment with time and treatment cohorts. We fit these models
using the two-way fixed-effects (TWFE) estimator. hdidregress and xthdidregress additionally
allow for regression adjustment (RA), inverse-probability weighting (IPW), and augmented inverse-
probability weighting (AIPW) to estimate the ATETs. See [CAUSAL] teffects intro for a discussion of
RA, AIPW, and IPW estimators.

Remarks and examples stata.com

Remarks are presented under the following headings:
Introduction
Intuition for estimating effects
DID with heterogeneous treatment effects
Standard error considerations
Different types of data and specification

Specifying groups and time as binary indicators
Excluding group and time effects
Exploring treatment-effect heterogeneity

Conclusion

This entry presents the intuition and some of the technical details for the estimators in didregress,
xtdidregress, hdidregress, and xthdidregress and the diagnostics available after estimation.
See [CAUSAL] didregress, [CAUSAL] didregress postestimation, [CAUSAL] hdidregress, [CAUSAL] xth-
didregress, and [CAUSAL] hdidregress postestimation for details on the syntax and worked examples.
For a more complete discussion and references on homogeneous DID, see Angrist and Pischke (2009),
Blundell and Dias (2009), Imbens and Wooldridge (2009), Lechner (2011), Angrist and Pischke (2015),
Abadie and Cattaneo (2018), and Wing, Simon, and Bello-Gomez (2018). For more details on het-
erogeneous DID, see Roth et al. (2022) and de Chaisemartin and D’Haultfœuille (forthcoming) and
the references therein.
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Introduction

DID is one of the most venerable causal inference methods used by researchers. DID provides
estimates of treatment effects on those that receive a treatment. Examples of such treatment effects
are the effect of a minimum-wage increase on employment for those that see their minimum wage
increase or the effect of water pollution on health outcomes for those that were exposed to water
pollution.

Unlike the treatment-effects estimators described in [CAUSAL] teffects, which are applied to data
from one cross-section, DID allows us to consider variation over time. For example, DID allows for
panel data, for which we observe the same unit over time. It also works for repeated cross-sections,
for which individuals sampled within groups differ across time periods but the groups sampled are the
same. An appealing feature of DID is that our model specification does not require us to control for
individual characteristics to identify treatment effects, something that is fundamental to the estimators
described in [CAUSAL] teffects.

When thinking about ATETs in a DID framework, we compare a group before and after the treatment,
perhaps by looking at a graph such as the one below:
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Figure 1.

A treatment occurred in the year 2010. This might be a government policy, a change in medicine
dosage, or any other intervention of interest. We would like to know if the treatment had a causal
effect. It is clear from the graph that the outcome of interest changed after 2010. Is this due to
the treatment or is something else occurring? Perhaps there are unobserved time effects that affect
the treatment group after the treatment. For instance, there could have been a change in weather
conditions or an economic downfall that affected the treatment group but was not captured in the
model or the data. If this is the case, it does not suffice to look at the treatment group before and
after the policy. DID addresses this by finding a control group, that is, a group that was subject to the
same unobserved time effects but was not exposed to the treatment. Comparing the treatment group
with the control group before and after the treatment might give us a better understanding of whether
the treatment made a difference. A graph looking at a treatment and control group might look like
this:

https://www.stata.com/manuals/causalteffects.pdf#causalteffects
https://www.stata.com/manuals/causalteffects.pdf#causalteffects
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Figure 2.

For both the treatment and the control group, we see that there was a decrease in the mean of the
outcome after 2010. Therefore, the decrease we saw in the treatment group cannot be attributable
entirely to the treatment. (In fact, these are simulated data, and we know the treatment has no effect.)

In a DID setup, if the treated group had not received the treatment, we would expect the treated
and control groups to experience the same trends. A treatment effect implies a systematic deviation
from a common trend that can be observed graphically. This is what we observe:
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Figure 3.

Here both groups experienced a decrease after 2010, but the treatment-group decrease was more
substantial. The difference in the decreases across groups may indicate the effect of the treatment.

Researchers may motivate their analysis with such graphs. However, graphical evidence is not
enough. We need statistical validation, so we fit a model.
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The ATET is consistently estimated by differencing the average outcome for the treatment and
control groups over time to eliminate time-invariant unobserved characteristics and also differencing
the average outcome of these groups to eliminate time-varying unobserved effects common to both
groups. These two differences give the method its name and highlight its intuitive appeal. More
appealing is the fact that you can get the effect of interest, the ATET, from one parameter in a linear
regression.

When talking about DID, people cite Snow (1849) and Snow (1855) as the first known applications.
Snow claimed that cholera was not transmitted by contaminated air or contaminated blood, as was
thought by some academics of his time. Snow hypothesized the disease was communicated via water
that had been polluted with sewage. Below, he describes how he came up with an idea for a natural
experiment to validate his hypothesis:

In Thomas Street, Horsleydown, there are two courts close together, consisting of
a number of small houses or cottages, inhabited by poor people. The houses occupy
one side of each court or alley—the south side of Trusscott’s Court, and the north
side of the other, which is called Surrey Buildings, being placed back to back, with an
intervening space, divided into small back areas, in which are situated the privies of both
the courts, communicating with the same drain, and there is an open sewer which passes
the further end of both courts. Now, in Surrey’s buildings the cholera has committed
fearful devastation, whilst in the adjoining court there has been but one fatal case, and
another case that ended in recovery. In the former court the slops of dirty water poured
down by the inhabitants into a channel in front of the houses got into the well from
which they obtained their water, this being the only difference . . . .

In the first edition (1849) of the text, Snow reports the deaths from cholera from September 23,
1848, to August 25, 1849, for five London districts. The number of deaths is higher in the South
and East districts relative to the other three districts, arising from the source of their water supply.
Snow obtains a clear motivation for his theory. In the second edition (1855), he collects data before
and after a pump with contaminated water in Broadstreet, London, is closed. It is then that he can
compare a treated with a control group before and after a treatment to establish a treatment effect.

Intuition for estimating effects

We can build our intuition about the causal inference implied by the DID setup by using the potential-
outcomes framework described in [CAUSAL] Intro, [CAUSAL] teffects intro, and [CAUSAL] teffects
intro advanced. We consider individual-level data for which we sample different individuals at
different points in time, that is, a repeated cross-section. The treatment occurs at the group level. For
example, the treatment may occur at the state, county, or hospital level. All individuals in a given state,
county, or hospital either are treated or are controls at a given point in time. We index individuals by
i, groups by g, and time by t. We are interested in the effect of a treatment, Digt ∈ {0, 1}, on an
outcome, Yigt. Suppose the potential-outcome mean of an individual in group g at time t that does
not receive the treatment is given by the following:

E {Yigt (0) | g, t} = γg + γt (1)

Above, γg denotes the group effects, and γt denotes the time effects. Also suppose the potential-
outcome mean for someone who receives the treatment is given by the following:

E {Yigt (1) | g, t} = γg + γt + δ (2)

The potential outcomes described above allow us to think of the regression model

Yigt = γg + γt +Dgtδ + εigt

https://www.stata.com/manuals/causalintro.pdf#causalIntro
https://www.stata.com/manuals/causalteffectsintro.pdf#causalteffectsintro
https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
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A regression estimate of δ, the coefficient on the indicator of treatment, consistently estimates the
ATET in this simplified framework, if we meet the overlap assumption, the stable unit treatment value
assumption, and conditional independence (described in [CAUSAL] Intro and [CAUSAL] teffects intro
advanced), plus one additional assumption.

To introduce this additional assumption, we think it is sometimes more intuitive to look at a
two-period, two-group example. In this case, g ∈ {0, 1}, where 0 is the control group and 1 is
the treatment group, and t ∈ {0, 1}, where 0 is the period before the treatment and 1 occurs after
the treatment. To guarantee a consistent estimate of the ATET, we need to make the parallel-trends
assumption:

E(Yig1 (0) |Dgt = 1)− E(Yig0 (0) |Dgt = 1) = E(Yig1 (0) |Dgt = 0)− E(Yig0 (0) |Dgt = 0)

The parallel-trends assumption is stated in terms of the potential outcomes of not being treated,
Yigt(0), conditional on treatment, Dgt. It implies that if the treated had not received the treatment,
the groups defined by Dgt = 1 and Dgt = 0 would have the same trends. For this to be true, we
need group effects to be time invariant and time effects to be group invariant. The simple framework
described in (1) and (2) satisfies the parallel-trends assumption.

The parallel-trends assumption has a graphical representation. Let’s think again about the case
with multiple time periods. The parallel-trends assumption implies the paths of the outcome variable
over time are parallel between the control and treatment groups prior to the date of the treatment. We
can visually check this assumption by plotting the means of the outcome over time for both groups
or by visualizing the results of the linear trends model. For instance, we might use a graph like the
one in figure 2, where we plotted the means over time. After fitting a model using didregress and
xtdidregress, you can get both the mean outcome plot and the trends plot by typing

. estat trendplots

Another way to think about the parallel-trends assumption in the pretreatment period is that treatment
and control groups do not change their behavior in anticipation of the treatment. We can think of the
parallel-trends assumption as implying that there should be no treatment effect in anticipation of the
treatment. To test this assumption, we could fit a Granger-type causality model where we augment
our model with dummies for each pretreatment period for the treated observations. A joint test of
the coefficients on these dummies against 0 can be used as a test of the null hypothesis that no
anticipatory effects have taken place. We can perform this test by typing

. estat granger

DID with heterogeneous treatment effects

When we introduced DID estimation above, we built our intuition for a case in which the treatment
effect is the same for every group and in which the treatment effect does not change over time. We
imposed this when we wrote

E {Yigt (0) | g, t} = γg + γt

E {Yigt (1) | g, t} = γg + γt + δ

Also, we discussed the model using two groups and two time periods, a 2× 2 model. But nothing
precludes us from thinking of a set of treatment effects, say, δgt, that varies over multiple groups,
g, and time periods, t. More importantly, when we assume that the effect is homogeneous but the
true model is heterogeneous, our treatment-effect estimates are going to be inconsistent, as was
shown by de Chaisemartin and D’Haultfœuille (2020), Borusyak, Jaravel, and Spiess (2021), Sun and
Abraham (2021), and Goodman-Bacon (2021).

https://www.stata.com/manuals/causalintro.pdf#causalIntro
https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
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Goodman-Bacon (2021) characterizes the ATET estimate obtained from a DID of the form

Yigt = γg + γt +Dgtδ + εigt

when there are multiple time periods and treatment occurs at different points in time as a deviation
from the 2× 2 framework. He shows the estimated coefficient, δ̂, is a weighted average of contrasts
between groups treated at different points in time and groups that are not treated. When contrasts
occur over time between treated groups and groups that are never treated or not yet treated, the
comparisons are informative. When contrasts occur between groups that are both already treated, this
component of the weighted average is not a treatment effect and thus introduces bias. The bias can
be significant and change not only the magnitude but also the sign of the coefficient.

Goodman-Bacon (2021) decomposes δ̂ and estimates all contrasts and weights that lead to the homo-
geneous estimate. For balanced-panel datasets, after xtdidregress, you can get the decomposition
of the ATET by typing

. estat bdecomp

The result will let you know if the homogeneity assumption is warranted. This would be the case
if the coefficients of the different contrasts are similar to the ATET estimate. If the contrasts differ
substantially from the ATET estimate, our estimates are misleading.

If the decomposition suggests the homogeneous treatment effect is unwarranted or you do not
want to impose homogeneity in treatment, you may use xthdidregress. If you are concerned
about heterogeneity, you may choose from two workflows. With balanced panels, you might choose
to fit the model for homogeneous treatment effects first and use estat bdecomp to determine
whether effects are heterogeneous. With any panel or repeated cross-sectional data, you can fit a
heterogeneous treatment-effects model and then use estat aggregation to ascertain whether effects
are heterogeneous.

The treatment effects you are estimating using hdidregress and xthdidregress are of the form

ATET (c, t)

where c corresponds to the moment in time when a group receives the treatment, a cohort, and t
corresponds to time. For example, a policy might be administered at the state level starting in 1995
for some states and in 1998 for other states. In this case, we would have treatment effects of the form
ATET(1995, t) and ATET(1998, t). We are saying that the effect of the policy is different for states
treated in 1995 than it is for those treated in 1998. Also, we are saying that the effect changes over
time. Thus, if our sample goes from 1993 to 2000, for the 1995 cohort, we have treatment effects of
the form ATET(1995, 1993), ATET(1995, 1994), . . . , ATET(1995, 2000).

As is the case for homogeneous treatment, we need to satisfy a parallel-trends assumption and
no anticipation of treatment. Both of these assumptions now need to hold for each cohort. As with
the homogeneous treatment effects, we provide graphical diagnostics and tests. For a test of parallel
trends, we have the command

. estat ptrends

For graphical inspection, you may type
. estat atetplot

which results in a graph for each cohort before and after treatment that lets you see whether there is
no treatment effect, before treatment, for each cohort.

For a discussion of these assumptions and the requirements needed for consistency of the het-
erogeneous treatment implemented in hdidregress and xthdidregress, see Wooldridge (2021),
Callaway and Sant’Anna (2021), and Roth et al. (2022).
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Standard error considerations
While a standard linear regression model can be used to estimate the ATET in the homogeneous

case, when assuming homogeneous treatment, the best estimate of the standard error requires some
consideration. Many standard-error estimates have been proposed, and each one performs differently
depending on the type of DID model being fit and the structure of the data. Below, we provide a
discussion of some of the issues centered on the available standard-error estimates for hdidregress,
didregress, xthdidregress, and xtdidregress. For a more complete discussion of inference
for the homogeneous treatment-effect estimators, see Cameron and Miller (2015) and MacKin-
non (2019) and the references therein. For a more complete discussion of the heterogeneous case, see
Wooldridge (2021), Callaway and Sant’Anna (2021), and Roth et al. (2022). We begin our discussion
with didregress and xtdidregress.

Bertrand, Duflo, and Mullainathan (2004) show that the standard errors for DID estimates are
inconsistent if they do not account for the serial correlation of the outcome of interest. Because
the outcomes studied usually vary at the group and time levels, it makes sense to correct for serial
correlation. The authors show that using cluster–robust standard errors at the group level where
treatment occurs provides correct coverage in the presence of serial correlation when the number of
groups is not too small. Bester, Conley, and Hansen (2011) further show that using cluster–robust
standard errors and using critical values of a t distribution with G− 1 degrees of freedom, where G
is the number of groups, is asymptotically valid for a fixed number of groups and a growing sample
size. In other words, you do not need the number of groups to be arbitrarily large, that is, to grow
asymptotically. Cluster–robust standard errors with G−1 degrees of freedom are the default standard
errors of didregress and xtdidregress.

The results of Bertrand, Duflo, and Mullainathan (2004) and Bester, Conley, and Hansen (2011)
demonstrate that we could still obtain reliable standard errors even when the number of groups was
not large. But what about data with a very small number of groups? Several simulation and theoretical
results suggest that cluster–robust standard errors may still have poor coverage when the number of
groups is very small or when the number of treated groups is small relative to the number of control
groups. These scenarios with small group sizes are common in DID studies, and another method of
standard error estimation should be considered in these situations.

When the number of groups is small, we provide three alternatives. The first alternative is to use
the wild cluster bootstrap that imposes the null hypothesis that the ATET is 0. Cameron, Gelbach,
and Miller (2008) and MacKinnon and Webb (2018) show that the wild cluster bootstrap provides
better inference than using cluster–robust standard errors with t(G− 1) critical values. The second
alternative comes from Imbens and Kolesár (2016), who show that with a small number of groups,
you may use bias-corrected standard errors with the degrees-of-freedom adjustment proposed by Bell
and McCaffrey (2002). For the third alternative, you may use aggregation-type methods like those
proposed by Donald and Lang (2007); they show that their method works well when the number of
groups is small but the number of individuals in each group is large.

When the disparity between treatment and control groups is large, for example, because there is
only one treated group or because the group sizes vary greatly, cluster–robust standard errors and the
other methods mentioned above underperform. Yet the bias-corrected and cluster–bootstrap methods
provide an improvement over the cluster–robust standard errors.

What we said above for didregress and xtdidregress applies to hdidregress and xth-
didregress when the underlying estimator is a linear regression. Considerations are different when
we talk about the RA, AIPW, and IPW estimators implemented by the heterogeneous DID commands.
These last three estimators can be understood as estimates from a multiple-equation model, in which
each ATET(c, t) could have been estimated separately. The standard errors of the estimates are, by
default, equivalent to what you would obtain using a method of moments estimator and clustering at
the group level where the treatment is administered; see [R] gmm.

https://www.stata.com/manuals/rgmm.pdf#rgmm
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Because heterogeneous DID has multiple equations and parameters, you may want to consider
inference of all the ATET(c, t) estimates simultaneously: uniform inference. For such a scenario, you
may use the bootstrap procedure suggested by Callaway and Sant’Anna (2021) by typing

. estat sci

after hdidregress and xthdidregress to obtain simultaneous confidence intervals.

Different types of data and specification

We allow for DID estimation of ATETs with two types of data: repeated cross-sections and panel
data. The type of estimator to use depends on the assumptions you would like to make about the
model and what type of data you have. Below, we walk you through the different types of models
you may want to fit and how to fit them with didregress, hdidregress, xtdidregress, and
xthdidregress.

Suppose you have a repeated cross-section of individuals i over a period of time t. The treatment
is implemented at the state level, s, and it is denoted by Dst, where Dst = 1 for all observations that
are subject to the treatment in state s at time t. The indexing of the treatment makes clear that all
individuals in the state at a given time are either treated or untreated. The model to be fit is given by

yist = γs + γt + zistβ +Dstδ + εist (3)

In the expression above, yist is the outcome, y in our data; zist are individual-level characteristics,
given by z1 and z2; and Dst is given by the variable d. To obtain the ATET, we type

. didregress (y z1 z2) (d), group(state) time(year)

Within the first set of parentheses, we list the outcome and covariates zist from (3). In the
second set of parentheses, we specify the treatment variable. Group and time effects are included in
the model through the group() and time() options, respectively. Also, by default, cluster–robust
standard errors are computed at the state level. The command above is equivalent to typing

. regress y z1 z2 i.year i.state d, vce(cluster state)

The model we fit above assumes the treatment effect is homogeneous. Yet we may want to allow
the treatment effect to vary over treatment-time cohort and over time. If this is the case, we may type

. hdidregress twfe (y) (d), group(state) time(year)

or, instead of twfe, we could specify ra, ipw, or aipw. All of these estimators will provide multiple
cohort-time treatment effects instead of one ATET parameter. Notice that we excluded z1 and z2 in
the specification above. Depending on the estimator we select, we could include them in either of the
sets of parentheses. If we include them only in the first parentheses, we are modeling the outcome. If
we include them in the second parentheses, we are modeling the treatment. If we include regressors
in both parentheses, we are modeling the treatment and the outcome. This is equivalent to what we
specify when we use the estimators discussed in [CAUSAL] teffects ra, [CAUSAL] teffects ipw, and
[CAUSAL] teffects aipw.

didregress also allows us to specify a DDD model for situations in which we would like to
augment the DID framework to include another control group. For instance, starting from (3), let’s
assume the treatment occurs at the state level but also varies for people older than 65 versus people
who are younger, defined by a binary variable g. The DDD model is now given by

yisgt = γs + γg + γt + γsγt + γgγt + γsγg + zisgtβ +Dsgtδ + εisgt

https://www.stata.com/manuals/causalteffectsra.pdf#causalteffectsra
https://www.stata.com/manuals/causalteffectsipw.pdf#causalteffectsipw
https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipw
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To fit this model, we would type

. didregress (y z1 z2) (d), group(state g) time(year)

Although the model has a large set of interactions and looks much more complex than the DID
model, the only difference in what we type is the addition of g to the set of group variables. The
cluster–robust standard errors are computed at the highest level of clustering, in this case, state.

In some cases, data do not include a time component but rather multiple grouping variables across
which differences may be taken. You could fit DDD models for three groups or DID for two groups.
For DDD with state, g1, and g2, you could type

. didregress (y z1 z2) (d), group(state g1 g2)

Or you could fit a DID by typing

. didregress (y z1 z2) (d), group(g1 g2)

With these last two specifications, diagnostics that rely on time variables are not available.

With panel data, the basic model is given by

yist = γi + γt + zistβ +Dstδ + εist (4)

Again, i denotes the individual (panel), t is the time period, and s is a group-level index. Individuals
are assumed to be nested within the group, and treatment occurs at the group and time levels.

The specification is analogous to the one in (3), except that instead of γs we have γi. Suppose
that our data now include a panel identifier variable, id, that corresponds to i in (4). To fit the model
above, we would type

. xtset id

. xtdidregress (y z1 z2) (d), group(state) time(year)

In this model, the group variable is different from the xtset identifying variable. The group variable
defines the level of clustering, whereas the xtset variable defines the panel identifier. In other words,
we are fitting a fixed-effects model with individual fixed effects, not one with state fixed effects. Of
course, the group and xtset variables could be the same, but they do not need to be.

If we want to assume heterogeneous treatment, we must xtset our data with respect to the panel
variable and with respect to time. The heterogeneous estimates rely on first differences of the outcome
variable. For the RA estimator, you would type

. xtset id time

. xthdidregress ra (y z1 z2) (d), group(state)

Again, the panel variable and the group variable need not be the same, but the group and panel
variable need to be related.

Specifying groups and time as binary indicators

The cross-sectional and panel-data models discussed above for homogeneous treatment are referred
to as generalized DID models by Wing, Simon, and Bello-Gomez (2018). They are a generalization
of the two-period, two-group specification that is usually discussed in the literature. This is also the
way Angrist and Pischke (2009) write the model.
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It is not uncommon, however, to write the DID model in terms of binary indicators. Instead of
having group effects and time effects in the model for all groups and times in the data, you could
instead include only a posttreatment effect and a treatment-group effect. To do this, you would create
and include an indicator in your model that takes the value of 1 if the observation belongs to a
treated group and 0 otherwise as well as an indicator that is 1 if the period considered occurs after
the treatment. You can specify this model by using the nogteffects option and including your own
indicators.

Say, for example, you create a time-constant indicator, gtreated, that is 1 if a group is treated
and 0 otherwise, as well as an indicator, post, that is 1 after the policy was implemented and 0
before. You would type

. didregress (y z1 z2 i.post i.gtreated) (d), group(state) time(year) nogteffects

The syntax, in which we include indicators and use nogteffects, is equivalent for xtdidregress.

The model you specify in this case is given by

yist = 1 {s = treated}+ 1 {t = post}+ zistβ +Dstδ + εist

where 1 {s = treated} is an indicator function that is 1 if group s receives the treatment and 0
otherwise. Similarly, 1 {t = post} indicates that we are in the period for which the treatment is
active. In the expression above, we still specify the group() and time() options to obtain the
correct standard errors, to validate the assumptions of the DID specification, and to obtain group- and
time-level statistics.

Excluding group and time effects

didregress and xthdidregress allow you to forgo the group and time effects that are generated
by default. In this case, you would have to add your own group and time effects or omit them entirely
by using the nogteffects option, which excludes group and time effects from your specification.
For DDD models, you may also use the nointeract option, which will exclude group and time
interactions from your model. Combining both options excludes group and time effects altogether.
You may type

. didregress (y z) (d), group(s g) time(t) nogteffects nointeract

You would then fit

yisgt = β0 + zigstβ +Dsgtδ + εist

You could still include group and time interactions by adding them in the first set of parentheses.

Exploring treatment-effect heterogeneity

The heterogeneous treatment-effect estimators assume that the treatment effect changes over
cohorts and over time. Yet we may want to see how the treatment effects vary only in one of those
dimensions. For instance, we may want to look at the average of the treatment effects for the 1995
cohort ATET(1995, t) within all time periods. We could also average within cohorts at a given point in
time to get a treatment effect for a particular year. Or even more, we might average over cohort and
over time to get back one single ATET. After estimation, we can do this using the estat aggregation
command; see [CAUSAL] hdidregress postestimation.

https://www.stata.com/manuals/causalhdidregresspostestimation.pdf#causalhdidregresspostestimation
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For the twfe estimator, we can additionally decide at the estimation stage what level of heterogeneity
we want to impose to our model. We can decide whether we want to allow for time heterogeneity
or cohort-level heterogeneity using the hettype() option. For instance, if we wanted to disregard
time heterogeneity but model cohort heterogeneity, we would type

. hdidregress ..., ... hettype(cohort)

Conclusion

didregress and xtdidregress compute the ATET using DID and DDD for panel data and repeated
cross-sections. Additionally, hdidregress and xthdidregress estimate ATETs that vary over time
and over treatment cohorts. All four commands offer standard error computations that address some
of the issues that researchers face, such as a small number of groups. After you fit models with these
commands, diagnostics and tests to validate the assumptions and internal validity of the DID and DDD
results are available.

References
Abadie, A., and M. D. Cattaneo. 2018. Econometric methods for program evaluation. Annual Review of Economics

10: 465–503. https://doi.org/10.1146/annurev-economics-080217-053402.

Angrist, J. D., and J.-S. Pischke. 2009. Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton, NJ:
Princeton University Press.

. 2015. Mastering Metrics: The Path from Cause to Effect. Princeton, NJ: Princeton University Press.

Bell, R. M., and D. F. McCaffrey. 2002. Bias reduction in standard errors for linear regression with multi-stage
samples. Survey Methodology 28: 169–181.

Bertrand, M., E. Duflo, and S. Mullainathan. 2004. How much should we trust difference-in-differences estimates?
Quarterly Journal of Economics 119: 249–275. https://doi.org/10.1162/003355304772839588.

Bester, C. A., T. G. Conley, and C. B. Hansen. 2011. Inference with dependent data using cluster covariance estimators.
Journal of Econometrics 165: 137–151. https://doi.org/10.1016/j.jeconom.2011.01.007.

Blundell, R. W., and M. C. Dias. 2009. Alternative approaches to evaluation in empirical microeconomics. Journal
of Human Resources 44: 565–640. https://doi.org/10.1007/s10258-002-0010-3.

Borusyak, K., X. Jaravel, and J. Spiess. 2021. Revisiting event study designs: Robust and efficient estimation. ArXiv
Working Paper No. arXiv:2108.12419. https://doi.org/10.48550/arXiv.2108.12419.

Callaway, B., and P. H. C. Sant’Anna. 2021. Difference-in-differences with multiple time periods. Journal of
Econometrics 225: 200–230. https://doi.org/10.1016/j.jeconom.2020.12.001.

Cameron, A. C., J. B. Gelbach, and D. L. Miller. 2008. Bootstrap-based improvements for inference with clustered
errors. Review of Economics and Statistics 90: 414–427. https://doi.org/10.1162/rest.90.3.414.

Cameron, A. C., and D. L. Miller. 2015. A practitioner’s guide to cluster-robust inference. Journal of Human Resources
50: 317–372. https://doi.org/10.3368/jhr.50.2.317.

de Chaisemartin, C., and X. D’Haultfœuille. 2020. Two-way fixed effects estimators with heterogeneous treatment
effects. American Economic Review 110: 2964–2996. https://doi.org/10.1257/aer.20181169.

. Forthcoming. Two-way fixed effects and differences-in-differences with heterogeneous treatment effects: A
survey. Econometrics Journal . https://doi.org/10.1093/ectj/utac017.

Donald, S. G., and K. Lang. 2007. Inference with difference-in-differences and other panel data. Review of Economics
and Statistics 89: 221–233. https://doi.org/10.1162/rest.89.2.221.

Goodman-Bacon, A. 2021. Difference-in-differences with variation in treatment timing. Journal of Econometrics 225:
254–277. https://doi.org/10.1016/j.jeconom.2021.03.014.

Imbens, G. W., and M. Kolesár. 2016. Robust standard errors in small samples: Some practical advice. Review of
Economics and Statistics 98: 701–712. https://doi.org/10.1162/REST a 00552.

https://doi.org/10.1146/annurev-economics-080217-053402
http://www.stata.com/bookstore/mhe.html
https://doi.org/10.1162/003355304772839588
https://doi.org/10.1016/j.jeconom.2011.01.007
https://doi.org/10.1007/s10258-002-0010-3
https://doi.org/10.48550/arXiv.2108.12419
https://doi.org/10.1016/j.jeconom.2020.12.001
https://doi.org/10.1162/rest.90.3.414
https://doi.org/10.3368/jhr.50.2.317
https://doi.org/10.1257/aer.20181169
https://doi.org/10.1093/ectj/utac017
https://doi.org/10.1162/rest.89.2.221
https://doi.org/10.1016/j.jeconom.2021.03.014
https://doi.org/10.1162/REST_a_00552


12 DID intro — Introduction to difference-in-differences estimation

Imbens, G. W., and J. M. Wooldridge. 2009. Recent developments in the econometrics of program evaluation. Journal
of Economic Literature 47: 5–86. https://doi.org/10.1257/jel.47.1.5.

Kaspereit, T. 2021. Event studies with daily stock returns in Stata: Which command to use? Stata Journal 21: 462–497.

Lechner, M. 2011. The estimation of causal effects by difference-in-difference methods. Foundations and Trends in
Econometrics 4: 165–224. http://doi.org/10.1561/0800000014.

MacKinnon, J. G. 2019. How cluster-robust inference is changing applied econometrics. Canadian Journal of Economics
52: 851–881. https://doi.org/10.1111/caje.12388.

MacKinnon, J. G., and M. D. Webb. 2018. The wild bootstrap for few (treated) clusters. Econometrics Journal 21:
114–135.
https://doi.org/10.1111/ectj.12107.

Roodman, D., J. G. MacKinnon, M. Ø. Nielsen, and M. D. Webb. 2019. Fast and wild: Bootstrap inference in Stata
using boottest. Stata Journal 19: 4–60.

Roth, J., P. H. C. Sant’Anna, A. Bilinski, and J. Poe. 2022. What’s trending in difference-in-differences? A synthesis
of the recent econometrics literature. ArXiv Working Paper No. arXiv:2201.01194.
https://doi.org/10.48550/arXiv.2201.01194.

Snow, J. 1849. On the Mode of Communication of Cholera. London: Churchill.

. 1855. On the Mode of Communication of Cholera. 2nd ed. London: Churchill.

Sun, L., and S. Abraham. 2021. Estimating dynamic treatment effects in event studies with heterogeneous treatment
effects. Journal of Econometrics 225: 175–199. https://doi.org/10.1016/j.jeconom.2020.09.006.

Wing, C., K. Simon, and R. A. Bello-Gomez. 2018. Designing difference in difference studies: Best practices for public
health policy research. Annual Review of Public Health 39: 453–469. https://doi.org/10.1146/annurev-publhealth-
040617-013507.

Wooldridge, J. M. 2021. Two-way fixed effects, the two-way Mundlak regression, and difference-in-differences
estimators. Working paper, Department of Economics, Michigan State University, East Lansing, MI.
https://dx.doi.org/10.2139/ssrn.3906345.

Also see
[CAUSAL] teffects — Treatment-effects estimation for observational data

[CAUSAL] teffects intro — Introduction to treatment effects for observational data

[CAUSAL] teffects intro advanced — Advanced introduction to treatment effects for observational
data

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp
LLC. Other brand and product names are registered trademarks or trademarks of their
respective companies. Copyright c© 1985–2023 StataCorp LLC, College Station, TX,
USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://doi.org/10.1257/jel.47.1.5
https://doi.org/10.1177/1536867X211025835
http://doi.org/10.1561/0800000014
https://doi.org/10.1111/caje.12388
https://doi.org/10.1111/ectj.12107
https://doi.org/10.1111/ectj.12107
https://doi.org/10.1177/1536867X19830877
https://doi.org/10.1177/1536867X19830877
https://doi.org/10.48550/arXiv.2201.01194
https://doi.org/10.48550/arXiv.2201.01194
https://doi.org/10.1016/j.jeconom.2020.09.006
https://doi.org/10.1146/annurev-publhealth-040617-013507
https://doi.org/10.1146/annurev-publhealth-040617-013507
https://dx.doi.org/10.2139/ssrn.3906345
https://dx.doi.org/10.2139/ssrn.3906345
https://www.stata.com/manuals/causalteffects.pdf#causalteffects
https://www.stata.com/manuals/causalteffectsintro.pdf#causalteffectsintro
https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

